Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2016, Vol. 4 Issue (3): 217-225   https://doi.org/10.1007/s40484-016-0080-3
  本期目录
 
 
 
Advances in computational ChIA-PET data analysis
Chao He1,Guipeng Li1,Diekidel M. Nadhir1,Yang Chen1(),Xiaowo Wang1(),Michael Q. Zhang2,1()
1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Center for Synthetic and Systems Biology/Department of Automation, Tsinghua University, Beijing 100084, China
2. Department of Biological Sciences, Center for Systems Biology, the University of Texas at Dallas, Richardson, TX 75080-3021, USA
 全文: PDF(573 KB)   HTML
关键词      
Abstract

Genome-wide chromatin interaction analysis has become important for understanding 3D topological structure of a genome as well as for linking distal cis-regulatory elements to their target genes. Compared to the Hi-C method, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is unique, in that one can interrogate thousands of chromatin interactions (in a genome) mediated by a specific protein of interest at high resolution and reasonable cost. However, because of the noisy nature of the data, efficient analytical tools have become necessary. Here, we review some new computational methods recently developed by us and compare them with other existing methods. Our intention is to help readers to better understand ChIA-PET results and to guide the users on selection of the most appropriate tools for their own projects.

Author Summary   

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) technology was designed for detecting genome-wide chromatin loops mediated by a specific protein of interest, which has become one of the most important biological methods for understanding 3D genome organization. Here we review five bioinformatics tools which are related to ChIA-PET data analysis and data mining. Meanwhile, we also introduce one interesting computational method which is to predict chromatin loops with ChIP-Seq data. Our intention is to help reader to better understand ChIA-PET experiments and to select the most appropriate bioinformatics tools for their 3D genome research.

Key words 
收稿日期: 2016-05-14      出版日期: 2016-09-07
PACS:     
基金资助: 
Corresponding Author(s): Yang Chen,Xiaowo Wang,Michael Q. Zhang   
 引用本文:   
.  [J]. Quantitative Biology, 2016, 4(3): 217-225.
Chao He, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang, Michael Q. Zhang. Advances in computational ChIA-PET data analysis. Quant. Biol., 2016, 4(3): 217-225.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-016-0080-3
https://academic.hep.com.cn/qb/CN/Y2016/V4/I3/217
Fig.1  
Methods ChIA-PET Tool ChiaSig Mango MICC
Model Hyper-geometric test Non-central hyper-geometric test Binomialmodel Mixture model
Consider random ligation Yes Yes Yes Yes
Consider random collision No Yes Yes Yes
Applicable to inter-chromosomal interactions Yes No No Yes
Filter interactions by PET-count Yes Yes Yes No
Number of interactions Moderate Least Moderate Most
Reproducibility Moderate Worst Moderate Best
Time cost Least Most Moderate Moderate
Complete pipeline Yes No Yes No
Tab.1  
Fig.2  
1 Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
https://doi.org/10.1038/nature08497 pmid: 19890323
2 Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
https://doi.org/10.1016/j.cell.2011.12.014 pmid: 22265404
3 Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293.
https://doi.org/10.1126/science.1181369 pmid: 19815776
4 Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680.
https://doi.org/10.1016/j.cell.2014.11.021 pmid: 25497547
5 He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834
pmid: 26231426
6 He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
https://doi.org/10.1093/nar/gku327 pmid: 24782518
7 Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
https://doi.org/10.1186/s13059-015-0851-6 pmid: 26694485
8 Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163, 1611–1627
https://doi.org/10.1016/j.cell.2015.11.024 pmid: 26686651
9 Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C., (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11, R22
https://doi.org/10.1186/gb-2010-11-2-r22 pmid: 20181287
10 Paulsen, J., Rødland, E. A., Holden, L., Holden, M. and Hovig, E. (2014) A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42, e143
https://doi.org/10.1093/nar/gku738 pmid: 25114054
11 Phanstiel, D. H., Boyle, A. P., Heidari, N. and Snyder, M. P. (2015) Mango: a bias-correcting ChIA-PET analysis pipeline. Bioinformatics, 31, 3092–3098
https://doi.org/10.1093/bioinformatics/btv336 pmid: 26034063
12 Heyse, J. (2011) A false discovery rate procedure for categorical data. In Resent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics, 43–58, World Scientific Publishing Company
13 Benjamini YaH, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300
14 Jessen, B. and Wintner, A. (1935) Distribution functions and the Riemann ZETA function. Trans. Am. Math. Soc., 38, 48–88
https://doi.org/10.1090/S0002-9947-1935-1501802-5
15 Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113
https://doi.org/10.1038/nature11279 pmid: 22955621
16 Fullwood, M. J., Wei, C. L., Liu, E. T. and Ruan, Y. (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res., 19, 521–532
https://doi.org/10.1101/gr.074906.107 pmid: 19339662
17 He, H. H., Meyer, C. A., Chen, M. W., Jordan, V. C., Brown, M. and Liu, X. S. (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res., 22, 1015–1025
https://doi.org/10.1101/gr.133280.111 pmid: 22508765
18 Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
https://doi.org/10.1038/nature11082 pmid: 22495300
19 Marsman J., Horsfield, J.(2012) Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochim. Biophys. Acta, 1819:1217–1227
https://doi.org/10.1016/j.bbagrm.2012.10.008
20 Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295
https://doi.org/10.1016/j.cell.2013.04.053 pmid: 23706625
21 Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature, 467, 430–435
https://doi.org/10.1038/nature09380 pmid: 20720539
22 Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704
https://doi.org/10.1093/nar/gks501 pmid: 22675074
23 Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. and Blobel, G. A. (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149, 1233–1244
https://doi.org/10.1016/j.cell.2012.03.051 pmid: 22682246
24 Teha, Y.W., Jordana, M. I., Beala, M. J. and Bleia, D. M. ( 2006) Hierarchical Dirichlet processes. J. Am. Stat. Assoc., 101, 1566–1581
25 Mohammed, H., D’Santos, C., Serandour, A. A., Ali, H. R., Brown, G. D., Atkins, A., Rueda, O. M., Holmes, K. A., Theodorou, V., Robinson, J. L., (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Reports, 3, 342–349
https://doi.org/10.1016/j.celrep.2013.01.010 pmid: 23403292
26 Li, M. J., Wang, L.Y., Xia, Z., Sham, P.C., Wang, J. (2013) GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. Nucl. Acids Res. 41, W150–W158
https://doi.org/10.1093/nar/gkt456
27 Grubert, F., Zaugg, J. B., Kasowski, M., Ursu, O., Spacek, D. V., Martin, A. R., Greenside, P., Srivas, R., Phanstiel, D. H., Pekowska, A., (2015) Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell, 162, 1051–1065
https://doi.org/10.1016/j.cell.2015.07.048 pmid: 26300125
28 Higgins, G. A., Allyn-Feuer, A. and Athey, B. D. (2015) Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics, 16, 1565–1583
https://doi.org/10.2217/pgs.15.105 pmid: 26340055
29 Smemo, S., Tena, J. J., Kim, K. H., Gamazon, E. R., Sakabe, N. J., Gómez-Marín, C., Aneas, I., Credidio, F. L., Sobreira, D. R., Wasserman, N. F., (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507, 371–375
https://doi.org/10.1038/nature13138 pmid: 24646999
30 Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A. L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A., (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
https://doi.org/10.1126/science.aad9024 pmid: 26940867
31 Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M. P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917
https://doi.org/10.1101/gr.176586.114 pmid: 25228660
32 Li, G., Cai, L., Chang, H., Hong, P., Zhou, Q., Kulakova, E. V., Kolchanov, N. A. and Ruan, Y. (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics, 15, S11
https://doi.org/10.1186/1471-2164-15-S12-S11 pmid: 25563301
[1] .  [J]. Quant. Biol., 2017, 5(1): 99-104.
[2] .  [J]. Quant. Biol., 2017, 5(1): 90-98.
[3] .  [J]. Quant. Biol., 2017, 5(1): 76-89.
[4] .  [J]. Quant. Biol., 2017, 5(1): 67-75.
[5] .  [J]. Quant. Biol., 2017, 5(1): 55-66.
[6] .  [J]. Quant. Biol., 2017, 5(1): 42-54.
[7] .  [J]. Quant. Biol., 2017, 5(1): 25-41.
[8] .  [J]. Quant. Biol., 2017, 5(1): 3-24.
[9] .  [J]. Quant. Biol., 2016, 4(4): 283-301.
[10] .  [J]. Quant. Biol., 2016, 4(4): 270-282.
[11] .  [J]. Quant. Biol., 2016, 4(4): 261-269.
[12] .  [J]. Quant. Biol., 2016, 4(4): 243-260.
[13] .  [J]. Quant. Biol., 2016, 4(4): 320-330.
[14] .  [J]. Quant. Biol., 2016, 4(4): 310-319.
[15] .  [J]. Quant. Biol., 2016, 4(4): 302-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed