|
|
Stochastic physics, complex systems and biology |
Hong Qian1( ) |
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA |
|
|
Abstract In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod’s necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibria, spontaneous random “mutations” and “adaptations”. On an evolutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.
|
Corresponding Author(s):
Hong Qian
|
Issue Date: 05 March 2013
|
|
1 |
M. C. Mackey, (1989) The dynamic origin of increasing entropy. Rev. Mod. Phys., 61, 981–1015. .
https://doi.org/10.1103/RevModPhys.61.981
|
2 |
H. Ge,, S. Pressé,, K. Ghosh, and K. A. Dill, (2012) Markov processes follow from the principle of maximum caliber. J. Chem. Phys., 136, 064108. .
https://doi.org/10.1063/1.3681941
pmid: 22360170
|
3 |
J. J. Hopfield, (1994) Physics, computation, and why biology looks so different? J. Theor. Biol., 171, 53–60..
https://doi.org/10.1006/jtbi.1994.1211
|
4 |
J. Knight, (2002) Physics meets biology: bridging the culture gap. Nature, 419, 244–246. .
https://doi.org/10.1038/419244a
pmid: 12239534
|
5 |
I. Prigogine, and I. Stengers, (1984) Order Out of Chaos: Man’s New Dialogue with Nature. Boulder, CO: New Sci. Lib. Shambhala.
|
6 |
H. Haken, (1983) Synergetics, An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. 3rd rev. enl. ed. New York: Springer-Verlag.
|
7 |
A. Lasota, and M. C. Mackey, (1994) Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. New York: Springer-Verlag.
|
8 |
H. D. I. Abarbanel,, R. Brown,, J. Sidorowich, and L. Tsimring, (1993) The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65, 1331–1392. .
https://doi.org/10.1103/RevModPhys.65.1331
|
9 |
H. Tong, (1993) Non-Linear Time Series: A Dynamical System Approach. UK: Oxford University Press.
|
10 |
H. Qian,, P.-Z. Shi, and J. Xing, (2009) Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys. Chem. Chem. Phys., 11, 4861–4870. .
https://doi.org/10.1039/b900335p
pmid: 19506761
|
11 |
H. Qian, (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reactions systems - an analytical theory. Nonlinearity, 24, R19–R49..
https://doi.org/10.1088/0951-7715/24/6/R01
|
12 |
N. Wax, (1954) Selected Papers on Noise and Stochastic Processes. New York: Dover Pubns.
|
13 |
L. Onsager, and S. Machlup, (1953) Fluctuations and irreversible processes. Phys. Rev., 91, 1505–1512. .
https://doi.org/10.1103/PhysRev.91.1505
|
14 |
R. F. Fox, (1978) Gaussian stochastic processes in physics. Phys. Rep., 48, 179–283..
https://doi.org/10.1016/0370-1573(78)90145-X
|
15 |
H. Ge, and H. Qian, (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107–116. .
https://doi.org/10.1098/rsif.2010.0202
pmid: 20466813
|
16 |
H. Qian, and H. Ge, (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol. Cell. Biomech., 9, 1–30..
pmid: 22428359
|
17 |
J. Monod, (1972) Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. New York: Vintage Books.
|
18 |
B. E. Shapiro, and H. Qian, (1997) A quantitative analysis of single protein-ligand complex separation with the atomic force microscope. Biophys. Chem., 67, 211–219. .
https://doi.org/10.1016/S0301-4622(97)00045-8
pmid: 17029898
|
19 |
P. B. Moore, (2012) How should we think about the ribosome?Annu. Rev. Biophys., 41, 1–19. .
https://doi.org/10.1146/annurev-biophys-050511-102314
pmid: 22577819
|
20 |
R. Phillips, and S. R. Quake, (2006) The biological frontier of physics. Phys. Today, 59, 38–43..
https://doi.org/10.1063/1.2216960
|
21 |
C. Bustamante,, J. Liphardt, and F. Ritort, (2005) The nonequilibrium thermodynamics of small systems. Phys. Today, 58, 43–48. .
https://doi.org/10.1063/1.2012462
|
22 |
H. Qian, (2012) Hill’s small systems nanothermodynamics: a simple macromolecular partition problem with a statistical perspective. J. Biol. Phys., 38, 201–207..
https://doi.org/10.1007/s10867-011-9254-4
|
23 |
H. V. Westerhoff, and B. Ø. Palsson, (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol., 22, 1249–1252. .
https://doi.org/10.1038/nbt1020
pmid: 15470464
|
24 |
H. Qian, (2012) Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179–204. .
https://doi.org/10.1146/annurev-biophys-050511-102240
pmid: 22404682
|
25 |
D. A. Beard, and M. J. Kushmerick, (2009) Strong inference for systems biology. PLoS Comput. Biol., 5, e1000459. .
https://doi.org/10.1371/journal.pcbi.1000459
pmid: 19714210
|
26 |
E. V. Koonin, (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res., 37, 1011–1034..
https://doi.org/10.1093/nar/gkp089
pmid: 19213802
|
27 |
B. Alberts, (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell, 92, 291–294. .
https://doi.org/10.1016/S0092-8674(00)80922-8
pmid: 9476889
|
28 |
M. B. Elowitz,, A. J. Levine,, E. D. Siggia, and P. S. Swain, (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186. .
https://doi.org/10.1126/science.1070919
pmid: 12183631
|
29 |
L. Cai,, N. Friedman, and X. S. Xie, (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362..
https://doi.org/10.1038/nature04599
pmid: 16541077
|
30 |
M. W. Kirschner, and J. C. Gerhart, (2005) The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven, CT: Yale University Press.
|
31 |
H. Ge, and H. Qian, (2010) Physical origins of entropy production, free energy dissipation, and their mathematical representations. Phys. Rev. E, 81, 051133..
https://doi.org/10.1103/PhysRevE.81.051133
pmid: 20866211
|
32 |
X.-J. Zhang,, H. Qian, and M. Qian, (2012) Stochastic theory of nonequilibrium steady states and its applications (Part I). Phys. Rep., 510, 1–86..
https://doi.org/10.1016/j.physrep.2011.09.002
|
33 |
H. Ge,, M. Qian, and H. Qian, (2012) Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics. Phys. Rep., 510, 87–118..
https://doi.org/10.1016/j.physrep.2011.09.001
|
34 |
D.-Q. Jiang,, M. Qian, and M.-P. Qian, (2004) Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Lecture Notes in Mathematics, Vol. 1833). Berlin: Springer-Verlag.
|
35 |
L. Von Bertalanffy, (1950) The theory of open systems in physics and biology. Science, 111, 23–29..
https://doi.org/10.1126/science.111.2872.23
pmid: 15398815
|
36 |
H. Qian, (2007) Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem., 58, 113–142. .
https://doi.org/10.1146/annurev.physchem.58.032806.104550
pmid: 17059360
|
37 |
J. Wang,, L. Xu, and E. K. Wang, (2008) Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA, 105, 12271–12276. .
https://doi.org/10.1073/pnas.0800579105
pmid: 18719111
|
38 |
J. Wang,, K. Zhang, and E. K. Wang, (2010) Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys., 133, 125103. .
https://doi.org/10.1063/1.3478547
pmid: 20886967
|
39 |
J. Wang,, K. Zhang,, L. Xu, and E. K. Wang, (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257–8262. .
https://doi.org/10.1073/pnas.1017017108
pmid: 21536909
|
40 |
H. Ge, and H. Qian, (2012) Analytical mechanics in stochastic dynamics: most probable path, large-deviation rate function and Hamilton-Jacobi equation. Int. J. Mod. Phys. B, 26, 1230012..
https://doi.org/10.1142/S0217979212300125
|
41 |
D. Hanahan, and R. A. Weinberg, (2000) The hallmarks of cancer. Cell, 100, 57–70. .
https://doi.org/10.1016/S0092-8674(00)81683-9
pmid: 10647931
|
42 |
P. Ao,, D. Galas,, L. Hood, and X.-M. Zhu, (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684..
https://doi.org/10.1016/j.mehy.2007.03.043
pmid: 17766049
|
43 |
W. J. Ewens, (2004) Mathematical Population Genetics I. Theoretical Introduction. New York: Springer.
|
44 |
P. Ao, (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev., 2, 117–156..
https://doi.org/10.1016/j.plrev.2005.03.002
|
45 |
P. Ao, (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys., 49, 1073–1090. .
https://doi.org/10.1088/0253-6102/49/5/01
pmid: 21949462
|
46 |
H Qian. (2012) A decomposition of irreversible diffusion processes without detailed balance. .
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|