|
|
|
|
|
|
Advances in computational ChIA-PET data analysis |
Chao He1,Guipeng Li1,Diekidel M. Nadhir1,Yang Chen1( ),Xiaowo Wang1( ),Michael Q. Zhang2,1( ) |
1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Center for Synthetic and Systems Biology/Department of Automation, Tsinghua University, Beijing 100084, China
2. Department of Biological Sciences, Center for Systems Biology, the University of Texas at Dallas, Richardson, TX 75080-3021, USA |
|
|
关键词 :
 
|
Abstract: Genome-wide chromatin interaction analysis has become important for understanding 3D topological structure of a genome as well as for linking distal cis-regulatory elements to their target genes. Compared to the Hi-C method, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is unique, in that one can interrogate thousands of chromatin interactions (in a genome) mediated by a specific protein of interest at high resolution and reasonable cost. However, because of the noisy nature of the data, efficient analytical tools have become necessary. Here, we review some new computational methods recently developed by us and compare them with other existing methods. Our intention is to help readers to better understand ChIA-PET results and to guide the users on selection of the most appropriate tools for their own projects. |
Author Summary
Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) technology was designed for detecting genome-wide chromatin loops mediated by a specific protein of interest, which has become one of the most important biological methods for understanding 3D genome organization. Here we review five bioinformatics tools which are related to ChIA-PET data analysis and data mining. Meanwhile, we also introduce one interesting computational method which is to predict chromatin loops with ChIP-Seq data. Our intention is to help reader to better understand ChIA-PET experiments and to select the most appropriate bioinformatics tools for their 3D genome research. |
Key words:
 
|
收稿日期: 2016-05-14
出版日期: 2016-09-07
|
|
基金资助: |
Corresponding Author(s):
Yang Chen,Xiaowo Wang,Michael Q. Zhang
|
1 |
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
https://doi.org/10.1038/nature08497
pmid: 19890323
|
2 |
Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
https://doi.org/10.1016/j.cell.2011.12.014
pmid: 22265404
|
3 |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293.
https://doi.org/10.1126/science.1181369
pmid: 19815776
|
4 |
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680.
https://doi.org/10.1016/j.cell.2014.11.021
pmid: 25497547
|
5 |
He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834
pmid: 26231426
|
6 |
He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
https://doi.org/10.1093/nar/gku327
pmid: 24782518
|
7 |
Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
https://doi.org/10.1186/s13059-015-0851-6
pmid: 26694485
|
8 |
Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163, 1611–1627
https://doi.org/10.1016/j.cell.2015.11.024
pmid: 26686651
|
9 |
Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C., (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11, R22
https://doi.org/10.1186/gb-2010-11-2-r22
pmid: 20181287
|
10 |
Paulsen, J., Rødland, E. A., Holden, L., Holden, M. and Hovig, E. (2014) A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42, e143
https://doi.org/10.1093/nar/gku738
pmid: 25114054
|
11 |
Phanstiel, D. H., Boyle, A. P., Heidari, N. and Snyder, M. P. (2015) Mango: a bias-correcting ChIA-PET analysis pipeline. Bioinformatics, 31, 3092–3098
https://doi.org/10.1093/bioinformatics/btv336
pmid: 26034063
|
12 |
Heyse, J. (2011) A false discovery rate procedure for categorical data. In Resent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics, 43–58, World Scientific Publishing Company
|
13 |
Benjamini YaH, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300
|
14 |
Jessen, B. and Wintner, A. (1935) Distribution functions and the Riemann ZETA function. Trans. Am. Math. Soc., 38, 48–88
https://doi.org/10.1090/S0002-9947-1935-1501802-5
|
15 |
Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113
https://doi.org/10.1038/nature11279
pmid: 22955621
|
16 |
Fullwood, M. J., Wei, C. L., Liu, E. T. and Ruan, Y. (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res., 19, 521–532
https://doi.org/10.1101/gr.074906.107
pmid: 19339662
|
17 |
He, H. H., Meyer, C. A., Chen, M. W., Jordan, V. C., Brown, M. and Liu, X. S. (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res., 22, 1015–1025
https://doi.org/10.1101/gr.133280.111
pmid: 22508765
|
18 |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
https://doi.org/10.1038/nature11082
pmid: 22495300
|
19 |
Marsman J., Horsfield, J.(2012) Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochim. Biophys. Acta, 1819:1217–1227
https://doi.org/10.1016/j.bbagrm.2012.10.008
|
20 |
Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295
https://doi.org/10.1016/j.cell.2013.04.053
pmid: 23706625
|
21 |
Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature, 467, 430–435
https://doi.org/10.1038/nature09380
pmid: 20720539
|
22 |
Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704
https://doi.org/10.1093/nar/gks501
pmid: 22675074
|
23 |
Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. and Blobel, G. A. (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149, 1233–1244
https://doi.org/10.1016/j.cell.2012.03.051
pmid: 22682246
|
24 |
Teha, Y.W., Jordana, M. I., Beala, M. J. and Bleia, D. M. ( 2006) Hierarchical Dirichlet processes. J. Am. Stat. Assoc., 101, 1566–1581
|
25 |
Mohammed, H., D’Santos, C., Serandour, A. A., Ali, H. R., Brown, G. D., Atkins, A., Rueda, O. M., Holmes, K. A., Theodorou, V., Robinson, J. L., (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Reports, 3, 342–349
https://doi.org/10.1016/j.celrep.2013.01.010
pmid: 23403292
|
26 |
Li, M. J., Wang, L.Y., Xia, Z., Sham, P.C., Wang, J. (2013) GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. Nucl. Acids Res. 41, W150–W158
https://doi.org/10.1093/nar/gkt456
|
27 |
Grubert, F., Zaugg, J. B., Kasowski, M., Ursu, O., Spacek, D. V., Martin, A. R., Greenside, P., Srivas, R., Phanstiel, D. H., Pekowska, A., (2015) Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell, 162, 1051–1065
https://doi.org/10.1016/j.cell.2015.07.048
pmid: 26300125
|
28 |
Higgins, G. A., Allyn-Feuer, A. and Athey, B. D. (2015) Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics, 16, 1565–1583
https://doi.org/10.2217/pgs.15.105
pmid: 26340055
|
29 |
Smemo, S., Tena, J. J., Kim, K. H., Gamazon, E. R., Sakabe, N. J., Gómez-Marín, C., Aneas, I., Credidio, F. L., Sobreira, D. R., Wasserman, N. F., (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507, 371–375
https://doi.org/10.1038/nature13138
pmid: 24646999
|
30 |
Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A. L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A., (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
https://doi.org/10.1126/science.aad9024
pmid: 26940867
|
31 |
Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M. P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917
https://doi.org/10.1101/gr.176586.114
pmid: 25228660
|
32 |
Li, G., Cai, L., Chang, H., Hong, P., Zhou, Q., Kulakova, E. V., Kolchanov, N. A. and Ruan, Y. (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics, 15, S11
https://doi.org/10.1186/1471-2164-15-S12-S11
pmid: 25563301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|