1 |
AB Ajiboye, FR Willett, DR Young et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 2017;389:1821–1830.
https://doi.org/10.1016/S0140-6736(17)30601-3
|
2 |
A Alizadeh, SM Dyck, S. Karimi-Abdolrezaee Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 2019;10:282.
https://doi.org/10.3389/fneur.2019.00282
|
3 |
KJ Allahdadi, TA de Santana, GC Santos et al. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 2019;10:146.
https://doi.org/10.1186/s13287-019-1223-z
|
4 |
Z Álvarez, AN Kolberg-Edelbrock, IR Sasselli et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 2021;374:848–856.
https://doi.org/10.1126/science.abh3602
|
5 |
KD Anderson, JD Guest, WD Dietrich et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 2017;34:2950–2963.
https://doi.org/10.1089/neu.2016.4895
|
6 |
MA Anderson, TM O’Shea, JE Burda et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 2018;561:396–400.
https://doi.org/10.1038/s41586-018-0467-6
|
7 |
SS Andrabi, J Yang, Y Gao et al. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release 2020;317:300–311.
https://doi.org/10.1016/j.jconrel.2019.12.001
|
8 |
CA Angeli, VR Edgerton, YP Gerasimenko et al. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014;137:1394–1409.
https://doi.org/10.1093/brain/awu038
|
9 |
CA Angeli, M Boakye, RA Morton et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med 2018;379:1244–1250.
https://doi.org/10.1056/NEJMoa1803588
|
10 |
L Asboth, L Friedli, J Beauparlant et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci 2018;21:576–588.
https://doi.org/10.1038/s41593-018-0093-5
|
11 |
E Asghari Adib, LJ Smithson, CA. Collins An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018;53:110–119.
https://doi.org/10.1016/j.conb.2018.07.002
|
12 |
N Ashammakhi, HJ Kim, A Ehsanipour et al. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev 2019;25:471–491.
https://doi.org/10.1089/ten.teb.2019.0182
|
13 |
P Assinck, GJ Duncan, BJ Hilton et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017;20:637–647.
https://doi.org/10.1038/nn.4541
|
14 |
FD Benavides, HJ Jo, H Lundell et al. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J Neurosci 2020;40:2633–2643.
https://doi.org/10.1523/JNEUROSCI.2374-19.2020
|
15 |
J Bilchak, K Yeakle, G Caron et al. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp Neurol 2021;338:113605.
https://doi.org/10.1016/j.expneurol.2021.113605
|
16 |
MG Blackmore, Z Wang, JK Lerch et al. Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci USA 2012;109:7517–7522.
https://doi.org/10.1073/pnas.1120684109
|
17 |
O Blanquie, F. Bradke Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol 2018;51:60–69.
https://doi.org/10.1016/j.conb.2018.02.024
|
18 |
M Bonizzato, G Pidpruzhnykova, J DiGiovanna et al. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun 2018;9:3015.
https://doi.org/10.1038/s41467-018-05282-6
|
19 |
CE Bouton, A Shaikhouni, NV Annetta et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016;533:247–250.
https://doi.org/10.1038/nature17435
|
20 |
EJ Bradbury, ER. Burnside Moving beyond the glial scar for spinal cord repair. Nat Commun 2019;10:3879.
https://doi.org/10.1038/s41467-019-11707-7
|
21 |
PM Bradley, CK Denecke, A Aljovic et al. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity. J Exp Med 2019;216:2503–2514.
https://doi.org/10.1084/jem.20181406
|
22 |
ER Burnside, FD Winter, A Didangelos et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018;141:2362–2381.
https://doi.org/10.1093/brain/awy158
|
23 |
T Cao, H Chen, W Huang et al. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABAA receptor. Theranostics 2022;12:3057–3078.
https://doi.org/10.7150/thno.72015
|
24 |
M Capogrosso, T Milekovic, D Borton et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016;539:284–288.
https://doi.org/10.1038/nature20118
|
25 |
S Casha, D Zygun, MD McGowan et al. Results of a phase II place-bo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 2012;135:1224–1236.
https://doi.org/10.1093/brain/aws072
|
26 |
S Ceto, KJ Sekiguchi, Y Takashima, A Nimmerjahn, MH. Tuszynski 2020. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27:430–440.e5.
https://doi.org/10.1016/j.stem.2020.07.007
|
27 |
K Chang, M Bian, X Xia et al. Posttranslational modification of Sox11 regulates RGC survival and axon regeneration. eNeuro 2021;8:ENEURO.0358ENEURO.0358-0320.2020.
https://doi.org/10.1523/ENEURO.0358-20.2020
|
28 |
BA Charsar, MA Brinton, K Locke et al. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB J 2019;33:13775–13793.
https://doi.org/10.1096/fj.201901730R
|
29 |
B Chen, Y Li, B Yu et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018a;174:521–535.e13.
https://doi.org/10.1016/j.cell.2018.06.005
|
30 |
X Chen, Y Zhao, X Li et al. Functional multichannel poly(propylene fumarate)-collagen scaffold with collagen-binding neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury. Adv Healthc Mater 2018b;7:1800315.
https://doi.org/10.1002/adhm.201800315
|
31 |
L Cheng, A Sami, B Ghosh et al. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2021;147:105153.
https://doi.org/10.1016/j.nbd.2020.105153
|
32 |
Y Cho, E Shin Jung, E Ewan Eric et al. Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α. Neuron 2015;88:720–734.
https://doi.org/10.1016/j.neuron.2015.09.050
|
33 |
ST Crowley, Y Fukushima, S Uchida et al. Enhancement of motor function recovery after spinal cord injury in mice by delivery of brain-derived neurotrophic factor mRNA. Mol Ther Nucleic Acids 2019;17:465–476.
https://doi.org/10.1016/j.omtn.2019.06.016
|
34 |
A Curt, J Hsieh, M Schubert et al. The damaged spinal cord is a suitable target for stem cell transplantation. Neurorehabil Neural Repair 2020;34:758–768.
https://doi.org/10.1177/1545968320935815
|
35 |
E Curtis, JR Martin, B Gabel et al. 2018. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22:941–950.e6.
https://doi.org/10.1016/j.stem.2018.05.014
|
36 |
P De Carvalho, JB Goulardins, DMN de Sousa et al. Noninvasive neuromodulation techniques in difficult tracheostomy weaning of patients with spinal cord injury. Chest 2021;159:e299–e302.
https://doi.org/10.1016/j.chest.2020.11.065
|
37 |
J Deng, M Li, F Meng et al. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 2021;12:1096.
https://doi.org/10.1038/s41419-021-04398-w
|
38 |
K Du, S Zheng, Q Zhang et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci 2015;35:9754–9763.
https://doi.org/10.1523/JNEUROSCI.3637-14.2015
|
39 |
JN Dulin, AF Adler, H Kumamaru et al. Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat Commun 2018;9:84.
https://doi.org/10.1038/s41467-017-02613-x
|
40 |
S Dyck, H Kataria, A Alizadeh et al. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflamm 2018;15:90.
https://doi.org/10.1186/s12974-018-1128-2
|
41 |
S Dyck, H Kataria, K Akbari-Kelachayeh et al. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 2019;67:125–145.
https://doi.org/10.1002/glia.23533
|
42 |
C Ehrmann, S Mahmoudi, B Prodinger et al. Impact of spasticity on functioning in spinal cord injury: an application of graphical modelling. J Rehabil Med 2020;52:jrm00037.
https://doi.org/10.2340/16501977-2657
|
43 |
L Fan, C Liu, X Chen et al. Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci 2022;9:e2105586.
https://doi.org/10.1002/advs.202105586
|
44 |
E Formento, K Minassian, F Wagner et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci 2018;21:1728–1741.
https://doi.org/10.1038/s41593-018-0262-6
|
45 |
L Friedli, ES Rosenzweig, Q Barraud et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2015;7:302ra134.
https://doi.org/10.1126/scitranslmed.aac5811
|
46 |
KL Gant, JD Guest, AE Palermo et al. Phase 1 safety trial of autologous human schwann cell transplantation in chronic spinal cord injury. J Neurotrauma 2022;39:285–299.
https://doi.org/10.1089/neu.2020.7590
|
47 |
PD Ganzer, SC Colachis, MA Schwemmer et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell 2020;181:763–773.e12.
https://doi.org/10.1016/j.cell.2020.03.054
|
48 |
Z Gao, CJ Zhang, N Xia et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater 2021;126:211–223.
https://doi.org/10.1016/j.actbio.2021.03.018
|
49 |
CG Geoffroy, B. Zheng Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 2014;27:31–38.
https://doi.org/10.1016/j.conb.2014.02.012
|
50 |
ML Gill, PJ Grahn, JS Calvert et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 2018;24:1677–1682.
https://doi.org/10.1038/s41591-018-0175-7
|
51 |
Y Goldshmit, F Frisca, AR Pinto et al. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 2014;4:187–200.
https://doi.org/10.1002/brb3.172
|
52 |
PJ Grahn, KH Lee, A Kasasbeh et al. Wireless control of intraspinal microstimulation in a rodent model of paralysis. J Neurosurg 2015;123:232–242.
https://doi.org/10.3171/2014.10.JNS132370
|
53 |
N Greiner, B Barra, G Schiavone et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun 2021;12:435.
https://doi.org/10.1038/s41467-020-20703-1
|
54 |
JM Griffin, F. Bradke Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020;12:e11505.
https://doi.org/10.15252/emmm.201911505
|
55 |
SJ Gwak, C Macks, DU Jeong et al. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 2017;121:155–166.
https://doi.org/10.1016/j.biomaterials.2017.01.003
|
56 |
A Hall, G. Lalli Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010;2:a001818.
https://doi.org/10.1101/cshperspect.a001818
|
57 |
Q Han, JD Ordaz, NK Liu et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun 2019;10:5815.
https://doi.org/10.1038/s41467-019-13854-3
|
58 |
Q Han, Y Xie, JD Ordaz et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 2020;31:623–641.e8.
https://doi.org/10.1016/j.cmet.2020.02.002
|
59 |
F Hellal, A Hurtado, J Ruschel et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 2011;331:928–931.
https://doi.org/10.1126/science.1201148
|
60 |
SM Hosseini, A Alizadeh, N Shahsavani et al. Suppressing CSPG/LAR/PTPσ axis facilitates neuronal replacement and synaptogenesis by human neural precursor grafts and improves recovery after spinal cord injury. J Neurosci 2022;42:3096–3121.
https://doi.org/10.1523/JNEUROSCI.2177-21.2022
|
61 |
L Huang, G Li, Y Ding et al. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp Neurol 2019;320:112965.
https://doi.org/10.1016/j.expneurol.2019.112965
|
62 |
N Huang, S Li, Y Xie et al. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021;31:3098–3114.e7.
https://doi.org/10.1016/j.cub.2021.04.079
|
63 |
EM Hur, Saijilafu, FQ Zhou. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 2012;35:164–174.
https://doi.org/10.1016/j.tins.2011.11.002
|
64 |
TH Hutson, C Kathe, I Palmisano et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med 2019;11:eaaw2064.
https://doi.org/10.1126/scitranslmed.aaw2064
|
65 |
F Inanici, LN Brighton, S Samejima et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2021;29:310–319.
https://doi.org/10.1109/TNSRE.2021.3049133
|
66 |
S Ito, N Nagoshi, O Tsuji et al. lotus inhibits neuronal apoptosis and promotes tract regeneration in contusive spinal cord injury model mice. eNeuro 2018;5:ENEURO.0303-0318.2018.
https://doi.org/10.1523/ENEURO.0303-18.2018
|
67 |
S Ito, N Nagoshi, Y Kamata et al. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Rep 2021;16:2703–2717.
https://doi.org/10.1016/j.stemcr.2021.09.006
|
68 |
N Jayaprakash, Z Wang, B Hoeynck et al. Optogenetic interrogation of functional synapse formation by corticospinal tract axons in the injured spinal cord. J Neurosci 2016;36:5877–5890.
https://doi.org/10.1523/JNEUROSCI.4203-15.2016
|
69 |
B Ji, M Li, WT Wu et al. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 2006;33:311–320.
https://doi.org/10.1016/j.mcn.2006.08.003
|
70 |
Z Ji, GB Gao, YM Ma et al. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials 2022;284:121481.
https://doi.org/10.1016/j.biomaterials.2022.121481
|
71 |
D Jin, Y Liu, F Sun et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat Commun 2015;6:8074.
https://doi.org/10.1038/ncomms9074
|
72 |
K Kadoya, P Lu, K Nguyen et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 2016;22:479–487.
https://doi.org/10.1038/nm.4066
|
73 |
K Kaila, TJ Price, JA Payne et al. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014;15:637–654.
https://doi.org/10.1038/nrn3819
|
74 |
Y Kamata, M Isoda, T Sanosaka et al. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Transl Med 2021;10:398–413.
https://doi.org/10.1002/sctm.20-0269
|
75 |
M Karsy, G. Hawryluk Modern medical management of spinal cord injury. Curr Neurol Neurosci Rep 2019;19:65.
https://doi.org/10.1007/s11910-019-0984-1
|
76 |
KM Keefe, IS Sheikh, GM. Smith Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 2017;18:548.
https://doi.org/10.3390/ijms18030548
|
77 |
J Kim, C Mahapatra, JY Hong et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles. Adv Sci 2017;4:1700034.
https://doi.org/10.1002/advs.201700034
|
78 |
EA Kiyotake, MD Martin, MS. Detamore Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022;139:43–64.
https://doi.org/10.1016/j.actbio.2020.12.021
|
79 |
S Ko, E Apple, Z Liu et al. Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. Autophagy 2020;16:2052–2068.
https://doi.org/10.1080/15548627.2020.1713645
|
80 |
M Koda, H Hanaoka, Y Fujii et al. Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain 2021;144:789–799.
https://doi.org/10.1093/brain/awaa466
|
81 |
J Koffler, W Zhu, X Qu et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 2019;25:263–269.
https://doi.org/10.1038/s41591-018-0296-z
|
82 |
K Kojima, H Miyoshi, N Nagoshi et al. Selective ablation of tumorigenic cells following human induced pluripotent stem cell-derived neural stem/progenitor cell transplantation in spinal cord injury. Stem Cells Transl Med 2019;8:260–270.
https://doi.org/10.1002/sctm.18-0096
|
83 |
G Kong, L Zhou, E Serger et al. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab 2020;2:918–933.
https://doi.org/10.1038/s42255-020-0252-3
|
84 |
AA Kramer, GM Olson, A Chakraborty et al. Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Exp Neurol 2021;339:113644.
https://doi.org/10.1016/j.expneurol.2021.113644
|
85 |
VS Krishnan, SS Shin, V Belegu et al. Multimodal evaluation of TMS—induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front Neurosci 2019;13:387.
https://doi.org/10.3389/fnins.2019.00387
|
86 |
K Kucher, D Johns, D Maier et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury. Neurorehabil Neural Repair 2018;32:578–589.
https://doi.org/10.1177/1545968318776371
|
87 |
H Kumamaru, P Lu, ES Rosenzweig et al. Regenerating corticospinal axons innervate phenotypically appropriate neurons within neural stem cell grafts. Cell Rep 2019;26:2329–2339.e4.
https://doi.org/10.1016/j.celrep.2019.01.099
|
88 |
C Lang, PM Bradley, A Jacobi et al. STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Rep 2013;14:931–937.
https://doi.org/10.1038/embor.2013.117
|
89 |
BT Lang, JM Cregg, MA DePaul et al. Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature 2015;518:404–408.
https://doi.org/10.1038/nature13974
|
90 |
MA Lebedev, MA. Nicolelis Brain–machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol Rev 2017;97:767–837.
https://doi.org/10.1152/physrev.00027.2016
|
91 |
SC Leite, R Pinto-Costa, MM. Sousa Actin dynamics in the growth cone: a key player in axon regeneration. Curr Opin Neurobiol 2021;69:11–18.
https://doi.org/10.1016/j.conb.2020.11.015
|
92 |
RN. Lemon Descending pathways in motor control. Annu Rev Neurosci 2008;31:195–218.
https://doi.org/10.1146/annurev.neuro.31.060407.125547
|
93 |
K Leszczynska, A Wincek, W Fortuna et al. Treatment of patients with cervical and upper thoracic incomplete spinal cord injury using repetitive transcranial magnetic stimulation. Int J Artif Organs 2019;43:323–331.
https://doi.org/10.1177/0391398819887754
|
94 |
G Li, MT Che, X Zeng et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018a;106:2158–2170.
https://doi.org/10.1002/jbm.a.36414
|
95 |
J Li, Q Wang, H Wang et al. Lentivirus mediating FGF13 enhances axon regeneration after spinal cord injury by stabilizing microtubule and improving mitochondrial function. J Neurotrauma 2018b;35:548–559.
https://doi.org/10.1089/neu.2017.5205
|
96 |
H Li, R Kong, B Wan et al. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sci 2020;263:118572.
https://doi.org/10.1016/j.lfs.2020.118572
|
97 |
O Lipton Jonathan, M. Sahin The neurology of mTOR. Neuron 2014;84:275–291.
https://doi.org/10.1016/j.neuron.2014.09.034
|
98 |
SM Liu, ZF Xiao, X Li et al. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neurosci Ther 2019a;25:375–385.
https://doi.org/10.1111/cns.13056
|
99 |
Z Liu, Y Yang, L He et al. High-dose methylprednisolone for acute traumatic spinal cord injury: a meta-analysis. Neurology 2019b;93:e841–e850.
https://doi.org/10.1212/WNL.0000000000007998
|
100 |
LA Lowery, DV. Vactor The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 2009;10:332–343.
https://doi.org/10.1038/nrm2679
|
101 |
P Lu, Y Wang, L Graham et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012;150:1264–1273.
https://doi.org/10.1016/j.cell.2012.08.020
|
102 |
P Lu, G Woodruff, Y Wang et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014;83:789–796.
https://doi.org/10.1016/j.neuron.2014.07.014
|
103 |
C Lutton, YW Young, R Williams et al. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J Neurotrauma 2012;29:957–970.
https://doi.org/10.1089/neu.2010.1423
|
104 |
L Mao, W Gao, S Chen et al. Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death Dis 2017;8:e3162.
https://doi.org/10.1038/cddis.2017.542
|
105 |
JG McPherson, RR Miller, SI. Perlmutter Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci USA 2015;112:12193–12198.
https://doi.org/10.1073/pnas.1505383112
|
106 |
LM Mercier, EJ Gonzalez-Rothi, KA Streeter et al. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury. J Neurophysiol 2017;117:767–776.
https://doi.org/10.1152/jn.00721.2016
|
107 |
S Meyer Zu Reckendorf, D Moser, A Blechschmidt et al. Motoneuron-specific PTEN deletion in mice induces neuronal hypertrophy and also regeneration after facial nerve injury. J Neurosci 2022;42:2474–2491.
https://doi.org/10.1523/JNEUROSCI.1305-21.2022
|
108 |
F Nathan, Y Ohtake, S Wang et al. Upregulating Lin28a promotes axon regeneration in adult mice with optic nerve and spinal cord injury. Mol Ther 2020;28:1902–1917.
https://doi.org/10.1016/j.ymthe.2020.04.010
|
109 |
Y Ohtake, A Sami, X Jiang et al. Promoting axon regeneration in adult CNS by targeting liver kinase B1. Mol Ther 2019;27:102–117.
https://doi.org/10.1016/j.ymthe.2018.10.019
|
110 |
B Ong, JR Wilson, MK. Henzel Management of the patient with chronic spinal cord injury. Med Clin N Am 2020;104:263–278.
https://doi.org/10.1016/j.mcna.2019.10.006
|
111 |
S Oraee-Yazdani, M Akhlaghpasand, M Golmohammadi et al. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021;12:445.
https://doi.org/10.1186/s13287-021-02515-2
|
112 |
S Papa, I Vismara, A Mariani et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J Control Release 2018;278:49–56.
https://doi.org/10.1016/j.jconrel.2018.03.034
|
113 |
H Park, YM Kim, LT Anh Hong et al. Dual-functional hydrogel system for spinal cord regeneration with sustained release of arylsulfatase B alleviates fibrotic microenvironment and promotes axonal regeneration. Biomaterials 2022;284:121526.
https://doi.org/10.1016/j.biomaterials.2022.121526
|
114 |
AK Patel, RM Broyer, CD Lee et al. Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proc Natl Acad Sci USA 2020;117:33597–33607.
https://doi.org/10.1073/pnas.2004683117
|
115 |
V Pikov, DB McCreery, M. Han Intraspinal stimulation with a silicon-based 3D chronic microelectrode array for bladder voiding in cats. J Neural Eng 2020;17:065004.
https://doi.org/10.1088/1741-2552/abca13
|
116 |
K Potter-Baker, DP Janini, YL Lin et al. Transcranial direct current stimulation (tDCS) paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study. J Spinal Cord Med 2017;41:503–517.
https://doi.org/10.1080/10790268.2017.1361562
|
117 |
G Poulen, E Aloy, CM Bringuier et al. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Theranostics 2021;11:8640–8659.
https://doi.org/10.7150/thno.61833
|
118 |
R Puttagunta, A Tedeschi, MG Sória et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 2014;5:3527.
https://doi.org/10.1038/ncomms4527
|
119 |
ES Rosenzweig, JH Brock, P Lu et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 2018;24:484–490.
https://doi.org/10.1038/nm.4502
|
120 |
ES Rosenzweig, EA Salegio, JJ Liang et al. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat Neurosci 2019;22:1269–1275.
https://doi.org/10.1038/s41593-019-0424-1
|
121 |
A Rowald, S Komi, R Demesmaeker et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med 2022;28:260–271.
https://doi.org/10.1038/s41591-021-01663-5
|
122 |
JW Rowland, GW Hawryluk, B Kwon et al. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25:E2.
https://doi.org/10.3171/FOC.2008.25.11.E2
|
123 |
R Sachdeva, TE Nightingale, K Pawar et al. Noninvasive neuroprosthesis promotes cardiovascular recovery after spinal cord injury. Neurotherapeutics 2021;18:1244–1256.
https://doi.org/10.1007/s13311-021-01034-5
|
124 |
JM Saikia, CL Chavez-Martinez, ND Kim et al. A critical role for DLK and LZK in axonal repair in the mammalian spinal cord. J Neurosci 2022;42:3716–3732.
https://doi.org/10.1523/JNEUROSCI.2495-21.2022
|
125 |
S Samejima, A Khorasani, V Ranganathan et al. Brain–computer–spinal interface restores upper limb function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2021;29:1233–1242.
https://doi.org/10.1109/TNSRE.2021.3090269
|
126 |
AJ Santamaria, FD Benavides, PM Saraiva et al. Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front Neurol 2021;11:514181.
https://doi.org/10.3389/fneur.2020.514181
|
127 |
RA Saxton, DM. Sabatini mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960–976.
https://doi.org/10.1016/j.cell.2017.02.004
|
128 |
DG Sayenko, M Rath, AR Ferguson et al. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J Neurotrauma 2019;36:1435–1450.
https://doi.org/10.1089/neu.2018.5956
|
129 |
B Schaffran, F. Bradke Reproducibility—the key towards clinical implementation of spinal cord injury treatments? Exp Neurol 2019;313:135–136.
https://doi.org/10.1016/j.expneurol.2018.12.010
|
130 |
MP Schneider, AM Sartori, BV Ineichen et al. Anti-Nogo-A antibodies as a potential causal therapy for lower urinary tract dysfunction after spinal cord injury. J Neurosci 2019;39:4066–4076.
https://doi.org/10.1523/JNEUROSCI.3155-18.2019
|
131 |
H Sharif, H Alexander, A Azam et al. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model. Exp Neurol 2021;341:113715.
https://doi.org/10.1016/j.expneurol.2021.113715
|
132 |
H Shen, B Xu, C Yang et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 2022;280:121279.
https://doi.org/10.1016/j.biomaterials.2021.121279
|
133 |
DJ Silver, J. Silver Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014;27:171–178.
https://doi.org/10.1016/j.conb.2014.03.016
|
134 |
JD Simeral, T Hosman, J Saab et al. Home use of a percutaneous wireless intracortical brain–computer interface by individuals with tetraplegia. IEEE Trans Biomed Eng 2021;68:2313–2325.
https://doi.org/10.1109/TBME.2021.3069119
|
135 |
PD Smith, F Sun, KK Park et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 2009;64:617–623.
https://doi.org/10.1016/j.neuron.2009.11.021
|
136 |
MV. Sofroniew Dissecting spinal cord regeneration. Nature 2018;557:343–350.
https://doi.org/10.1038/s41586-018-0068-4
|
137 |
S Stern, BJ Hilton, ER Burnside et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 2021;109:3436–3455.e9.
https://doi.org/10.1016/j.neuron.2021.08.014
|
138 |
W Sun, MJ Larson, CM Kiyoshi et al. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J Clin Invest 2020;130:345–358.
https://doi.org/10.1172/JCI130391
|
139 |
A Tedeschi, F. Bradke Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2017;42:118–127.
https://doi.org/10.1016/j.conb.2016.12.005
|
140 |
A Tedeschi, S Dupraz, CJ Laskowski et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 2016;92:419–434.
https://doi.org/10.1016/j.neuron.2016.09.026
|
141 |
A Tedeschi, S Dupraz, M Curcio et al. ADF/Cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron 2019;103:1073–1085.e6.
https://doi.org/10.1016/j.neuron.2019.07.007
|
142 |
A Tolmacheva, S Savolainen, E Kirveskari et al. Long-term paired associative stimulation enhances motor output of the tetraplegic hand. J Neurotrauma 2017;34:2668–2674.
https://doi.org/10.1089/neu.2017.4996
|
143 |
MW Urban, B Ghosh, LR Strojny et al. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI. Exp Neurol 2018;303:108–119.
https://doi.org/10.1016/j.expneurol.2018.02.007
|
144 |
I Venkatesh, V Mehra, Z Wang et al. Co-occupancy identifies transcription factor co-operation for axon growth. Nat Commun 2021;12:2555.
https://doi.org/10.1038/s41467-021-22828-3
|
145 |
FB Wagner, JB Mignardot, CG Le Goff-Mignardot et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018;563:65–71.
https://doi.org/10.1038/s41586-018-0649-2
|
146 |
M Walter, AHX Lee, A Kavanagh et al. Epidural spinal cord stimulation acutely modulates lower urinary tract and bowel function following spinal cord injury: a case report. Front Physiol 2018;9:1816.
https://doi.org/10.3389/fphys.2018.01816
|
147 |
X Wang, K Yigitkanli, CY Kim et al. Human NgR-Fc decoy protein via lumbar intrathecal bolus administration enhances recovery from rat spinal cord contusion. J Neurotrauma 2014;31:1955–1966.
https://doi.org/10.1089/neu.2014.3355
|
148 |
Z Wang, A Reynolds, A Kirry et al. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci 2015;35:3139–3145.
https://doi.org/10.1523/JNEUROSCI.2832-14.2015
|
149 |
X Wang, T Zhou, GD Maynard et al. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 2020;143:1697–1713.
https://doi.org/10.1093/brain/awaa116
|
150 |
FM Warner, JJ Cragg, CR Jutzeler et al. EMSCI Sites. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep 2017;18:1614–1618.
https://doi.org/10.1016/j.celrep.2017.01.048
|
151 |
PM Warren, SC Steiger, TE Dick et al. Rapid and robust restoration of breathing long after spinal cord injury. Nat Commun 2018;9:4843.
https://doi.org/10.1038/s41467-018-06937-0
|
152 |
T Watkins, B Wang, S Huntwork-Rodriguez et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci USA 2013;110:4039–4044.
https://doi.org/10.1073/pnas.1211074110
|
153 |
YL Weng, R An, J Cassin et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 2017;94:337–346.e6.
https://doi.org/10.1016/j.neuron.2017.03.034
|
154 |
N Wenger, EM Moraud, S Raspopovic et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 2014;6:255ra133.
https://doi.org/10.1126/scitranslmed.3008325
|
155 |
L Wertheim, R Edri, Y Goldshmit et al. Regenerating the injured spinal cord at the chronic phase by engineered iPSCs-derived 3D neuronal networks. Adv Sci 2022;9:e2105694.
https://doi.org/10.1002/advs.202105694
|
156 |
CR West, AA Phillips, JW Squair et al. Association of epidural stimulation with cardiovascular function in an individual with spinal cord injury. JAMA Neurol 2018;75:630–632.
https://doi.org/10.1001/jamaneurol.2017.5055
|
157 |
FR Willett, DT Avansino, LR Hochberg et al. High-performance brain-to-text communication via handwriting. Nature 2021;593:249–254.
https://doi.org/10.1038/s41586-021-03506-2
|
158 |
C. Willyard How a revolutionary technique got people with spinal-cord injuries back on their feet. Nature 2019;572:20–25.
https://doi.org/10.1038/d41586-019-02306-z
|
159 |
A Wincek, J Huber, K Leszczyńska et al. The long-term effect of treatment using the transcranial magnetic stimulation rTMS in patients after incomplete cervical or thoracic spinal cord injury. J Clin Med 2021;10:2975.
https://doi.org/10.3390/jcm10132975
|
160 |
D Wu, MC Klaw, T Connors et al. Expressing constitutively active Rheb in adult neurons after a complete spinal cord injury enhances axonal regeneration beyond a chondroitinase-treated glial scar. J Neurosci 2015;35:11068–11080.
https://doi.org/10.1523/JNEUROSCI.0719-15.2015
|
161 |
H Wu, L Ding, Y Wang et al. MiR-615 regulates NSC differentiation in vitro and contributes to spinal cord injury repair by targeting LINGO-1. Mol Neurobiol 2020;57:3057–3074.
https://doi.org/10.1007/s12035-020-01936-z
|
162 |
D Xu, D Wu, M Qin et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv Mater 2019;31:e1900727.
https://doi.org/10.1002/adma.201970233
|
163 |
G Xu, S Xu, YX Zhang et al. Cell-free extracts from human fat tissue with a hyaluronan-based hydrogel attenuate inflammation in a spinal cord injury model through M2 microglia/microphage polarization. Small 2022;18:2107838.
https://doi.org/10.1002/smll.202107838
|
164 |
S Yang, MC. Chang Transcranial direct current stimulation for the management of neuropathic pain: a narrative review. Pain Physician 2021;24:E771–E781.
https://doi.org/10.36076/ppj.2021.24.E771
|
165 |
Q Yang, A Ramamurthy, S Lall et al. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats. Exp Neurol 2019;320:112962.
https://doi.org/10.1016/j.expneurol.2019.112962
|
166 |
B Yao, KM Christian, C He et al. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016;17:537–549.
https://doi.org/10.1038/nrn.2016.70
|
167 |
Y Yao, J Xu, T Yu et al. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Theranostics 2018;8:4181–4198.
https://doi.org/10.7150/thno.25707
|
168 |
J Ye, S Jin, W Cai et al. Rationally designed, self-assembling, multi-functional hydrogel depot repairs severe spinal cord injury. Adv Healthc Mater 2021;10:e2100242.
https://doi.org/10.1002/adhm.202100242
|
169 |
T Yoshimura, Y Kawano, N Arimura et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005;120:137–149.
https://doi.org/10.1016/j.cell.2004.11.012
|
170 |
Q Yu, M Liao, C Sun et al. LBO-EMSC hydrogel serves a dual function in spinal cord injury restoration via the PI3K-Akt-mTOR pathway. ACS Appl Mater Interfaces 2021;13:48365–48377.
https://doi.org/10.1021/acsami.1c12013
|
171 |
N Zareen, S Dodson, K Armada et al. Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol 2018;307:133–144.
https://doi.org/10.1016/j.expneurol.2018.05.004
|
172 |
C Zhao, J Qin, J Li et al. LINGO-1 regulates Wnt5a signaling during neural stem and progenitor cell differentiation by modulating miR-15b-3p levels. Stem Cell Res Ther 2021a;12:372.
https://doi.org/10.1186/s13287-021-02452-0
|
173 |
Y Zhao, Q Wang, C Xie et al. Peptide ligands targeting FGF receptors promote recovery from dorsal root crush injury via AKT/mTOR signaling. Theranostics 2021b;11:10125–10147.
https://doi.org/10.7150/thno.62525
|
174 |
FQ Zhou, WD. Snider GSK-3β and microtubule assembly in axons. Science 2005;308:211–214.
https://doi.org/10.1126/science.1110301
|
175 |
FQ Zhou, J Zhou, S Dedhar et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 2004;42:897–912.
https://doi.org/10.1016/j.neuron.2004.05.011
|
176 |
W Zhou, M Silva, C Feng et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther 2021;12:174.
https://doi.org/10.1186/s13287-021-02248-2
|