Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2024, Vol. 15 Issue (11) : 818-839    https://doi.org/10.1093/procel/pwae016
Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration
Yinghui Li1,2,3, Xingchen Liu1,4, Xue Sun5,6, Hui Li2,3, Shige Wang7, Wotu Tian7, Chen Xiang2,3, Xuyuan Zhang2, Jiajia Zheng8, Haifang Wang9, Liguo Zhang2, Li Cao7(), Catherine C.L. Wong10,11(), Zhihua Liu1,4()
. Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
. Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
. Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
. Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
. First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
. School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
. Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
. Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
. Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
. Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
. Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
 Download: PDF(168303 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson’s disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.

Keywords gut dysbiosis      intestinal renewal      neuron disease     
Corresponding Author(s): Li Cao,Catherine C.L. Wong,Zhihua Liu   
Online First Date: 29 July 2024    Issue Date: 29 November 2024
 Cite this article:   
Yinghui Li,Xingchen Liu,Xue Sun, et al. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration[J]. Protein Cell, 2024, 15(11): 818-839.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwae016
https://academic.hep.com.cn/pac/EN/Y2024/V15/I11/818
1 S Ahmadi, S Wang, R Nagpal et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI insight 2020;5:e132055.
https://doi.org/10.1172/jci.insight.132055
2 M Barichella, E Cereda, G Pezzoli. Major nutritional issues in the management of Parkinson’s disease. Movement Disord 2009;24:1881–1892.
https://doi.org/10.1002/mds.22705
3 C Blauwendraat, K Heilbron, CL Vallerga et al. 23andMe Research Team. Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and α-synuclein mechanisms. Movement 2019;34:866–875.
https://doi.org/10.1002/mds.27659
4 D Calvo, J Dopazo, MA Vega. The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution. Genomics 1995;25:100–106.
https://doi.org/10.1016/0888-7543(95)80114-2
5 SB Choi, LC Lew, SK Yeo et al. Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Crit Rev Biotechnol 2015;35:392–401.
https://doi.org/10.3109/07388551.2014.889077
6 BL Clifford, LR Sedgeman, KJ Williams et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 2021;33:1671–1684. e4.e4.
https://doi.org/10.1016/j.cmet.2021.06.012
7 SL Collins, JG Stine, JE Bisanz et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol 2023;21:236–247.
https://doi.org/10.1038/S41579-022-00805-x
8 TQ de Aguiar Vallim, EJ Tarling, H Ahn et al. MAFG is a transcriptional repressor of bile acid synthesis and metabolism. Cell Metab 2015;21:298–311.
https://doi.org/10.1016/j.cmet.2015.01.007
9 AY Dossa, O Escobar, J Golden et al. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol 2016;310:G81–G92.
https://doi.org/10.1152/ajpgi.00065.2015
10 S Fang, JM Suh, SM Reilly et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015;21:159–165.
https://doi.org/10.1038/nm.3760
11 T Fu, S Coulter, E Yoshihara et al. FXR regulates intestinal cancer stem cell proliferation. Cell 2019;176:1098–1112. e18.e18.
https://doi.org/10.1016/j.cell.2019.01.036
12 M He, BS Tang, N Li et al. Using a combination of whole-exome sequencing and homozygosity mapping to identify a novel mutation of SCARB2. Clin Genet 2014;86:598–600.
https://doi.org/10.1111/cge.12338
13 DA Hill, C Hoffmann, MC Abt et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 2010;3:148–158.
https://doi.org/10.1038/mi.2009.132
14 T Inagaki, M Choi, A Moschetta et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005;2:217–225.
https://doi.org/10.1016/j.cmet.2005.09.001
15 C Jiang, C Xie, F Li et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015a;125:386–402.
https://doi.org/10.1172/JCi76738
16 C Jiang, C Xie, Y Lv et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 2015b;6:10166.
https://doi.org/10.1038/ncommS10166
17 L Jin, X Feng, H Rong et al. The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun 2013;4:1937.
https://doi.org/10.1038/ncommS2924
18 M Kałużna, I Trzeciak, K Ziemnicka et al. Endocrine and metabolic disorders in patients with Gaucher disease type 1: a review. Orphanet J Rare Dis 2019;14:275.
https://doi.org/10.1186/S13023-019-1211-5
19 JJ Kamphorst, J Fan, W Lu et al. Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. Anal Chem 2011;83:9114–9122.
https://doi.org/10.1021/aC202220b
20 TA Kerr, S Saeki, M Schneider et al. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2002;2:713–720.
https://doi.org/10.1016/S1534-5807(02)00154-5
21 J Kim, H Kim, SH Noh et al. Grasp55−/− mice display impaired fat absorption and resistance to high-fat diet-induced obesity. Nat Commun 2020;11:1418.
https://doi.org/10.1038/S41467-020-14912-x
22 SA Kliewer, DJ Mangelsdorf. Bile acids as hormones: the FXR-FGF15/19 Pathway. Dig Dis 2015;33:327–331.
https://doi.org/10.1159/000371670
23 V Koliaraki, M Pasparakis, G Kollias. IKKβin intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med 2015;212:2235–2251.
https://doi.org/10.1084/jem.20150542
24 D Krndija, F El Marjou, B Guirao et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science (New York, N.Y.) 2019;365:705–710.
https://doi.org/10.1126/science.aau3429
25 F Li, C Jiang, KW Krausz et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013;4:2384.
https://doi.org/10.1038/ncommS3384
26 Z Li, H Liang, Y Hu et al. Gut bacterial profiles in Parkinson’s disease: a systematic review. CNS Neurosci Therap 2023;29:140–157.
https://doi.org/10.1111/cns.13990
27 M Marizzoni, S Provasi, A Cattaneo et al. Microbiota and neurodegenerative diseases. Curr Opin Neurol 2017;30:630–638.
https://doi.org/10.1097/WCO.0000000000000496
28 JR Mazzulli, YH Xu, Y Sun et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011;146:37–52.
https://doi.org/10.1016/j.cell.2011.06.001
29 H Michelakakis, G Xiromerisiou, E Dardiotis et al. Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson’s disease. Movement Disord 2012;27:400–405.
https://doi.org/10.1002/mds.24886
30 AI Mina, RA LeClair, KB LeClair et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab 2018;28:656–666.e1.e1.
https://doi.org/10.1016/j.cmet.2018.06.019
31 D Reczek, M Schwake, J Schröder et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 2007;131:770–783.
https://doi.org/10.1016/j.cell.2007.10.018
32 S Romano, GM Savva, JR Bedarf et al. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinson’s Dis 2021;7:27.
https://doi.org/10.1038/S41531-021-00156-z
33 M Rothaug, F Zunke, JR Mazzulli et al. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc Natl Acad Sci USA 2014;111:15573–15578.
https://doi.org/10.1073/pnas.1405700111
34 N Santander, C Lizama, MJ Parga et al. Deficient vitamin E uptake during development impairs neural tube closure in mice lacking lipoprotein receptor SR-BI. Sci Rep 2017;7:5182.
https://doi.org/10.1038/S41598-017-05422-w
35 SI Sayin, A Wahlström, J Felin et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013;17:225–235.
https://doi.org/10.1016/j.cmet.2013.01.003
36 T Schirinzi, G Martella, P Imbriani et al. Dietary vitamin E as a protective factor for Parkinson’s disease: clinical and experimental evidence. Front Neurol 2019;10:148.
https://doi.org/10.3389/fneur.2019.00148
37 S Seok, YC Kim, Y Zhang et al. Feeding activates FGF15-SHP-TFEB-mediated lipophagy in the gut. EMBO J 2022;41:e109997.
https://doi.org/10.15252/embj.2021109997
38 RJ Sokol, JE Heubi, S Iannaccone et al. Mechanism causing vitamin E deficiency during chronic childhood cholesta-sis. Gastroenterology 1983;85:1172–1182.
https://doi.org/10.1016/S0016-5085(83)80087-0
39 AL Southwell, J Ko, PH Patterson. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. The J Neurosci 2009;29:13589–13602.
https://doi.org/10.1523/JNEUROSCI.4286-09.2009
40 H Tanaka, K Doesburg, T Iwasaki et al. Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 1999;82:2530–2535.
https://doi.org/10.3168/jds.S0022-0302(99)75506-2
41 WT Tian, XL Liu, YQ Xu et al. Progressive myoclonus epilepsy without renal failure in a Chinese family with a novel mutation in SCARB2 gene and literature review. Seizure 2018;57:80–86.
https://doi.org/10.1016/j.seizure.2018.03.015
42 D Urso, DJ van Wamelen, L Batzu et al. Clinical trajectories and biomarkers for weight variability in early Parkinson’s disease. NPJ Parkinsons Dis 2022;8:95.
https://doi.org/10.1038/S41531-022-00362-3
43 E van Tilborg, CM van Kammen, CGM de Theije et al. A quantitative method for microstructural analysis of myelinated axons in the injured rodent brain. Sci Rep 2017;7:16492.
https://doi.org/10.1038/S41598-017-16797-1
44 T van Zutphen, A Bertolini, HD de Vries et al. Potential of intestine-selective FXR modulation for treatment of metabolic disease. Handb Exp Pharmacol 2019;256:207–234.
https://doi.org/10.1007/164_2019_233
45 A Velayati, J DePaolo, N Gupta et al. A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat 2011;32:1232–1238.
https://doi.org/10.1002/humu.21566
46 A Wahlström, SI Sayin, HU Marschall et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24:41–50.
https://doi.org/10.1016/j.cmet.2016.05.005
47 L Wang, YK Lee, D Bundman et al. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002;2:721–731.
https://doi.org/10.1016/S1534-5807(02)00187-9
48 T Warnecke, KH Schäfer, I Claus et al. Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management. NPJ Parkinson’s Dis 2022;8:31.
https://doi.org/10.1038/S41531-022-00295-x
49 AM Wills, R Li, A Pérez et al. Predictors of weight loss in early treated Parkinson’s disease from the NET-PD LS-1 cohort. J Neurol 2017;264:1746–1753.
https://doi.org/10.1007/S00415-017-8562-4
50 T Yokota, K Igarashi, T Uchihara et al. Delayed-onset ataxia in mice lacking alpha-tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc Natl Acad Sci USA 2001;98:15185–15190.
https://doi.org/10.1073/pnas.261456098
51 D Yoo, Y Lim, Y Son et al. Dietary intake and plasma levels of polyunsaturated fatty acids in early-stage Parkinson’s disease. Sci Rep 2021;11:12489.
https://doi.org/10.1038/S41598-021-92029-x
52 Q Zhang, Y Pan, R Yan et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol 2015;16:918–926.
https://doi.org/10.1038/ni.3233
53 Q Zhao, J Wu, Y Ding et al. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. Life Metab 2023;2:1–19.
https://doi.org/10.1093/lifemeta/load032
54 JW Zhu, YF Li, ZT Wang et al. Toll-like receptor 4 deficiency impairs motor coordination. Front Neurosci 2016;10:33.
https://doi.org/10.3389/fnins.2016.00033
55 Y Zou, J Pei, Y Wang et al. The deficiency of SCARB2/LIMP-2 impairs metabolism via disrupted mTORC1-dependent mitochondrial OXPHOS. Int J Mol Sci 2022;23:8634.
https://doi.org/10.3390/ijmS23158634
[1] PAC-0818-23476-LZH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed