Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (9) : 635-652    https://doi.org/10.1093/procel/pwad003
REVIEW
Recent progress and challenges in the treatment of spinal cord injury
Ting Tian1, Sensen Zhang1, Maojun Yang1,2()
1. Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
2. Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(1217 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.

Keywords spinal cord injury      axon regeneration      functional recovery      therapeutic strategies      clinical translation     
Corresponding Author(s): Maojun Yang   
Issue Date: 12 October 2023
 Cite this article:   
Ting Tian,Sensen Zhang,Maojun Yang. Recent progress and challenges in the treatment of spinal cord injury[J]. Protein Cell, 2023, 14(9): 635-652.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad003
https://academic.hep.com.cn/pac/EN/Y2023/V14/I9/635
1 AB Ajiboye, FR Willett, DR Young et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 2017;389:1821–1830.
https://doi.org/10.1016/S0140-6736(17)30601-3
2 A Alizadeh, SM Dyck, S. Karimi-Abdolrezaee Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 2019;10:282.
https://doi.org/10.3389/fneur.2019.00282
3 KJ Allahdadi, TA de Santana, GC Santos et al. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 2019;10:146.
https://doi.org/10.1186/s13287-019-1223-z
4 Z Álvarez, AN Kolberg-Edelbrock, IR Sasselli et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 2021;374:848–856.
https://doi.org/10.1126/science.abh3602
5 KD Anderson, JD Guest, WD Dietrich et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 2017;34:2950–2963.
https://doi.org/10.1089/neu.2016.4895
6 MA Anderson, TM O’Shea, JE Burda et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 2018;561:396–400.
https://doi.org/10.1038/s41586-018-0467-6
7 SS Andrabi, J Yang, Y Gao et al. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release 2020;317:300–311.
https://doi.org/10.1016/j.jconrel.2019.12.001
8 CA Angeli, VR Edgerton, YP Gerasimenko et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014;137:1394–1409.
https://doi.org/10.1093/brain/awu038
9 CA Angeli, M Boakye, RA Morton et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med 2018;379:1244–1250.
https://doi.org/10.1056/NEJMoa1803588
10 L Asboth, L Friedli, J Beauparlant et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci 2018;21:576–588.
https://doi.org/10.1038/s41593-018-0093-5
11 E Asghari Adib, LJ Smithson, CA. Collins An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018;53:110–119.
https://doi.org/10.1016/j.conb.2018.07.002
12 N Ashammakhi, HJ Kim, A Ehsanipour et al. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev 2019;25:471–491.
https://doi.org/10.1089/ten.teb.2019.0182
13 P Assinck, GJ Duncan, BJ Hilton et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017;20:637–647.
https://doi.org/10.1038/nn.4541
14 FD Benavides, HJ Jo, H Lundell et al. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J Neurosci 2020;40:2633–2643.
https://doi.org/10.1523/JNEUROSCI.2374-19.2020
15 J Bilchak, K Yeakle, G Caron et al. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp Neurol 2021;338:113605.
https://doi.org/10.1016/j.expneurol.2021.113605
16 MG Blackmore, Z Wang, JK Lerch et al. Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci USA 2012;109:7517–7522.
https://doi.org/10.1073/pnas.1120684109
17 O Blanquie, F. Bradke Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol 2018;51:60–69.
https://doi.org/10.1016/j.conb.2018.02.024
18 M Bonizzato, G Pidpruzhnykova, J DiGiovanna et al. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun 2018;9:3015.
https://doi.org/10.1038/s41467-018-05282-6
19 CE Bouton, A Shaikhouni, NV Annetta et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016;533:247–250.
https://doi.org/10.1038/nature17435
20 EJ Bradbury, ER. Burnside Moving beyond the glial scar for spinal cord repair. Nat Commun 2019;10:3879.
https://doi.org/10.1038/s41467-019-11707-7
21 PM Bradley, CK Denecke, A Aljovic et al. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity. J Exp Med 2019;216:2503–2514.
https://doi.org/10.1084/jem.20181406
22 ER Burnside, FD Winter, A Didangelos et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018;141:2362–2381.
https://doi.org/10.1093/brain/awy158
23 T Cao, H Chen, W Huang et al. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABAA receptor. Theranostics 2022;12:3057–3078.
https://doi.org/10.7150/thno.72015
24 M Capogrosso, T Milekovic, D Borton et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016;539:284–288.
https://doi.org/10.1038/nature20118
25 S Casha, D Zygun, MD McGowan et al. Results of a phase II place-bo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 2012;135:1224–1236.
https://doi.org/10.1093/brain/aws072
26 S Ceto, KJ Sekiguchi, Y Takashima, A Nimmerjahn, MH. Tuszynski 2020. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27:430–440.e5.
https://doi.org/10.1016/j.stem.2020.07.007
27 K Chang, M Bian, X Xia et al. Posttranslational modification of Sox11 regulates RGC survival and axon regeneration. eNeuro 2021;8:ENEURO.0358ENEURO.0358-0320.2020.
https://doi.org/10.1523/ENEURO.0358-20.2020
28 BA Charsar, MA Brinton, K Locke et al. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB J 2019;33:13775–13793.
https://doi.org/10.1096/fj.201901730R
29 B Chen, Y Li, B Yu et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018a;174:521–535.e13.
https://doi.org/10.1016/j.cell.2018.06.005
30 X Chen, Y Zhao, X Li et al. Functional multichannel poly(propylene fumarate)-collagen scaffold with collagen-binding neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury. Adv Healthc Mater 2018b;7:1800315.
https://doi.org/10.1002/adhm.201800315
31 L Cheng, A Sami, B Ghosh et al. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2021;147:105153.
https://doi.org/10.1016/j.nbd.2020.105153
32 Y Cho, E Shin Jung, E Ewan Eric et al. Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α. Neuron 2015;88:720–734.
https://doi.org/10.1016/j.neuron.2015.09.050
33 ST Crowley, Y Fukushima, S Uchida et al. Enhancement of motor function recovery after spinal cord injury in mice by delivery of brain-derived neurotrophic factor mRNA. Mol Ther Nucleic Acids 2019;17:465–476.
https://doi.org/10.1016/j.omtn.2019.06.016
34 A Curt, J Hsieh, M Schubert et al. The damaged spinal cord is a suitable target for stem cell transplantation. Neurorehabil Neural Repair 2020;34:758–768.
https://doi.org/10.1177/1545968320935815
35 E Curtis, JR Martin, B Gabel et al. 2018. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22:941–950.e6.
https://doi.org/10.1016/j.stem.2018.05.014
36 P De Carvalho, JB Goulardins, DMN de Sousa et al. Noninvasive neuromodulation techniques in difficult tracheostomy weaning of patients with spinal cord injury. Chest 2021;159:e299–e302.
https://doi.org/10.1016/j.chest.2020.11.065
37 J Deng, M Li, F Meng et al. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 2021;12:1096.
https://doi.org/10.1038/s41419-021-04398-w
38 K Du, S Zheng, Q Zhang et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci 2015;35:9754–9763.
https://doi.org/10.1523/JNEUROSCI.3637-14.2015
39 JN Dulin, AF Adler, H Kumamaru et al. Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat Commun 2018;9:84.
https://doi.org/10.1038/s41467-017-02613-x
40 S Dyck, H Kataria, A Alizadeh et al. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflamm 2018;15:90.
https://doi.org/10.1186/s12974-018-1128-2
41 S Dyck, H Kataria, K Akbari-Kelachayeh et al. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 2019;67:125–145.
https://doi.org/10.1002/glia.23533
42 C Ehrmann, S Mahmoudi, B Prodinger et al. Impact of spasticity on functioning in spinal cord injury: an application of graphical modelling. J Rehabil Med 2020;52:jrm00037.
https://doi.org/10.2340/16501977-2657
43 L Fan, C Liu, X Chen et al. Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci 2022;9:e2105586.
https://doi.org/10.1002/advs.202105586
44 E Formento, K Minassian, F Wagner et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci 2018;21:1728–1741.
https://doi.org/10.1038/s41593-018-0262-6
45 L Friedli, ES Rosenzweig, Q Barraud et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2015;7:302ra134.
https://doi.org/10.1126/scitranslmed.aac5811
46 KL Gant, JD Guest, AE Palermo et al. Phase 1 safety trial of autologous human schwann cell transplantation in chronic spinal cord injury. J Neurotrauma 2022;39:285–299.
https://doi.org/10.1089/neu.2020.7590
47 PD Ganzer, SC Colachis, MA Schwemmer et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell 2020;181:763–773.e12.
https://doi.org/10.1016/j.cell.2020.03.054
48 Z Gao, CJ Zhang, N Xia et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater 2021;126:211–223.
https://doi.org/10.1016/j.actbio.2021.03.018
49 CG Geoffroy, B. Zheng Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 2014;27:31–38.
https://doi.org/10.1016/j.conb.2014.02.012
50 ML Gill, PJ Grahn, JS Calvert et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 2018;24:1677–1682.
https://doi.org/10.1038/s41591-018-0175-7
51 Y Goldshmit, F Frisca, AR Pinto et al. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 2014;4:187–200.
https://doi.org/10.1002/brb3.172
52 PJ Grahn, KH Lee, A Kasasbeh et al. Wireless control of intraspinal microstimulation in a rodent model of paralysis. J Neurosurg 2015;123:232–242.
https://doi.org/10.3171/2014.10.JNS132370
53 N Greiner, B Barra, G Schiavone et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun 2021;12:435.
https://doi.org/10.1038/s41467-020-20703-1
54 JM Griffin, F. Bradke Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020;12:e11505.
https://doi.org/10.15252/emmm.201911505
55 SJ Gwak, C Macks, DU Jeong et al. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 2017;121:155–166.
https://doi.org/10.1016/j.biomaterials.2017.01.003
56 A Hall, G. Lalli Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010;2:a001818.
https://doi.org/10.1101/cshperspect.a001818
57 Q Han, JD Ordaz, NK Liu et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun 2019;10:5815.
https://doi.org/10.1038/s41467-019-13854-3
58 Q Han, Y Xie, JD Ordaz et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 2020;31:623–641.e8.
https://doi.org/10.1016/j.cmet.2020.02.002
59 F Hellal, A Hurtado, J Ruschel et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 2011;331:928–931.
https://doi.org/10.1126/science.1201148
60 SM Hosseini, A Alizadeh, N Shahsavani et al. Suppressing CSPG/LAR/PTPσ axis facilitates neuronal replacement and synaptogenesis by human neural precursor grafts and improves recovery after spinal cord injury. J Neurosci 2022;42:3096–3121.
https://doi.org/10.1523/JNEUROSCI.2177-21.2022
61 L Huang, G Li, Y Ding et al. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp Neurol 2019;320:112965.
https://doi.org/10.1016/j.expneurol.2019.112965
62 N Huang, S Li, Y Xie et al. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021;31:3098–3114.e7.
https://doi.org/10.1016/j.cub.2021.04.079
63 EM Hur, Saijilafu, FQ Zhou. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 2012;35:164–174.
https://doi.org/10.1016/j.tins.2011.11.002
64 TH Hutson, C Kathe, I Palmisano et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med 2019;11:eaaw2064.
https://doi.org/10.1126/scitranslmed.aaw2064
65 F Inanici, LN Brighton, S Samejima et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2021;29:310–319.
https://doi.org/10.1109/TNSRE.2021.3049133
66 S Ito, N Nagoshi, O Tsuji et al. lotus inhibits neuronal apoptosis and promotes tract regeneration in contusive spinal cord injury model mice. eNeuro 2018;5:ENEURO.0303-0318.2018.
https://doi.org/10.1523/ENEURO.0303-18.2018
67 S Ito, N Nagoshi, Y Kamata et al. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Rep 2021;16:2703–2717.
https://doi.org/10.1016/j.stemcr.2021.09.006
68 N Jayaprakash, Z Wang, B Hoeynck et al. Optogenetic interrogation of functional synapse formation by corticospinal tract axons in the injured spinal cord. J Neurosci 2016;36:5877–5890.
https://doi.org/10.1523/JNEUROSCI.4203-15.2016
69 B Ji, M Li, WT Wu et al. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 2006;33:311–320.
https://doi.org/10.1016/j.mcn.2006.08.003
70 Z Ji, GB Gao, YM Ma et al. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials 2022;284:121481.
https://doi.org/10.1016/j.biomaterials.2022.121481
71 D Jin, Y Liu, F Sun et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat Commun 2015;6:8074.
https://doi.org/10.1038/ncomms9074
72 K Kadoya, P Lu, K Nguyen et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 2016;22:479–487.
https://doi.org/10.1038/nm.4066
73 K Kaila, TJ Price, JA Payne et al. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014;15:637–654.
https://doi.org/10.1038/nrn3819
74 Y Kamata, M Isoda, T Sanosaka et al. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Transl Med 2021;10:398–413.
https://doi.org/10.1002/sctm.20-0269
75 M Karsy, G. Hawryluk Modern medical management of spinal cord injury. Curr Neurol Neurosci Rep 2019;19:65.
https://doi.org/10.1007/s11910-019-0984-1
76 KM Keefe, IS Sheikh, GM. Smith Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 2017;18:548.
https://doi.org/10.3390/ijms18030548
77 J Kim, C Mahapatra, JY Hong et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles. Adv Sci 2017;4:1700034.
https://doi.org/10.1002/advs.201700034
78 EA Kiyotake, MD Martin, MS. Detamore Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022;139:43–64.
https://doi.org/10.1016/j.actbio.2020.12.021
79 S Ko, E Apple, Z Liu et al. Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. Autophagy 2020;16:2052–2068.
https://doi.org/10.1080/15548627.2020.1713645
80 M Koda, H Hanaoka, Y Fujii et al. Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain 2021;144:789–799.
https://doi.org/10.1093/brain/awaa466
81 J Koffler, W Zhu, X Qu et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 2019;25:263–269.
https://doi.org/10.1038/s41591-018-0296-z
82 K Kojima, H Miyoshi, N Nagoshi et al. Selective ablation of tumorigenic cells following human induced pluripotent stem cell-derived neural stem/progenitor cell transplantation in spinal cord injury. Stem Cells Transl Med 2019;8:260–270.
https://doi.org/10.1002/sctm.18-0096
83 G Kong, L Zhou, E Serger et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab 2020;2:918–933.
https://doi.org/10.1038/s42255-020-0252-3
84 AA Kramer, GM Olson, A Chakraborty et al. Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Exp Neurol 2021;339:113644.
https://doi.org/10.1016/j.expneurol.2021.113644
85 VS Krishnan, SS Shin, V Belegu et al. Multimodal evaluation of TMS—induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front Neurosci 2019;13:387.
https://doi.org/10.3389/fnins.2019.00387
86 K Kucher, D Johns, D Maier et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury. Neurorehabil Neural Repair 2018;32:578–589.
https://doi.org/10.1177/1545968318776371
87 H Kumamaru, P Lu, ES Rosenzweig et al. Regenerating corticospinal axons innervate phenotypically appropriate neurons within neural stem cell grafts. Cell Rep 2019;26:2329–2339.e4.
https://doi.org/10.1016/j.celrep.2019.01.099
88 C Lang, PM Bradley, A Jacobi et al. STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Rep 2013;14:931–937.
https://doi.org/10.1038/embor.2013.117
89 BT Lang, JM Cregg, MA DePaul et al. Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature 2015;518:404–408.
https://doi.org/10.1038/nature13974
90 MA Lebedev, MA. Nicolelis Brain–machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol Rev 2017;97:767–837.
https://doi.org/10.1152/physrev.00027.2016
91 SC Leite, R Pinto-Costa, MM. Sousa Actin dynamics in the growth cone: a key player in axon regeneration. Curr Opin Neurobiol 2021;69:11–18.
https://doi.org/10.1016/j.conb.2020.11.015
92 RN. Lemon Descending pathways in motor control. Annu Rev Neurosci 2008;31:195–218.
https://doi.org/10.1146/annurev.neuro.31.060407.125547
93 K Leszczynska, A Wincek, W Fortuna et al. Treatment of patients with cervical and upper thoracic incomplete spinal cord injury using repetitive transcranial magnetic stimulation. Int J Artif Organs 2019;43:323–331.
https://doi.org/10.1177/0391398819887754
94 G Li, MT Che, X Zeng et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018a;106:2158–2170.
https://doi.org/10.1002/jbm.a.36414
95 J Li, Q Wang, H Wang et al. Lentivirus mediating FGF13 enhances axon regeneration after spinal cord injury by stabilizing microtubule and improving mitochondrial function. J Neurotrauma 2018b;35:548–559.
https://doi.org/10.1089/neu.2017.5205
96 H Li, R Kong, B Wan et al. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sci 2020;263:118572.
https://doi.org/10.1016/j.lfs.2020.118572
97 O Lipton Jonathan, M. Sahin The neurology of mTOR. Neuron 2014;84:275–291.
https://doi.org/10.1016/j.neuron.2014.09.034
98 SM Liu, ZF Xiao, X Li et al. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neurosci Ther 2019a;25:375–385.
https://doi.org/10.1111/cns.13056
99 Z Liu, Y Yang, L He et al. High-dose methylprednisolone for acute traumatic spinal cord injury: a meta-analysis. Neurology 2019b;93:e841–e850.
https://doi.org/10.1212/WNL.0000000000007998
100 LA Lowery, DV. Vactor The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 2009;10:332–343.
https://doi.org/10.1038/nrm2679
101 P Lu, Y Wang, L Graham et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012;150:1264–1273.
https://doi.org/10.1016/j.cell.2012.08.020
102 P Lu, G Woodruff, Y Wang et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014;83:789–796.
https://doi.org/10.1016/j.neuron.2014.07.014
103 C Lutton, YW Young, R Williams et al. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J Neurotrauma 2012;29:957–970.
https://doi.org/10.1089/neu.2010.1423
104 L Mao, W Gao, S Chen et al. Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death Dis 2017;8:e3162.
https://doi.org/10.1038/cddis.2017.542
105 JG McPherson, RR Miller, SI. Perlmutter Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci USA 2015;112:12193–12198.
https://doi.org/10.1073/pnas.1505383112
106 LM Mercier, EJ Gonzalez-Rothi, KA Streeter et al. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury. J Neurophysiol 2017;117:767–776.
https://doi.org/10.1152/jn.00721.2016
107 S Meyer Zu Reckendorf, D Moser, A Blechschmidt et al. Motoneuron-specific PTEN deletion in mice induces neuronal hypertrophy and also regeneration after facial nerve injury. J Neurosci 2022;42:2474–2491.
https://doi.org/10.1523/JNEUROSCI.1305-21.2022
108 F Nathan, Y Ohtake, S Wang et al. Upregulating Lin28a promotes axon regeneration in adult mice with optic nerve and spinal cord injury. Mol Ther 2020;28:1902–1917.
https://doi.org/10.1016/j.ymthe.2020.04.010
109 Y Ohtake, A Sami, X Jiang et al. Promoting axon regeneration in adult CNS by targeting liver kinase B1. Mol Ther 2019;27:102–117.
https://doi.org/10.1016/j.ymthe.2018.10.019
110 B Ong, JR Wilson, MK. Henzel Management of the patient with chronic spinal cord injury. Med Clin N Am 2020;104:263–278.
https://doi.org/10.1016/j.mcna.2019.10.006
111 S Oraee-Yazdani, M Akhlaghpasand, M Golmohammadi et al. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021;12:445.
https://doi.org/10.1186/s13287-021-02515-2
112 S Papa, I Vismara, A Mariani et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J Control Release 2018;278:49–56.
https://doi.org/10.1016/j.jconrel.2018.03.034
113 H Park, YM Kim, LT Anh Hong et al. Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration. Biomaterials 2022;284:121526.
https://doi.org/10.1016/j.biomaterials.2022.121526
114 AK Patel, RM Broyer, CD Lee et al. Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proc Natl Acad Sci USA 2020;117:33597–33607.
https://doi.org/10.1073/pnas.2004683117
115 V Pikov, DB McCreery, M. Han Intraspinal stimulation with a silicon-based 3D chronic microelectrode array for bladder voiding in cats. J Neural Eng 2020;17:065004.
https://doi.org/10.1088/1741-2552/abca13
116 K Potter-Baker, DP Janini, YL Lin et al. Transcranial direct current stimulation (tDCS) paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study. J Spinal Cord Med 2017;41:503–517.
https://doi.org/10.1080/10790268.2017.1361562
117 G Poulen, E Aloy, CM Bringuier et al. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Theranostics 2021;11:8640–8659.
https://doi.org/10.7150/thno.61833
118 R Puttagunta, A Tedeschi, MG Sória et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 2014;5:3527.
https://doi.org/10.1038/ncomms4527
119 ES Rosenzweig, JH Brock, P Lu et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 2018;24:484–490.
https://doi.org/10.1038/nm.4502
120 ES Rosenzweig, EA Salegio, JJ Liang et al. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat Neurosci 2019;22:1269–1275.
https://doi.org/10.1038/s41593-019-0424-1
121 A Rowald, S Komi, R Demesmaeker et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med 2022;28:260–271.
https://doi.org/10.1038/s41591-021-01663-5
122 JW Rowland, GW Hawryluk, B Kwon et al. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25:E2.
https://doi.org/10.3171/FOC.2008.25.11.E2
123 R Sachdeva, TE Nightingale, K Pawar et al. Noninvasive neuroprosthesis promotes cardiovascular recovery after spinal cord injury. Neurotherapeutics 2021;18:1244–1256.
https://doi.org/10.1007/s13311-021-01034-5
124 JM Saikia, CL Chavez-Martinez, ND Kim et al. A critical role for DLK and LZK in axonal repair in the mammalian spinal cord. J Neurosci 2022;42:3716–3732.
https://doi.org/10.1523/JNEUROSCI.2495-21.2022
125 S Samejima, A Khorasani, V Ranganathan et al. Brain–computer–spinal interface restores upper limb function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2021;29:1233–1242.
https://doi.org/10.1109/TNSRE.2021.3090269
126 AJ Santamaria, FD Benavides, PM Saraiva et al. Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front Neurol 2021;11:514181.
https://doi.org/10.3389/fneur.2020.514181
127 RA Saxton, DM. Sabatini mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960–976.
https://doi.org/10.1016/j.cell.2017.02.004
128 DG Sayenko, M Rath, AR Ferguson et al. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J Neurotrauma 2019;36:1435–1450.
https://doi.org/10.1089/neu.2018.5956
129 B Schaffran, F. Bradke Reproducibility—the key towards clinical implementation of spinal cord injury treatments? Exp Neurol 2019;313:135–136.
https://doi.org/10.1016/j.expneurol.2018.12.010
130 MP Schneider, AM Sartori, BV Ineichen et al. Anti-Nogo-A antibodies as a potential causal therapy for lower urinary tract dysfunction after spinal cord injury. J Neurosci 2019;39:4066–4076.
https://doi.org/10.1523/JNEUROSCI.3155-18.2019
131 H Sharif, H Alexander, A Azam et al. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model. Exp Neurol 2021;341:113715.
https://doi.org/10.1016/j.expneurol.2021.113715
132 H Shen, B Xu, C Yang et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 2022;280:121279.
https://doi.org/10.1016/j.biomaterials.2021.121279
133 DJ Silver, J. Silver Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014;27:171–178.
https://doi.org/10.1016/j.conb.2014.03.016
134 JD Simeral, T Hosman, J Saab et al. Home use of a percutaneous wireless intracortical brain–computer interface by individuals with tetraplegia. IEEE Trans Biomed Eng 2021;68:2313–2325.
https://doi.org/10.1109/TBME.2021.3069119
135 PD Smith, F Sun, KK Park et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 2009;64:617–623.
https://doi.org/10.1016/j.neuron.2009.11.021
136 MV. Sofroniew Dissecting spinal cord regeneration. Nature 2018;557:343–350.
https://doi.org/10.1038/s41586-018-0068-4
137 S Stern, BJ Hilton, ER Burnside et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 2021;109:3436–3455.e9.
https://doi.org/10.1016/j.neuron.2021.08.014
138 W Sun, MJ Larson, CM Kiyoshi et al. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J Clin Invest 2020;130:345–358.
https://doi.org/10.1172/JCI130391
139 A Tedeschi, F. Bradke Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2017;42:118–127.
https://doi.org/10.1016/j.conb.2016.12.005
140 A Tedeschi, S Dupraz, CJ Laskowski et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 2016;92:419–434.
https://doi.org/10.1016/j.neuron.2016.09.026
141 A Tedeschi, S Dupraz, M Curcio et al. ADF/Cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron 2019;103:1073–1085.e6.
https://doi.org/10.1016/j.neuron.2019.07.007
142 A Tolmacheva, S Savolainen, E Kirveskari et al. Long-term paired associative stimulation enhances motor output of the tetraplegic hand. J Neurotrauma 2017;34:2668–2674.
https://doi.org/10.1089/neu.2017.4996
143 MW Urban, B Ghosh, LR Strojny et al. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI. Exp Neurol 2018;303:108–119.
https://doi.org/10.1016/j.expneurol.2018.02.007
144 I Venkatesh, V Mehra, Z Wang et al. Co-occupancy identifies transcription factor co-operation for axon growth. Nat Commun 2021;12:2555.
https://doi.org/10.1038/s41467-021-22828-3
145 FB Wagner, JB Mignardot, CG Le Goff-Mignardot et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018;563:65–71.
https://doi.org/10.1038/s41586-018-0649-2
146 M Walter, AHX Lee, A Kavanagh et al. Epidural spinal cord stimulation acutely modulates lower urinary tract and bowel function following spinal cord injury: a case report. Front Physiol 2018;9:1816.
https://doi.org/10.3389/fphys.2018.01816
147 X Wang, K Yigitkanli, CY Kim et al. Human NgR-Fc decoy protein via lumbar intrathecal bolus administration enhances recovery from rat spinal cord contusion. J Neurotrauma 2014;31:1955–1966.
https://doi.org/10.1089/neu.2014.3355
148 Z Wang, A Reynolds, A Kirry et al. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci 2015;35:3139–3145.
https://doi.org/10.1523/JNEUROSCI.2832-14.2015
149 X Wang, T Zhou, GD Maynard et al. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 2020;143:1697–1713.
https://doi.org/10.1093/brain/awaa116
150 FM Warner, JJ Cragg, CR Jutzeler et al. EMSCI Sites. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep 2017;18:1614–1618.
https://doi.org/10.1016/j.celrep.2017.01.048
151 PM Warren, SC Steiger, TE Dick et al. Rapid and robust restoration of breathing long after spinal cord injury. Nat Commun 2018;9:4843.
https://doi.org/10.1038/s41467-018-06937-0
152 T Watkins, B Wang, S Huntwork-Rodriguez et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci USA 2013;110:4039–4044.
https://doi.org/10.1073/pnas.1211074110
153 YL Weng, R An, J Cassin et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 2017;94:337–346.e6.
https://doi.org/10.1016/j.neuron.2017.03.034
154 N Wenger, EM Moraud, S Raspopovic et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 2014;6:255ra133.
https://doi.org/10.1126/scitranslmed.3008325
155 L Wertheim, R Edri, Y Goldshmit et al. Regenerating the injured spinal cord at the chronic phase by engineered iPSCs-derived 3D neuronal networks. Adv Sci 2022;9:e2105694.
https://doi.org/10.1002/advs.202105694
156 CR West, AA Phillips, JW Squair et al. Association of epidural stimulation with cardiovascular function in an individual with spinal cord injury. JAMA Neurol 2018;75:630–632.
https://doi.org/10.1001/jamaneurol.2017.5055
157 FR Willett, DT Avansino, LR Hochberg et al. High-performance brain-to-text communication via handwriting. Nature 2021;593:249–254.
https://doi.org/10.1038/s41586-021-03506-2
158 C. Willyard How a revolutionary technique got people with spinal-cord injuries back on their feet. Nature 2019;572:20–25.
https://doi.org/10.1038/d41586-019-02306-z
159 A Wincek, J Huber, K Leszczyńska et al. The long-term effect of treatment using the transcranial magnetic stimulation rTMS in patients after incomplete cervical or thoracic spinal cord injury. J Clin Med 2021;10:2975.
https://doi.org/10.3390/jcm10132975
160 D Wu, MC Klaw, T Connors et al. Expressing constitutively active Rheb in adult neurons after a complete spinal cord injury enhances axonal regeneration beyond a chondroitinase-treated glial scar. J Neurosci 2015;35:11068–11080.
https://doi.org/10.1523/JNEUROSCI.0719-15.2015
161 H Wu, L Ding, Y Wang et al. MiR-615 regulates NSC differentiation in vitro and contributes to spinal cord injury repair by targeting LINGO-1. Mol Neurobiol 2020;57:3057–3074.
https://doi.org/10.1007/s12035-020-01936-z
162 D Xu, D Wu, M Qin et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv Mater 2019;31:e1900727.
https://doi.org/10.1002/adma.201970233
163 G Xu, S Xu, YX Zhang et al. Cell-free extracts from human fat tissue with a hyaluronan-based hydrogel attenuate inflammation in a spinal cord injury model through M2 microglia/microphage polarization. Small 2022;18:2107838.
https://doi.org/10.1002/smll.202107838
164 S Yang, MC. Chang Transcranial direct current stimulation for the management of neuropathic pain: a narrative review. Pain Physician 2021;24:E771–E781.
https://doi.org/10.36076/ppj.2021.24.E771
165 Q Yang, A Ramamurthy, S Lall et al. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats. Exp Neurol 2019;320:112962.
https://doi.org/10.1016/j.expneurol.2019.112962
166 B Yao, KM Christian, C He et al. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016;17:537–549.
https://doi.org/10.1038/nrn.2016.70
167 Y Yao, J Xu, T Yu et al. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Theranostics 2018;8:4181–4198.
https://doi.org/10.7150/thno.25707
168 J Ye, S Jin, W Cai et al. Rationally designed, self-assembling, multi-functional hydrogel depot repairs severe spinal cord injury. Adv Healthc Mater 2021;10:e2100242.
https://doi.org/10.1002/adhm.202100242
169 T Yoshimura, Y Kawano, N Arimura et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005;120:137–149.
https://doi.org/10.1016/j.cell.2004.11.012
170 Q Yu, M Liao, C Sun et al. LBO-EMSC hydrogel serves a dual function in spinal cord injury restoration via the PI3K-Akt-mTOR pathway. ACS Appl Mater Interfaces 2021;13:48365–48377.
https://doi.org/10.1021/acsami.1c12013
171 N Zareen, S Dodson, K Armada et al. Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol 2018;307:133–144.
https://doi.org/10.1016/j.expneurol.2018.05.004
172 C Zhao, J Qin, J Li et al. LINGO-1 regulates Wnt5a signaling during neural stem and progenitor cell differentiation by modulating miR-15b-3p levels. Stem Cell Res Ther 2021a;12:372.
https://doi.org/10.1186/s13287-021-02452-0
173 Y Zhao, Q Wang, C Xie et al. Peptide ligands targeting FGF receptors promote recovery from dorsal root crush injury via AKT/mTOR signaling. Theranostics 2021b;11:10125–10147.
https://doi.org/10.7150/thno.62525
174 FQ Zhou, WD. Snider GSK-3β and microtubule assembly in axons. Science 2005;308:211–214.
https://doi.org/10.1126/science.1110301
175 FQ Zhou, J Zhou, S Dedhar et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 2004;42:897–912.
https://doi.org/10.1016/j.neuron.2004.05.011
176 W Zhou, M Silva, C Feng et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther 2021;12:174.
https://doi.org/10.1186/s13287-021-02248-2
[1] Dandan Luo, Weihong Ge, Xiao Hu, Chen Li, Chia-Ming Lee, Liqiang Zhou, Zhourui Wu, Juehua Yu, Sheng Lin, Jing Yu, Wei Xu, Lei Chen, Chong Zhang, Kun Jiang, Xingfei Zhu, Haotian Li, Xinpei Gao, Yanan Geng, Bo Jing, Zhen Wang, Changhong Zheng, Rongrong Zhu, Qiao Yan, Quan Lin, Keqiang Ye, Yi E. Sun, Liming Cheng. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury[J]. Protein Cell, 2019, 10(8): 566-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed