Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (8) : 603-617    https://doi.org/10.1093/procel/pwad007
RESEARCH ARTICLE
Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling
Min Wei1,2,3, Yanping Sun1,2,3, Shouzhen Li1,2,3, Yunuo Chen1,2,3, Longfei Li1,2,3, Minghao Fang1,2,3, Ronghua Shi3, Dali Tong1,2,3, Jutao Chen1,2,3, Yuqian Ma1,2,3(), Kun Qu1,2,3(), Mei Zhang1,2,3(), Tian Xue1,2,3,4,5()
1. Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230026, China
2. Hefei National Research Center for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
3. Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
4. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100864, China
 Download: PDF(11258 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.

Keywords single cell      Müller glial cells      intercellular communication      light/dark adaptation      thyroid hormone signaling     
Corresponding Author(s): Yuqian Ma,Kun Qu,Mei Zhang,Tian Xue   
Issue Date: 26 September 2023
 Cite this article:   
Min Wei,Yanping Sun,Shouzhen Li, et al. Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling[J]. Protein Cell, 2023, 14(8): 603-617.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad007
https://academic.hep.com.cn/pac/EN/Y2023/V14/I8/603
1 EDR Arrojo, TL Fonseca, JP Werneck-de-Castro et al. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 2013;1830:3956–3964.
https://doi.org/10.1016/j.bbagen.2012.08.019
2 AC Bianco, BW. Kim Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 2006;116: 2571–2579.
https://doi.org/10.1172/JCI29812
3 Y Cai, T Cheng, Y Yao et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv 2019;5:eaav3335.
https://doi.org/10.1126/sciadv.aav3335
4 MA Cameron, RJ. Lucas Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG. Mol Vis 2009;15:2209–2216.
5 A Chaffiol, M Ishii, Y Cao et al. Dopamine regulation of GABAA receptors contributes to light/dark modulation of the ON-cone bipolar cell receptive field surround in the retina. Curr Biol 2017;27:2600–2609.e4.
https://doi.org/10.1016/j.cub.2017.07.063
6 P Codega, L Della Santina, C Gargini et al. Prolonged illumination up-regulates arrestin and two guanylate cyclase activating proteins: a novel mechanism for light adaptation. J Physiol 2009;587:2457–2472.
https://doi.org/10.1113/jphysiol.2009.168609
7 V Della Maggiore, MR. Ralph Retinal GABA(A) receptors participate in the regulation of circadian responses to light. J Biol Rhythms 1999;14:47–53.
https://doi.org/10.1177/074873099129000434
8 A Dobin, CA Davis, F Schlesinger et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.
https://doi.org/10.1093/bioinformatics/bts635
9 B Ekesten, P Gouras, M. Moschos Cone properties of the light-adapted murine ERG. Doc Ophthalmol 1998;97:23–31.
https://doi.org/10.1023/A:1001869212639
10 KC Eldred, SE Hadyniak, KA Hussey et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 2018;362:eaau6348.
https://doi.org/10.1126/science.aau6348
11 M Erecinska, S Cherian, IA. Silver Energy metabolism in mammalian brain during development. Prog Neurobiol 2004;73:397–445.
https://doi.org/10.1016/j.pneurobio.2004.06.003
12 N Esteras, JD Rohrer, J Hardy et al. Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10 + 16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol 2017;12:410–422.
https://doi.org/10.1016/j.redox.2017.03.008
13 GL. Fain Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 2011;44:374–382.
https://doi.org/10.1007/s12035-011-8205-1
14 GL Fain, HR Matthews, MC Cornwall et al. Adaptation in vertebrate photoreceptors. Physiol Rev 2001;81:117–151.
https://doi.org/10.1152/physrev.2001.81.1.117
15 M Falkenberg, M Gaspari, A Rantanen et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 2002;31:289–294.
https://doi.org/10.1038/ng909
16 Y Fu, KW. Yau Phototransduction in mouse rods and cones. Pflugers Arch 2007;454:805–819.
https://doi.org/10.1007/s00424-006-0194-y
17 B Gereben, EA McAninch, MO Ribeiro et al. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 2015;11:642–652.
https://doi.org/10.1038/nrendo.2015.155
18 MM Giarmarco, DC Brock, BM Robbings et al. Daily mitochondrial dynamics in cone photoreceptors. Proc Natl Acad Sci USA 2020;117:28816–28827.
https://doi.org/10.1073/pnas.2007827117
19 M Goel, SC. Mangel Dopamine-mediated circadian and light/ dark-adaptive modulation of chemical and electrical synapses in the outer retina. Front Cell Neurosci 2021;15:647541.
https://doi.org/10.3389/fncel.2021.647541
20 TE Gunter, DR. Pfeiffer Mechanisms by which mitochondria transport calcium. Am J Physiol 1990;258:C755–C786.
https://doi.org/10.1152/ajpcell.1990.258.5.C755
21 S Hattar, HW Liao, M Takao et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002;295:1065–1070.
https://doi.org/10.1126/science.1069609
22 A Hernandez, ME Martinez, L Ng et al. Thyroid hormone deiodinases: dynamic switches in developmental transitions. Endocrinology 2021;162:bqab091.
https://doi.org/10.1210/endocr/bqab091
23 R Herrmann, SJ Heflin, T Hammond et al. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 2011;72:101–110.
https://doi.org/10.1016/j.neuron.2011.07.030
24 S Horn, H. Heuer Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol 2010;315:19–26.
https://doi.org/10.1016/j.mce.2009.09.008
25 W Huang da, BT Sherman, RA. Lempicki Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.
https://doi.org/10.1038/nprot.2008.211
26 CR Jackson, SS Chaurasia, CK Hwang et al. Dopamine D(4) receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011;34:57–64.
https://doi.org/10.1111/j.1460-9568.2011.07734.x
27 S Jin, CF Guerrero-Juarez, L Zhang et al. Inference and analysis of cell–cell communication using CellChat. Nat Commun 2021;12:1088.
https://doi.org/10.1038/s41467-021-21246-9
28 O Kann, R. Kovacs Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007;292:C641–C657.
https://doi.org/10.1152/ajpcell.00222.2006
29 DA Kertes, G Kalsi, CA Prescott et al. Neurotransmitter and neuromodulator genes associated with a history of depressive symptoms in individuals with alcohol dependence. Alcohol Clin Exp Res 2011;35:496–505.
https://doi.org/10.1111/j.1530-0277.2010.01366.x
30 P Langfelder, S. Horvath WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 2008;9:559.
https://doi.org/10.1186/1471-2105-9-559
31 H Li, Z Zhang, MR Blackburn et al. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 2013;33:3135–3150.
https://doi.org/10.1523/JNEUROSCI.2807-12.2013
32 SZ Li, YZ Hu, YQ Li et al. Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina. Sci Bull 2021;66:374–385.
https://doi.org/10.1016/j.scib.2020.09.008
33 A Liberzon, A Subramanian, R Pinchback et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011;27:1739–1740.
https://doi.org/10.1093/bioinformatics/btr260
34 JK Liu, T. Gollisch Spike-triggered covariance analysis reveals phenomenological diversity of contrast adaptation in the retina. PLoS Comput Biol 2015;11:e1004425.
https://doi.org/10.1371/journal.pcbi.1004425
35 MI Love, W Huber, S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
https://doi.org/10.1186/s13059-014-0550-8
36 DG Luo, T Xue, KW. Yau How vision begins: an odyssey. Proc Natl Acad Sci USA 2008;105:9855–9862.
https://doi.org/10.1073/pnas.0708405105
37 YQ Ma, J Bao, YW Zhang et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 2019;177:243–255.e15.
https://doi.org/10.1016/j.cell.2019.01.038
38 CS McGinnis, LM Murrow, ZJ. Gartner DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019;8:329–337.e4.
https://doi.org/10.1016/j.cels.2019.03.003
39 A Morshedian, GL. Fain Light adaptation and the evolution of vertebrate photoreceptors. J Physiol 2017;595:4947–4960.
https://doi.org/10.1113/JP274211
40 A Morshedian, JJ Kaylor, SY Ng et al. Light-driven regeneration of cone visual pigments through a mechanism involving RGR Opsin in Muller glial cells. Neuron 2019;102:1172–1183.e5.
https://doi.org/10.1016/j.neuron.2019.04.004
41 DG. Nicholls Mitochondria and calcium signaling. Cell Calcium 2005;38:311–317.
https://doi.org/10.1016/j.ceca.2005.06.011
42 TF Outeiro, J Klucken, KE Strathearn et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 2006;351:631–638.
https://doi.org/10.1016/j.bbrc.2006.10.085
43 SH Park, N Bolender, F Eisele et al. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell 2007;18:153–165.
https://doi.org/10.1091/mbc.e06-04-0338
44 NS Peachey, KR Alexander, DJ Derlacki et al. Light adaptation, rods, and the human cone flicker ERG. Vis Neurosci 1992;8:145–150.
https://doi.org/10.1017/S0952523800009305
45 MR Ralph, M. Menaker GABA regulation of circadian responses to light. I. Involvement of GABAA-benzodiazepine and GABAB receptors. J Neurosci 1989;9:2858–2865.
https://doi.org/10.1523/JNEUROSCI.09-08-02858.1989
46 JF. Rovet The role of thyroid hormones for brain development and cognitive function. Endocr Dev 2014;26:26–43.
https://doi.org/10.1159/000363153
47 T Stuart, A Butler, P Hoffman et al. Comprehensive integration of single-cell data. Cell 2019;177:1888–1902.e21
https://doi.org/10.1016/j.cell.2019.05.031
48 WB Thoreson, P. Witkovsky Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 1999;18:765–810.
https://doi.org/10.1016/S1350-9462(98)00031-7
49 O Uckermann, L Vargova, E Ulbricht et al. Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina. J Neurosci 2004;24:10149–10158.
https://doi.org/10.1523/JNEUROSCI.3203-04.2004
50 JS Wang, VJ. Kefalov An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 2009;19:1665–1669.
https://doi.org/10.1016/j.cub.2009.07.054
51 S Weiss, E Kohn, D Dadon et al. Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. J Neurosci 2012;32:14696–14708.
https://doi.org/10.1523/JNEUROSCI.2456-12.2012
52 X Wen, WB. Thoreson Contributions of glutamate transporters and Ca(2+)-activated Cl(−) currents to feedback from horizontal cells to cone photoreceptors. Exp Eye Res 2019;189:107847.
https://doi.org/10.1016/j.exer.2019.107847
53 P. Witkovsky Dopamine and retinal function. Doc Ophthalmol 2004;108:17–40.
https://doi.org/10.1023/B:DOOP.0000019487.88486.0a
54 C Wrutniak-Cabello, F Casas, G. Cabello Thyroid hormone action: the p43 mitochondrial pathway. Methods Mol Biol 2018;1801:163–181.
https://doi.org/10.1007/978-1-4939-7902-8_14
55 M Ximerakis, SL Lipnick, BT Innes et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019;22:1696–1708.
https://doi.org/10.1038/s41593-019-0491-3
56 KW. Yau Calcium and light adaptation in retinal photoreceptors. Curr Opin Neurobiol 1991;1:252–257.
https://doi.org/10.1016/0959-4388(91)90086-M
57 KW Yau, RC. Hardie Phototransduction motifs and variations. Cell 2009;139:246–264.
https://doi.org/10.1016/j.cell.2009.09.029
58 W Yi, Y Lu, S Zhong et al. A single-cell transcriptome atlas of the aging human and macaque retina. Natl Sci Rev 2021;8:nwaa179.
https://doi.org/10.1093/nsr/nwaa179
59 MD Young, S. Behjati SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 2020;9:giaa151.
https://doi.org/10.1093/gigascience/giaa151
60 A Zendedel, IR Kashani, M Azimzadeh et al. Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice. Metab Brain Dis 2016;31:425–433.
https://doi.org/10.1007/s11011-015-9781-y
61 H Zhang, W Huang, H Zhang et al. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Mol Vis 2003;9:231–237.
[1] PAC-0603-22214-XT_suppl_1 Download
[2] PAC-0603-22214-XT_suppl_2 Download
[3] PAC-0603-22214-XT_suppl_3 Download
[4] PAC-0603-22214-XT_suppl_4 Download
[5] PAC-0603-22214-XT_suppl_5 Download
[1] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[2] Zhanping Shi, Yanan Geng, Jiping Liu, Huina Zhang, Liqiang Zhou, Quan Lin, Juehua Yu, Kunshan Zhang, Jie Liu, Xinpei Gao, Chunxue Zhang, Yinan Yao, Chong Zhang, Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations[J]. Protein Cell, 2018, 9(4): 351-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed