|
|
|
An engineered xCas12i with high activity, high specificity, and broad PAM range |
Hainan Zhang1, Xiangfeng Kong1, Mingxing Xue1, Jing Hu1, Zikang Wang1, Yinghui Wei1, Haoqiang Wang1, Jingxing Zhou1, Weihong Zhang1, Mengqiu Xu1, Xiaowen Shen1, Fengcai Yin1, Zhiyuan Ai1, Guangyan Huang1, Junhui Xia1, Xueqiong Song1, Hengbin Li2, Yuan Yuan2, Jinhui Li1, Na Zhong1, Meiling Zhang3, Yingsi Zhou1( ), Hui Yang1,2( ) |
1. HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China 2. HuiGene Therapeutics Co., Ltd., Shanghai 200120, China 3. Center for Reproductive Medicine, International Peace Maternity and Child Health Hospital, Innovative Research Team of High-level Local Universities in Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China |
|
|
|
|
|
|
Corresponding Author(s):
Yingsi Zhou,Hui Yang
|
|
Issue Date: 18 July 2023
|
|
| 1 |
AV Anzalone, LW Koblan, DR. Liu Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824–844.
https://doi.org/10.1038/s41587-020-0561-9
|
| 2 |
S Bae, J Park, JS. Kim Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014;30:1473–1475.
https://doi.org/10.1093/bioinformatics/btu048
|
| 3 |
C Bock, P Datlinger, F Chardon et al. High-content CRISPR screening. Nat Rev Methods Primers 2022;2:9.
https://doi.org/10.1038/s43586-021-00093-4
|
| 4 |
JPK Bravo, M-S Liu, GN Hibshman et al. Structural basis for mismatch surveillance by CRISPR-Cas9. Nature 2022;603:343–347.
https://doi.org/10.1038/s41586-022-04470-1
|
| 5 |
Y Chen, Y Hu, X Wang et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation (Camb) 2022;3:100264.
https://doi.org/10.1016/j.xinn.2022.100264
|
| 6 |
JA. Doudna The promise and challenge of therapeutic genome editing. Nature 2020;578:229–236.
https://doi.org/10.1038/s41586-020-1978-5
|
| 7 |
JD Gillmore, E Gane, J Taubel et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021;385: 493–502.
https://doi.org/10.1056/NEJMoa2107454
|
| 8 |
BP Kleinstiver, AA Sousa, RT Walton et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019;37:276–282.
https://doi.org/10.1038/s41587-018-0011-0
|
| 9 |
C McGaw, AJ Garrity, GZ Munoz et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun 2022;13:2833.
https://doi.org/10.1038/s41467-022-30465-7
|
| 10 |
MF Richter, KT Zhao, E Eton et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883–891.
https://doi.org/10.1038/s41587-020-0453-z
|
| 11 |
WX Yan, P Hunnewell, LE Alfonse et al. Functionally diverse type V CRISPR-Cas systems. Science 2019;363:88–91.
https://doi.org/10.1126/science.aav7271
|
| 12 |
J Yin, M Liu, Y Liu et al. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov 2019;5:18.
https://doi.org/10.1038/s41421-019-0088-8
|
| 13 |
X Wang, C Ding, W Yu et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep 2020;31:107723.
https://doi.org/10.1016/j.celrep.2020.107723
|
| 14 |
B Zetsche, JS Gootenberg, OO Abudayyeh et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759–771.
https://doi.org/10.1016/j.cell.2015.09.038
|
| 15 |
JA Zhang, Zuris, R Viswanathan et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun 2021;12:3908.
https://doi.org/10.1038/s41467-021-24017-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|