Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (11) : 852-857    https://doi.org/10.1007/s13238-020-00746-2
LETTER
O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis
Fan Yu1, Te Li1, Yanchao Sui2, Qingxia Chen3,4, Song Yang1, Jia Yang1, Renjie Hong1, Dengwen Li1, Xiumin Yan3,4, Wei Zhao2, Xueliang Zhu3,4, Jun Zhou1,5()
1. Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Key Laboratory of Bioactive Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
2. College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
3. State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
 Download: PDF(1766 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Jun Zhou   
Online First Date: 22 September 2020    Issue Date: 07 December 2020
 Cite this article:   
Fan Yu,Te Li,Yanchao Sui, et al. O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis[J]. Protein Cell, 2020, 11(11): 852-857.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00746-2
https://academic.hep.com.cn/pac/EN/Y2020/V11/I11/852
1 M Brownlee (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820
https://doi.org/10.1038/414813a
2 S Hardiville, GW Hart (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213
https://doi.org/10.1016/j.cmet.2014.07.014
3 J Jiang, MB Lazarus, L Pasquina, P Sliz, S Walker (2011) A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol 8:72–77
https://doi.org/10.1038/nchembio.711
4 M Jinek, J Rehwinkel, BD Lazarus, E Izaurralde, JA Hanover, E Conti (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11:1001–1007
https://doi.org/10.1038/nsmb833
5 JR Marquardt, JL Perkins, KJ Beuoy, HA Fisk (2016) Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci USA 113:7828–7833
https://doi.org/10.1073/pnas.1607421113
6 J Ran, M Liu, J Feng, H Li, H Ma, T Song, Y Cao, P Zhou, Y Wu, Y Yanget al. (2020) ASK1-mediated phosphorylation blocks HDAC6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Dev Cell 53(287–299):e285
https://doi.org/10.1016/j.devcel.2020.03.010
7 KB Schou, SK Morthorst, ST Christensen, LB Pedersen (2014) Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 3:6
https://doi.org/10.1186/2046-2530-3-6
8 Z Tang, MG Lin, TR Stowe, S Chen, M Zhu, T Stearns, B Franco, Q Zhong (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502:254–257
https://doi.org/10.1038/nature12606
9 S Tugendreich, J Tomkiel, W Earnshaw, P Hieter (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261–268
https://doi.org/10.1016/0092-8674(95)90336-4
10 X Yang, K Qian (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465
https://doi.org/10.1038/nrm.2017.22
11 Y Yang, J Ran, M Liu, D Li, Y Li, X Shi, D Meng, J Pan, G Ou, R Anejaet al. (2014) CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Res 24:1342–1353
https://doi.org/10.1038/cr.2014.136
12 Y Yang, H Hao, X Wu, S Guo, Y Liu, J Ran, T Li, D Li, M Liu, J Zhou (2019) Mixed-lineage leukemia protein 2 suppresses ciliary assembly by the modulation of actin dynamics and vesicle transport. Cell Discov 5:33
https://doi.org/10.1038/s41421-019-0100-3
13 F Yu, J Ran, J Zhou (2016) Ciliopathies: does hdac6 represent a new therapeutic target? Trends Pharmacol Sci 37:114–119
https://doi.org/10.1016/j.tips.2015.11.002
14 F Yu, S Guo, T Li, J Ran, W Zhao, D Li, M Liu, X Yan, X Yang, X Zhuet al. (2019) Ciliary defects caused by dysregulation of O-GlcNAc modification are associated with diabetic complications. Cell Res 29:171–173
https://doi.org/10.1038/s41422-018-0114-7
15 H Zhao, L Zhu, Y Zhu, J Cao, S Li, Q Huang, T Xu, X Huang, X Yan, X Zhu (2013) The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat Cell Biol 15:1434
https://doi.org/10.1038/ncb2880
[1] PAC-0854-20578-ZJ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed