|
|
|
|
|
|
A quantitative understanding of microRNA- mediated competing endogenous RNA regulation |
Ye Yuan,Xinying Ren,Zhen Xie,Xiaowo Wang( ) |
Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology/Department of Automation, Tsinghua University, Beijing 100084, China |
|
|
关键词 :
 
|
Abstract: MicroRNA (miRNA) plays key roles in post-transcriptional regulations. Recently, a competing endogenous RNA (ceRNA) hypothesis has been proposed that miRNA targets could communicate and regulate each other through titrating shared miRNAs, which provides a new layer of gene regulation. Though a number of ceRNAs playing biological functions have been identified, the ceRNA hypothesis remains controversial. Recent experimental and theoretical studies argued that the modulation of a single RNA species could hardly change the expression level of competing miRNA targets through ceRNA effect under normal physiological conditions. Here, we reviewed a common framework to model miRNA regulations, and summarized the current theoretical and experimental studies for quantitative understanding ceRNA effect. By revisiting a coarse-grained ceRNA model, we proposed that network topology could significantly influence the competing effect and ceRNA regulation at protein level could be much stronger than that at RNA level. We also provided a conditional independent binding equation to describe miRNA relative repression on different target, which could be applied to quantify siRNA off-target effect. |
Author Summary
MicroRNA (miRNA) plays key roles in post-transcriptional regulations. Recently, a hypothesis of competing endogenous RNA (ceRNA) has been proposed as a new layer of gene regulation. Here, we revisit the common modelling framework and the current understanding of ceRNA effect. We propose that network topology could significantly influence it and the ceRNA effect at protein level could be much stronger than that at RNA level. We also provide a conditional independent binding equation to describe miRNA relative repression on different target, which could be applied to quantify siRNA off-target effect. |
Key words:
microRNA regulation
competing endogenous RNA
molecular titration
quantitative model
complex networks
|
收稿日期: 2015-11-23
出版日期: 2016-03-16
|
|
基金资助: |
Corresponding Author(s):
Xiaowo Wang
|
1 |
He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531
https://doi.org/10.1038/nrg1379
pmid: 15211354
|
2 |
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811
https://doi.org/10.1038/35888
pmid: 9486653
|
3 |
Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. and Zamore, P. D. (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151, 1055–1067
https://doi.org/10.1016/j.cell.2012.10.036
pmid: 23178124
|
4 |
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33
https://doi.org/10.1016/S0092-8674(00)80620-0
pmid: 10778853
|
5 |
Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233
https://doi.org/10.1016/j.cell.2009.01.002
pmid: 19167326
|
6 |
Hutvágner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060
https://doi.org/10.1126/science.1073827
pmid: 12154197
|
7 |
Agarwal, V., Bell, G. W., Nam, J. W. and Bartel, D. P. (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4, 4
pmid: 26267216
|
8 |
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., (2005) Combinatorial microRNA target predictions. Nat. Genet., 37, 495–500
https://doi.org/10.1038/ng1536
pmid: 15806104
|
9 |
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of site accessibility in microRNA target recognition. Nat. Genet., 39, 1278–1284
https://doi.org/10.1038/ng2135
pmid: 17893677
|
10 |
Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20
https://doi.org/10.1016/j.cell.2004.12.035
pmid: 15652477
|
11 |
Jens, M. and Rajewsky, N. (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet., 16, 113–126
https://doi.org/10.1038/nrg3853
pmid: 25488579
|
12 |
Allantaz, F., Cheng, D. T., Bergauer, T., Ravindran, P., Rossier, M. F., Ebeling, M., Badi, L., Reis, B., Bitter, H., D’Asaro, M., (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One, 7, e29979
https://doi.org/10.1371/journal.pone.0029979
pmid: 22276136
|
13 |
Cajigas, I. J., Tushev, G., Will, T. J., tom Dieck, S., Fuerst, N. and Schuman, E. M. (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron, 74, 453–466
https://doi.org/10.1016/j.neuron.2012.02.036
pmid: 22578497
|
14 |
Gennarino, V. A., Sardiello, M., Avellino, R., Meola, N., Maselli, V., Anand, S., Cutillo, L., Ballabio, A. and Banfi, S. (2009) MicroRNA target prediction by expression analysis of host genes. Genome Res., 19, 481–490
https://doi.org/10.1101/gr.084129.108
pmid: 19088304
|
15 |
Jung, D., Kim, B., Freishtat, R. J., Giri, M., Hoffman, E. and Seo, J. (2015) miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc, 9, S2
https://doi.org/10.1186/1753-6561-9-S6-S2
pmid: 26361498
|
16 |
Xie, P., Liu, Y., Li, Y., Zhang, M. Q. and Wang, X. (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol Biosyst, 10, 1377–1384
https://doi.org/10.1039/c3mb70610a
pmid: 24668253
|
17 |
Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P. P. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358
https://doi.org/10.1016/j.cell.2011.07.014
pmid: 21802130
|
18 |
Tay, Y., Rinn, J. and Pandolfi, P. P. (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352
https://doi.org/10.1038/nature12986
pmid: 24429633
|
19 |
Taulli, R., Loretelli, C. and Pandolfi, P. P. (2013) From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nat. Struct. Mol. Biol., 20, 541–543
https://doi.org/10.1038/nsmb.2580
pmid: 23649362
|
20 |
Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A. and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369
https://doi.org/10.1016/j.cell.2011.09.028
pmid: 22000014
|
21 |
Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., DeNicola, G., Webster, K. A., Weiss, D., Perez-Mancera, P. A., (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147, 382–395
https://doi.org/10.1016/j.cell.2011.09.032
pmid: 22000016
|
22 |
Sumazin, P., Yang, X., Chiu, H. S., Chung, W. J., Iyer, A., Llobet-Navas, D., Rajbhandari, P., Bansal, M., Guarnieri, P., Silva, J., (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 147, 370–381
https://doi.org/10.1016/j.cell.2011.09.041
pmid: 22000015
|
23 |
Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147, 344–357
https://doi.org/10.1016/j.cell.2011.09.029
pmid: 22000013
|
24 |
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338
https://doi.org/10.1038/nature11928
pmid: 23446348
|
25 |
Kumar, M. S., Armenteros-Monterroso, E., East, P., Chakravorty, P., Matthews, N., Winslow, M. M. and Downward, J. (2014) HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature, 505, 212–217
https://doi.org/10.1038/nature12785
pmid: 24305048
|
26 |
Peng, H., Lu, M. and Selaru, F. M. (2015) The genome-wide gene expression profiling to predict competitive endogenous RNA network in hepatocellular cancer. Genom Data, 4, 93–95
https://doi.org/10.1016/j.gdata.2015.03.016
pmid: 26484188
|
27 |
Qi, X., Zhang, D. H., Wu, N., Xiao, J. H., Wang, X. and Ma, W. (2015) ceRNA in cancer: possible functions and clinical implications. J. Med. Genet., 52, 710–718
https://doi.org/10.1136/jmedgenet-2015-103334
pmid: 26358722
|
28 |
Zhang, J., Fan, D., Jian, Z., Chen, G. G. and Lai, P. B. (2015) Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One, 10, e0141042
https://doi.org/10.1371/journal.pone.0141042
pmid: 26492393
|
29 |
Bosson, A. D., Zamudio, J. R. and Sharp, P. A. (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell, 56, 347–359
https://doi.org/10.1016/j.molcel.2014.09.018
pmid: 25449132
|
30 |
Mayya, V. K. and Duchaine, T. F. (2015) On the availability of microRNA-induced silencing complexes, saturation of microRNA-binding sites and stoichiometry. Nucleic Acids Res., 43, 7556–7565
https://doi.org/10.1093/nar/gkv720
pmid: 26227970
|
31 |
Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163
https://doi.org/10.1073/pnas.1413896112
pmid: 25713348
|
32 |
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. and Stoffel, M. (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell, 54, 766–776
https://doi.org/10.1016/j.molcel.2014.03.045
pmid: 24793693
|
33 |
Hausser, J. and Zavolan, M. (2014) Identification and consequences of miRNA-target interactions—beyond repression of gene expression. Nat. Rev. Genet., 15, 599–612
https://doi.org/10.1038/nrg3765
pmid: 25022902
|
34 |
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S. and Johnson, J. M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773
https://doi.org/10.1038/nature03315
pmid: 15685193
|
35 |
Kou, Y., Qiao, L. and Wang, Q. (2015) Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol., 36, 2249–2255
https://doi.org/10.1007/s13277-014-2832-x
pmid: 25412953
|
36 |
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
https://doi.org/10.1038/nrg2484
pmid: 19015660
|
37 |
Bazzini, A. A., Lee, M. T. and Giraldez, A. J. (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336, 233–237
https://doi.org/10.1126/science.1215704
pmid: 22422859
|
38 |
Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P. and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature, 455, 64–71
https://doi.org/10.1038/nature07242
pmid: 18668037
|
39 |
Hausser, J., Syed, A. P., Selevsek, N., van Nimwegen, E., Jaskiewicz, L., Aebersold, R. and Zavolan, M. (2013) Timescales and bottlenecks in miRNA-dependent gene regulation. Mol. Syst. Biol., 9, 711.
https://doi.org/10.1038/msb.2013.68
pmid: 24301800
|
40 |
Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63
https://doi.org/10.1038/nature07228
pmid: 18668040
|
41 |
Broughton, J. P. and Pasquinelli, A. E. (2013) Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods, 63, 119–125
https://doi.org/10.1016/j.ymeth.2013.03.033
pmid: 23583680
|
42 |
Chi, S. W., Zang, J. B., Mele, A. and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486
pmid: 19536157
|
43 |
Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp., e2638
https://doi.org/10.3791/2638
pmid: 21559008
|
44 |
Loeb, G. B., Khan, A. A., Canner, D., Hiatt, J. B., Shendure, J., Darnell, R. B., Leslie, C. S. and Rudensky, A. Y. (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell, 48, 760–770
https://doi.org/10.1016/j.molcel.2012.10.002
pmid: 23142080
|
45 |
Sutandy, F. X., Hildebrandt, A. and König, J. (2016) Profiling the binding sites of RNA-binding proteins with nucleotide resolution using iCLIP. Methods Mol. Biol., 1358, 175–195
https://doi.org/10.1007/978-1-4939-3067-8_11
pmid: 26463384
|
46 |
Zisoulis, D. G., Lovci, M. T., Wilbert, M. L., Hutt, K. R., Liang, T. Y., Pasquinelli, A. E. and Yeo, G. W. (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol., 17, 173–179
https://doi.org/10.1038/nsmb.1745
pmid: 20062054
|
47 |
Kishore, S., Jaskiewicz, L., Burger, L., Hausser, J., Khorshid, M. and Zavolan, M. (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559–564
https://doi.org/10.1038/nmeth.1608
pmid: 21572407
|
48 |
Zhang, C. and Darnell, R. B. (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol., 29, 607–614
https://doi.org/10.1038/nbt.1873
pmid: 21633356
|
49 |
Levine, E., Zhang, Z., Kuhlman, T. and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol., 5, e229.
https://doi.org/10.1371/journal.pbio.0050229
pmid: 17713988
|
50 |
Mukherji, S., Ebert, M. S., Zheng, G. X., Tsang, J. S., Sharp, P. A. and van Oudenaarden, A. (2011) MicroRNAs can generate thresholds in target gene expression. Nat. Genet., 43, 854–859
https://doi.org/10.1038/ng.905
pmid: 21857679
|
51 |
Schmiedel, J. M., Klemm, S. L., Zheng, Y., Sahay, A., Blüthgen, N., Marks, D. S. and van Oudenaarden, A. (2015) MicroRNA control of protein expression noise. Science, 348, 128–132
https://doi.org/10.1126/science.aaa1738
pmid: 25838385
|
52 |
Milo, R., Jorgensen, P., Moran, U., Weber, G. and Springer, M. (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res., 38, D750–D753
https://doi.org/10.1093/nar/gkp889
pmid: 19854939
|
53 |
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W. and Selbach, M. (2011) Global quantification of mammalian gene expression control. Nature, 473, 337–342
https://doi.org/10.1038/nature10098
pmid: 21593866
|
54 |
Buchler, N. E. and Louis, M. (2008) Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol., 384, 1106–1119
https://doi.org/10.1016/j.jmb.2008.09.079
pmid: 18938177
|
55 |
Ala, U., Karreth, F. A., Bosia, C., Pagnani, A., Taulli, R., Léopold, V., Tay, Y., Provero, P., Zecchina, R. and Pandolfi, P. P. (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA, 110, 7154–7159
https://doi.org/10.1073/pnas.1222509110
pmid: 23536298
|
56 |
Martinez, N. J. and Gregory, R. I. (2013) Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA, 19, 605–612
https://doi.org/10.1261/rna.036434.112
pmid: 23485552
|
57 |
Wang, D., Zhang, Z., O’Loughlin, E., Lee, T., Houel, S., O’Carroll, D., Tarakhovsky, A., Ahn, N. G. and Yi, R. (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev., 26, 693–704
https://doi.org/10.1101/gad.182758.111
pmid: 22474261
|
58 |
Riba, A., Bosia, C., El Baroudi, M., Ollino, L. and Caselle, M. (2014) A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput. Biol., 10, e1003490.
https://doi.org/10.1371/journal.pcbi.1003490
pmid: 24586138
|
59 |
Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J. and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038
https://doi.org/10.1038/nature09144
pmid: 20577206
|
60 |
Figliuzzi, M., Marinari, E. and De Martino, A. (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J., 104, 1203–1213
https://doi.org/10.1016/j.bpj.2013.01.012
pmid: 23473503
|
61 |
Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O. and Margalit, H. (2014) Interactions between distant ceRNAs in regulatory networks. Biophys. J., 106, 2254–2266
https://doi.org/10.1016/j.bpj.2014.03.040
pmid: 24853754
|
62 |
Noorbakhsh, J., Lang, A. H. and Mehta, P. (2013) Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis. PLoS One, 8, e72676
https://doi.org/10.1371/journal.pone.0072676
pmid: 23991139
|
63 |
Wang, P., Zhi, H., Zhang, Y., Liu, Y., Zhang, J., Gao, Y., Guo, M., Ning, S. and Li, X. (2015) miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. Database (Oxford), 2015, 2015
pmid: 26424084
|
64 |
Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., (2014) Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther., 13, 3086–3097
https://doi.org/10.1158/1535-7163.MCT-14-0245
pmid: 25249556
|
65 |
Jeyapalan, Z., Deng, Z., Shatseva, T., Fang, L., He, C. and Yang, B. B. (2011) Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res., 39, 3026–3041
https://doi.org/10.1093/nar/gkq1003
pmid: 21149267
|
66 |
Rutnam, Z. J. and Yang, B. B. (2012) The non-coding 3′ UTR of CD44 induces metastasis by regulating extracellular matrix functions. J. Cell. Sci., 125, 2075–2085
https://doi.org/10.1242/jcs.100818
pmid: 22637644
|
67 |
Xia, T., Chen, S., Jiang, Z., Shao, Y., Jiang, X., Li, P., Xiao, B. and Guo, J. (2015) Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep, 5, 13445
https://doi.org/10.1038/srep13445
pmid: 26306906
|
68 |
Jackson, A. L., Burchard, J., Schelter, J., Chau, B. N., Cleary, M., Lim, L. and Linsley, P. S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA, 12, 1179–1187
https://doi.org/10.1261/rna.25706
pmid: 16682560
|
69 |
Schafer, S., Adami, E., Heinig, M., Rodrigues, K. E., Kreuchwig, F., Silhavy, J., van Heesch, S., Simaite, D., Rajewsky, N., Cuppen, E., (2015) Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun, 6, 7200
https://doi.org/10.1038/ncomms8200
pmid: 26007203
|
70 |
Jiang, J., Wakimoto, H., Seidman, J. G. and Seidman, C. E. (2013) Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science, 342, 111–114
https://doi.org/10.1126/science.1236921
pmid: 24092743
|
71 |
Chiu, H. S., Llobet-Navas, D., Yang, X., Chung, W. J., Ambesi-Impiombato, A., Iyer, A., Kim, H. R., Seviour, E. G., Luo, Z., Sehgal, V., (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res., 25, 257–267
https://doi.org/10.1101/gr.178194.114
pmid: 25378249
|
72 |
Tan, J. Y., Sirey, T., Honti, F., Graham, B., Piovesan, A., Merkenschlager, M., Webber, C., Ponting, C. P. and Marques, A. C. (2015) Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Res., 25, 655–666
https://doi.org/10.1101/gr.181974.114
pmid: 25792609
|
73 |
Xu, J., Li, Y., Lu, J., Pan, T., Ding, N., Wang, Z., Shao, T., Zhang, J., Wang, L. and Li, X. (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res., 43, 8169–8182
https://doi.org/10.1093/nar/gkv853
pmid: 26304537
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|