Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2013, Vol. 1 Issue (1) : 50-53    https://doi.org/10.1007/s40484-013-0002-6
PERSPECTIVE
Stochastic physics, complex systems and biology
Hong Qian1()
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
 Download: PDF(103 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod’s necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibria, spontaneous random “mutations” and “adaptations”. On an evolutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.

Corresponding Author(s): Hong Qian   
Issue Date: 05 March 2013
 Cite this article:   
Hong Qian. Stochastic physics, complex systems and biology[J]. Quant. Biol., 2013, 1(1): 50-53.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0002-6
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/50
1 M. C. Mackey, (1989) The dynamic origin of increasing entropy. Rev. Mod. Phys., 61, 981–1015. .
https://doi.org/10.1103/RevModPhys.61.981
2 H. Ge,, S. Pressé,, K. Ghosh, and K. A. Dill, (2012) Markov processes follow from the principle of maximum caliber. J. Chem. Phys., 136, 064108. .
https://doi.org/10.1063/1.3681941 pmid: 22360170
3 J. J. Hopfield, (1994) Physics, computation, and why biology looks so different? J. Theor. Biol., 171, 53–60..
https://doi.org/10.1006/jtbi.1994.1211
4 J. Knight, (2002) Physics meets biology: bridging the culture gap. Nature, 419, 244–246. .
https://doi.org/10.1038/419244a pmid: 12239534
5 I. Prigogine, and I. Stengers, (1984) Order Out of Chaos: Man’s New Dialogue with Nature. Boulder, CO: New Sci. Lib. Shambhala.
6 H. Haken, (1983) Synergetics, An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. 3rd rev. enl. ed. New York: Springer-Verlag.
7 A. Lasota, and M. C. Mackey, (1994) Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. New York: Springer-Verlag.
8 H. D. I. Abarbanel,, R. Brown,, J. Sidorowich, and L. Tsimring, (1993) The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65, 1331–1392. .
https://doi.org/10.1103/RevModPhys.65.1331
9 H. Tong, (1993) Non-Linear Time Series: A Dynamical System Approach. UK: Oxford University Press.
10 H. Qian,, P.-Z. Shi, and J. Xing, (2009) Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys. Chem. Chem. Phys., 11, 4861–4870. .
https://doi.org/10.1039/b900335p pmid: 19506761
11 H. Qian, (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reactions systems - an analytical theory. Nonlinearity, 24, R19–R49..
https://doi.org/10.1088/0951-7715/24/6/R01
12 N. Wax, (1954) Selected Papers on Noise and Stochastic Processes. New York: Dover Pubns.
13 L. Onsager, and S. Machlup, (1953) Fluctuations and irreversible processes. Phys. Rev., 91, 1505–1512. .
https://doi.org/10.1103/PhysRev.91.1505
14 R. F. Fox, (1978) Gaussian stochastic processes in physics. Phys. Rep., 48, 179–283..
https://doi.org/10.1016/0370-1573(78)90145-X
15 H. Ge, and H. Qian, (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107–116. .
https://doi.org/10.1098/rsif.2010.0202 pmid: 20466813
16 H. Qian, and H. Ge, (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol. Cell. Biomech., 9, 1–30..
pmid: 22428359
17 J. Monod, (1972) Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. New York: Vintage Books.
18 B. E. Shapiro, and H. Qian, (1997) A quantitative analysis of single protein-ligand complex separation with the atomic force microscope. Biophys. Chem., 67, 211–219. .
https://doi.org/10.1016/S0301-4622(97)00045-8 pmid: 17029898
19 P. B. Moore, (2012) How should we think about the ribosome?Annu. Rev. Biophys., 41, 1–19. .
https://doi.org/10.1146/annurev-biophys-050511-102314 pmid: 22577819
20 R. Phillips, and S. R. Quake, (2006) The biological frontier of physics. Phys. Today, 59, 38–43..
https://doi.org/10.1063/1.2216960
21 C. Bustamante,, J. Liphardt, and F. Ritort, (2005) The nonequilibrium thermodynamics of small systems. Phys. Today, 58, 43–48. .
https://doi.org/10.1063/1.2012462
22 H. Qian, (2012) Hill’s small systems nanothermodynamics: a simple macromolecular partition problem with a statistical perspective. J. Biol. Phys., 38, 201–207..
https://doi.org/10.1007/s10867-011-9254-4
23 H. V. Westerhoff, and B. Ø. Palsson, (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol., 22, 1249–1252. .
https://doi.org/10.1038/nbt1020 pmid: 15470464
24 H. Qian, (2012) Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179–204. .
https://doi.org/10.1146/annurev-biophys-050511-102240 pmid: 22404682
25 D. A. Beard, and M. J. Kushmerick, (2009) Strong inference for systems biology. PLoS Comput. Biol., 5, e1000459. .
https://doi.org/10.1371/journal.pcbi.1000459 pmid: 19714210
26 E. V. Koonin, (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res., 37, 1011–1034..
https://doi.org/10.1093/nar/gkp089 pmid: 19213802
27 B. Alberts, (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell, 92, 291–294. .
https://doi.org/10.1016/S0092-8674(00)80922-8 pmid: 9476889
28 M. B. Elowitz,, A. J. Levine,, E. D. Siggia, and P. S. Swain, (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186. .
https://doi.org/10.1126/science.1070919 pmid: 12183631
29 L. Cai,, N. Friedman, and X. S. Xie, (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362..
https://doi.org/10.1038/nature04599 pmid: 16541077
30 M. W. Kirschner, and J. C. Gerhart, (2005) The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven, CT: Yale University Press.
31 H. Ge, and H. Qian, (2010) Physical origins of entropy production, free energy dissipation, and their mathematical representations. Phys. Rev. E, 81, 051133..
https://doi.org/10.1103/PhysRevE.81.051133 pmid: 20866211
32 X.-J. Zhang,, H. Qian, and M. Qian, (2012) Stochastic theory of nonequilibrium steady states and its applications (Part I). Phys. Rep., 510, 1–86..
https://doi.org/10.1016/j.physrep.2011.09.002
33 H. Ge,, M. Qian, and H. Qian, (2012) Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics. Phys. Rep., 510, 87–118..
https://doi.org/10.1016/j.physrep.2011.09.001
34 D.-Q. Jiang,, M. Qian, and M.-P. Qian, (2004) Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Lecture Notes in Mathematics, Vol. 1833). Berlin: Springer-Verlag.
35 L. Von Bertalanffy, (1950) The theory of open systems in physics and biology. Science, 111, 23–29..
https://doi.org/10.1126/science.111.2872.23 pmid: 15398815
36 H. Qian, (2007) Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem., 58, 113–142. .
https://doi.org/10.1146/annurev.physchem.58.032806.104550 pmid: 17059360
37 J. Wang,, L. Xu, and E. K. Wang, (2008) Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA, 105, 12271–12276. .
https://doi.org/10.1073/pnas.0800579105 pmid: 18719111
38 J. Wang,, K. Zhang, and E. K. Wang, (2010) Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys., 133, 125103. .
https://doi.org/10.1063/1.3478547 pmid: 20886967
39 J. Wang,, K. Zhang,, L. Xu, and E. K. Wang, (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257–8262. .
https://doi.org/10.1073/pnas.1017017108 pmid: 21536909
40 H. Ge, and H. Qian, (2012) Analytical mechanics in stochastic dynamics: most probable path, large-deviation rate function and Hamilton-Jacobi equation. Int. J. Mod. Phys. B, 26, 1230012..
https://doi.org/10.1142/S0217979212300125
41 D. Hanahan, and R. A. Weinberg, (2000) The hallmarks of cancer. Cell, 100, 57–70. .
https://doi.org/10.1016/S0092-8674(00)81683-9 pmid: 10647931
42 P. Ao,, D. Galas,, L. Hood, and X.-M. Zhu, (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684..
https://doi.org/10.1016/j.mehy.2007.03.043 pmid: 17766049
43 W. J. Ewens, (2004) Mathematical Population Genetics I. Theoretical Introduction. New York: Springer.
44 P. Ao, (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev., 2, 117–156..
https://doi.org/10.1016/j.plrev.2005.03.002
45 P. Ao, (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys., 49, 1073–1090. .
https://doi.org/10.1088/0253-6102/49/5/01 pmid: 21949462
46 H Qian. (2012) A decomposition of irreversible diffusion processes without detailed balance. .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed