Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2013, Vol. 1 Issue (1) : 9-31    https://doi.org/10.1007/s40484-013-0003-5
REVIEW
Mathematics, genetics and evolution
Warren J. Ewens()
Department of Biology and Statistics, The University of Pennsylvania, Philadelphia, PA 19104, USA
 Download: PDF(281 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The importance of mathematics and statistics in genetics is well known. Perhaps less well known is the importance of these subjects in evolution. The main problem that Darwin saw in his theory of evolution by natural selection was solved by some simple mathematics. It is also not a coincidence that the re-writing of the Darwinian theory in Mendelian terms was carried largely by mathematical methods. In this article I discuss these historical matters and then consider more recent work showing how mathematical and statistical methods have been central to current genetical and evolutionary research.

Corresponding Author(s): Ewens Warren J.,Email:wewens@sas.upenn.edu   
Issue Date: 05 March 2013
 Cite this article:   
Warren J. Ewens. Mathematics, genetics and evolution[J]. Quant. Biol., 2013, 1(1): 9-31.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0003-5
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/9
θ0.10.20.51.02.05.010.020.0
Most frequent0.9360.8820.7580.6240.4760.2970.1950.122
Oldest0.9090.8330.6670.5000.3330.1670.0910.048
Tab.1  Mean frequency of (a) the most frequent allele, (b) the oldest allele, in a population as a function of . The probability that the most frequent allele is the oldest allele is also its mean frequency.
1 Darwin, C.(1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: John Murray .
2 Mendel, G.(1866) Versuche über pflanzenhybriden (Experiments relating to plant hybridization). Verh. Naturforsch. Ver . Brunn, 4, 3-17 .
3 Hardy, G. H. (1908) Mendelian proportions in a mixed population. Science , 28, 49-50 .
doi: 10.1126/science.28.706.49 pmid:.17779291
4 Weinberg, W. (1908) über den Nachweis der Vererbung beim Menschen. (On the detection of heredity in man). Jahreshelfts. Ver. Vaterl. Naturf. Württemb. , 64, 368-382 .
5 Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press.
6 Malécot, G.(1948) Les Mathématiques de l’Hérédité. Paris: Masson.
7 Kingman, J. F. C.(1961) A mathematical problem in population genetics. Proc. Camb. Philol. Soc. , 57, 574-582 .
doi: 10.1017/S0305004100035635.
8 Wright,S. (1931) Evolution in Mendelian populations. Genetics, 16, 97-159 .
pmid:17246615.
9 Ewens,W. J. (2004) Mathematical Population Genetics. New York: Springer.
10 Kimura, M. (1971) Theoretical foundation of population genetics at the molecular level. Theor. Popul. Biol. , 2, 174-208 .
doi: 10.1016/0040-5809(71)90014-1 pmid:.5162686
11 Ewens, W. J. and Kirby, K. (1975) The eigenvalues of the neutral alleles process. Theor. Popul. Biol. , 7, 212-220 .
doi: 10.1016/0040-5809(75)90016-7 pmid:.1145505
12 Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Popul. Biol. , 3, 87-112 .
doi: 10.1016/0040-5809(72)90035-4 pmid:.4667078
13 Kimura, M. (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics , 61, 893-903 .
pmid:5364968.
14 Watterson, G. A. (1975) On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. , 7, 256-276 .
doi: 10.1016/0040-5809(75)90020-9 pmid:.1145509
15 Tavaré, S. (2004) Ancestral inference in population genetics. In Cantoni, O., Tavaré S. and Zeitouni, O. (eds.), école d’été de Probabilités de Saint-Flour XXXI-2001 . Berlin: Springer-Verlag, 1-188 .
16 Watterson, G. A. (1977) Heterosis or neutrality? Genetics , 85, 789-814 .
pmid:863245.
17 Ewens, W. J. (1974) A note on the sampling theory for infinite alleles and infinite sites models. Theor. Popul. Biol. , 6, 143-148 .
doi: 10.1016/0040-5809(74)90020-3 pmid:.4445971
18 Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics , 123, 585-595 .
pmid:2513255.
19 Hein, J., Schierup, M. H. and Wiuf, C. (2005) Gene Genealogies, Variation and Evolution. Oxford: Oxford University Press.
20 Wakeley, J. (2009) Coalescent Theory. Greenwood Village, Colorado: Roberts and Company.
21 Marjoram, P. and Joyce, P. (2009) Practical implications of coalescent theory. In Lenwood, L. S. and Ramakrishnan N. (eds.), Problem Solving Handbook in Computational Biology and Bioinformatics . New York: Springer.
22 Nordborg, M. (2001) Coalescent theory. In Balding, D. J., Bishop M. J. and Cannings, C. (eds.), Handbook of Statistical Genetics . Chichester, UK: Wiley.
23 Kingman, J. F. C. (1982) The coalescent. Stoch. Proc. Appl. , 13, 235-248 .
doi: 10.1016/0304-4149(82)90011-4.
24 Kingman, J. F. C. (1982) On the genealogy of large populations. J. Appl. Probab., 19, 27-43 .
doi: 10.2307/3213548.
25 Kelly, F. P. (1977) Exact results for the Moran neutral allele model. J. Appl. Probab. , 14, 197-201 .
26 Donnelly, P. J. and Tavaré, S. (1986) The ages of alleles and a coalescent. Adv. Appl. Probab. , 18, 1-19 .
doi: 10.2307/1427237.
27 Donnelly, P. J. (1986) Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles. Theor. Popul. Biol. , 30, 271-288 .
doi: 10.1016/0040-5809(86)90037-7 pmid:.3787504
28 Watterson, G. A. and Guess, H. A. (1977) Is the most frequent allele the oldest? Theor. Popul. Biol. , 11, 141-160 .
doi: 10.1016/0040-5809(77)90023-5 pmid:.867285
29 Kingman, J. F. C. (1975) Random discrete distributions. J. R. Stat. Soc. [Ser. A] , 37, 1-22 .
30 Watterson, G. A. (1976) The stationary distribution of the infinitely-many neutral alleles model. J. Appl. Probab. , 13, 639-651 .
doi: 10.2307/3212519.
31 Crow, J. F. (1972) The dilemma of nearly neutral mutations. How important are they for evolution and human welfare? J. Hered. , 63, 306-316 .
pmid:4653429.
32 Griffiths, R. C. (1980) Unpublished notes.
33 Engen, S. (1975) A note on the geometric series as a species frequency model. Biometrika , 62, 697-699 .
doi: 10.1093/biomet/62.3.697.
34 McCloskey, J. W. (1965) A model for the distribution of individuals by species in an environment. Unpublished PhD. thesis. Michigan State University .
35 Tavaré, S. (2004) Ancestral inference in population genetics. In Picard J. (ed.), êcole d’êté de Probabilités de Saint-Fleur XXX1-2001, 1-188 , Berlin: Springer-Verlag.
36 Durrett, R. (2008) Probability Models for DNA Sequence Evolution. Berlin: Springer-Verlag.
37 Etheridge, A. (2011) Some Mathematical Models from Population Genetics. Berlin: Springer-Verlag
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed