Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2013, Vol. 1 Issue (1) : 71-90    https://doi.org/10.1007/s40484-013-0005-3
REVIEW
Personal genomes, quantitative dynamic omics and personalized medicine
George I. Mias, Michael Snyder()
Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
 Download: PDF(800 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rapid technological developments following the Human Genome Project have made possible the availability of personalized genomes. As the focus now shifts from characterizing genomes to making personalized disease associations, in combination with the availability of other omics technologies, the next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore, omics profiling performed longitudinally can probe the temporal patterns associated with both molecular changes and associated physiological health and disease states. Such data necessitates the development of computational methodology to not only handle and descriptively assess such data, but also construct quantitative biological models. Here we describe the availability of personal genomes and developing omics technologies that can be brought together for personalized implementations and how these novel integrated approaches may effectively provide a precise personalized medicine that focuses on not only characterization and treatment but ultimately the prevention of disease.

Corresponding Author(s): Snyder Michael,Email:mpsnyder@stanford.edu   
Issue Date: 05 March 2013
 Cite this article:   
George I. Mias,Michael Snyder. Personal genomes, quantitative dynamic omics and personalized medicine[J]. Quant. Biol., 2013, 1(1): 71-90.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0005-3
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/71
Fig.1  Genomic variants.
(A) Variation in the human genome. The personal genomic code can differ from the published reference genome. Basic examples variation are shown on a single or few base variants (e.g., point mutations, insertions and deletions), or a larger scale for structural variants (>1000 bp, e.g., large insertions, deletions, translocation, tandem repeats, translocations).
(B) Sample variant analysis workflow. In a genomic variant analysis, for example, after sample preparation and sequencing the raw files can be passed through quality control (e.g., using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and removing PCR artifacts using tools as Picard (http://picard.sourceforge.net)). Reads are mapped to the genome and variants are assessed, e.g., mapping with several algorithms, including ELAND II (Illumina), SOAP [], MAQ and Burrows-Wheeler Aligner (BWA) [] and Novoalign by ? Novocraft Technologies (http://www.novocraft.com). Read re-alignment can be performed, e.g., using Genome Analysis Toolkit (GATK) [], or HugeSeq [], to call variants, including implementations with Sequence Alignment Map format Tools (SAMtools) [], annotation using Annovar [], SIFT [] and Polyphen [] for determining variant effects on proteomic translation []. Furthermore, using a variety of methods the structural variants can be determined. For example the method considers how paired-end reads mapped to the reference to assign deletions and insertions from reads whose mapped span is longer or shorter than the average span; inversions from position and relative orientations of the ends of reads [,]. The method allows the possibility to identify the proportional genomic copy number variation. In the approach of Abyzov et al. [] the read depth considered as an image is analyzed image processing techniques, viz. mean-shift-theory []. Programs such as Pindel [] and BreakSeq [] consider analysis to determine breakpoints of insertions and deletions. DELLY [] by Rausch et al. takes into account paired-end and split-read methods for determining structural variants. Many packages for analysis are available through the Bioconductor [] project as implemented in the freely available R statistical analysis platform (http://www.R-project.org).
Fig.1  Genomic variants.
(A) Variation in the human genome. The personal genomic code can differ from the published reference genome. Basic examples variation are shown on a single or few base variants (e.g., point mutations, insertions and deletions), or a larger scale for structural variants (>1000 bp, e.g., large insertions, deletions, translocation, tandem repeats, translocations).
(B) Sample variant analysis workflow. In a genomic variant analysis, for example, after sample preparation and sequencing the raw files can be passed through quality control (e.g., using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and removing PCR artifacts using tools as Picard (http://picard.sourceforge.net)). Reads are mapped to the genome and variants are assessed, e.g., mapping with several algorithms, including ELAND II (Illumina), SOAP [], MAQ and Burrows-Wheeler Aligner (BWA) [] and Novoalign by ? Novocraft Technologies (http://www.novocraft.com). Read re-alignment can be performed, e.g., using Genome Analysis Toolkit (GATK) [], or HugeSeq [], to call variants, including implementations with Sequence Alignment Map format Tools (SAMtools) [], annotation using Annovar [], SIFT [] and Polyphen [] for determining variant effects on proteomic translation []. Furthermore, using a variety of methods the structural variants can be determined. For example the method considers how paired-end reads mapped to the reference to assign deletions and insertions from reads whose mapped span is longer or shorter than the average span; inversions from position and relative orientations of the ends of reads [,]. The method allows the possibility to identify the proportional genomic copy number variation. In the approach of Abyzov et al. [] the read depth considered as an image is analyzed image processing techniques, viz. mean-shift-theory []. Programs such as Pindel [] and BreakSeq [] consider analysis to determine breakpoints of insertions and deletions. DELLY [] by Rausch et al. takes into account paired-end and split-read methods for determining structural variants. Many packages for analysis are available through the Bioconductor [] project as implemented in the freely available R statistical analysis platform (http://www.R-project.org).
Fig.2  RNA-Seq analysis.
In RNA-Seq analysis, short reads can be assembled and then mapped to the reference genome (with tools such as Illumina’s ELAND, MAQ and BWA [], Bowtie [-], SOAP [], and others). A recent protocol by Trapnell et al. [] describes in detail the use of dedicated RNA-Seq programs from the Tuxedo suite, such as TopHat [], Cufflinks [,] and an R implementation called CummeRBund as a Bioconductor package (an alternative is to run these directly or using GenePattern [,], which also includes possible reconstruction by Scripture []). Other programs such as DESeq, another package in Bioconductor, can also help test for differential expression []. The numerous analyses availabilities are now publically discussed online, in a forum that (http://SEQanswers.com/) discusses many other examples and all aspects of the mapping process [].
Fig.2  RNA-Seq analysis.
In RNA-Seq analysis, short reads can be assembled and then mapped to the reference genome (with tools such as Illumina’s ELAND, MAQ and BWA [], Bowtie [-], SOAP [], and others). A recent protocol by Trapnell et al. [] describes in detail the use of dedicated RNA-Seq programs from the Tuxedo suite, such as TopHat [], Cufflinks [,] and an R implementation called CummeRBund as a Bioconductor package (an alternative is to run these directly or using GenePattern [,], which also includes possible reconstruction by Scripture []). Other programs such as DESeq, another package in Bioconductor, can also help test for differential expression []. The numerous analyses availabilities are now publically discussed online, in a forum that (http://SEQanswers.com/) discusses many other examples and all aspects of the mapping process [].
Fig.3  Proteome analysis.
In quantitative proteomics using mass spectrometry typical methods employ trypsin digestion coupled with tagging methods - non label-free methods include use of isotopic labeling (SILAC) or isobaric tagging (iTRAQ, TMT). One typical bottom-up-approach setup uses a combination of high affinity liquid chromatography coupled with two rounds of mass spectrometry (LC-MS/MS) to fractionate peptides for identification and obtain their mass spectra. Raw files may be analyzed using vendor software or converted to open formats (such as .mzxml, .mzdata or the current standard .mzml [-], e.g., using MSConvert []). The mass spectra can be mapped to known protein using a protein library, or less frequently assembled, using an array of programs (e.g., X!Tandem [], SEQUEST [], Mascot [], Open Mass Spectrometry Search Algorithm (OMSSA) [], Proteome Discoverer by Thermo Scientific, or MassHunter Workstation by Agilent). Quality control includes estimation of false discovery rates (FDR), often using a reverse database search [,255,]. Quantitation can be carried out to estimate relative levels of proteins in different samples (employing standardization and normalization of average sample ratios to a unit mean). Finally annotation is made using databases such as UniProt or NCBI. Some of the analysis can be performed using suites and programs, such as PEAKS [], the Trans-Proteomic Pipeline (TPP) [-] multiple tools from ProteoWizard [], OpenMS [–] or vendor complete solutions Proteome Discoverer and MassHunter Workstation mentioned above. Multiple other programs for mass spectrometry are available (e.g., see http://www.msutils.org).
Fig.3  Proteome analysis.
In quantitative proteomics using mass spectrometry typical methods employ trypsin digestion coupled with tagging methods - non label-free methods include use of isotopic labeling (SILAC) or isobaric tagging (iTRAQ, TMT). One typical bottom-up-approach setup uses a combination of high affinity liquid chromatography coupled with two rounds of mass spectrometry (LC-MS/MS) to fractionate peptides for identification and obtain their mass spectra. Raw files may be analyzed using vendor software or converted to open formats (such as .mzxml, .mzdata or the current standard .mzml [-], e.g., using MSConvert []). The mass spectra can be mapped to known protein using a protein library, or less frequently assembled, using an array of programs (e.g., X!Tandem [], SEQUEST [], Mascot [], Open Mass Spectrometry Search Algorithm (OMSSA) [], Proteome Discoverer by Thermo Scientific, or MassHunter Workstation by Agilent). Quality control includes estimation of false discovery rates (FDR), often using a reverse database search [,255,]. Quantitation can be carried out to estimate relative levels of proteins in different samples (employing standardization and normalization of average sample ratios to a unit mean). Finally annotation is made using databases such as UniProt or NCBI. Some of the analysis can be performed using suites and programs, such as PEAKS [], the Trans-Proteomic Pipeline (TPP) [-] multiple tools from ProteoWizard [], OpenMS [–] or vendor complete solutions Proteome Discoverer and MassHunter Workstation mentioned above. Multiple other programs for mass spectrometry are available (e.g., see http://www.msutils.org).
Fig.4  Metabolome analysis.
In metabolomics analysis chromatography columns are used for purification and preparation of samples coupled to mass spectrometry (gas chromatography (GC) or liquid chromatography (LC)-MS); standards for specific compounds may also be used in parallel for positive identification. Raw files may be analyzed using vendor software or converted to open formats (such as .mzxml, .mzdata or the current standard .mzml [-], e.g., using MSConvert). The spectral data may be aligned for retention time and mass intensity calibration, e.g., using XCMS [-], SIEVE by Thermo Scientific, Matlab toolboxes by MathWorks, MassHunterProfiler by Agilent, MzMine [,]. After quality control and statistical analysis, masses of interest can be annotated using databases, e.g., Metlin [,], KEGG [], MetaCyc [,,], Reactome [-].
Fig.4  Metabolome analysis.
In metabolomics analysis chromatography columns are used for purification and preparation of samples coupled to mass spectrometry (gas chromatography (GC) or liquid chromatography (LC)-MS); standards for specific compounds may also be used in parallel for positive identification. Raw files may be analyzed using vendor software or converted to open formats (such as .mzxml, .mzdata or the current standard .mzml [-], e.g., using MSConvert). The spectral data may be aligned for retention time and mass intensity calibration, e.g., using XCMS [-], SIEVE by Thermo Scientific, Matlab toolboxes by MathWorks, MassHunterProfiler by Agilent, MzMine [,]. After quality control and statistical analysis, masses of interest can be annotated using databases, e.g., Metlin [,], KEGG [], MetaCyc [,,], Reactome [-].
Fig.5  iPOP for personalized medicine.
The framework described in the text employs multi-omics analyses (see above and Figures 1-4) that may be implemented for individuals. In step I) for disease is carried out using a whole genome sequencing to perform variant analysis coupled to medical history, environmental considerations and pharmacogenomics evaluations. In step II) using an array of technologies follows multiple omics longitudinally in a subject as the progress through their different physiological states, including healthy, disease, and recovery states. Thus thousands of molecular components are collected over time for III) , using temporal patterns to obtain matched omics information, correlate and classify responses, compare against pathway databases and visualize components, e.g., current pathway tools include DAVID [,], KEGG [], Reactome [-], Ingenuity Pathway Analysis (IPA); networks can be visualized using Cytoscape [], various R packages through Bioconductor [], Matlab by MathWorks and several others. The future iPOP implementations may be gathered into a curated database of iPOP-disease associations that may help in categorizing an omics dynamic response to a catalogued physiological state and disease onset, with potential diagnostic capabilities.
Fig.5  iPOP for personalized medicine.
The framework described in the text employs multi-omics analyses (see above and Figures 1-4) that may be implemented for individuals. In step I) for disease is carried out using a whole genome sequencing to perform variant analysis coupled to medical history, environmental considerations and pharmacogenomics evaluations. In step II) using an array of technologies follows multiple omics longitudinally in a subject as the progress through their different physiological states, including healthy, disease, and recovery states. Thus thousands of molecular components are collected over time for III) , using temporal patterns to obtain matched omics information, correlate and classify responses, compare against pathway databases and visualize components, e.g., current pathway tools include DAVID [,], KEGG [], Reactome [-], Ingenuity Pathway Analysis (IPA); networks can be visualized using Cytoscape [], various R packages through Bioconductor [], Matlab by MathWorks and several others. The future iPOP implementations may be gathered into a curated database of iPOP-disease associations that may help in categorizing an omics dynamic response to a catalogued physiological state and disease onset, with potential diagnostic capabilities.
1 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860-921 .
doi: 10.1038/35057062 pmid:.11237011
2 Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304-1351 .
doi: 10.1126/science.1058040 pmid:.11181995
3 International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931-945 .
doi: 10.1038/nature03001 pmid:.15496913
4 Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., Fan, W., Zhang, J., Li, J., Zhang, J., (2008) The diploid genome sequence of an Asian individual. Nature, 456, 60-65 .
doi: 10.1038/nature07484 pmid:.18987735
5 Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53-59 .
doi: 10.1038/nature07517 pmid:.18987734
6 Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872-876 .
doi: 10.1038/nature06884 pmid:.18421352
7 Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G., (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254.
doi: 10.1371/journal.pbio.0050254 pmid:.17803354
8 Snyder, M., Du, J. and Gerstein, M. (2010) Personal genome sequencing: current approaches and challenges. Genes Dev., 24, 423-431 .
doi: 10.1101/gad.1864110 pmid:.20194435
9 Mardis, E. R. (2011) A decade’s perspective on DNA sequencing technology. Nature, 470, 198-203 .
doi: 10.1038/nature09796 pmid:.21307932
10 Tucker, T., Marra, M. and Friedman, J. M. (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet., 85, 142-154 .
doi: 10.1016/j.ajhg.2009.06.022 pmid:.19679224
11 Ronaghi, M., Uhlén, M. and Nyrén, P. (1998) A sequencing method based on real-time pyrophosphate. Science , 281, 363, 365.
12 Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem., 242, 84-89 .
doi: 10.1006/abio.1996.0432 pmid:.8923969
13 Nyrén, P. (2007) The history of pyrosequencing. Methods Mol. Biol., 373, 1-14 .
pmid:17185753.
14 Nutter, R. C. (2008) New frontiers in plant functional genomics using next generation sequencing technologies. In Kahl, G. and Meksem, K. (eds.), The Handbook of Plant Functional Genomics: Concepts and Protocels. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 21, 431-446 .
15 Dai, M., Thompson, R. C., Maher, C., Contreras-Galindo, R., Kaplan, M. H., Markovitz, D. M., Omenn, G. and Meng, F. (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics, 11, S7.
doi: 10.1186/1471-2164-11-S4-S7 pmid:.21143816
16 Pandey, V., Nutter, R. C. and Prediger, E. (2008) Applied biosystems SOLiD? system: ligation-based sequencing. In Janitz, M. (ed.), Next Generation Genome Sequencing: Towards Personalized Medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 3, 29-42 .
17 Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., Nazarenko, I., Nilsen, G. B., Yeung, G., (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327, 78-81 .
doi: 10.1126/science.1181498 pmid:.19892942
18 Braslavsky, I., Hebert, B., Kartalov, E. and Quake, S. R. (2003) Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA, 100, 3960-3964 .
doi: 10.1073/pnas.0230489100 pmid:.12651960
19 Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J. and Turner, S. W. (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol., 472, 431-455 .
doi: 10.1016/S0076-6879(10)72001-2 pmid:.20580975
20 Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133-138 .
doi: 10.1126/science.1162986 pmid:.19023044
21 Schadt, E. E., Turner, S. and Kasarskis, A. (2010) A window into third-generation sequencing. Hum. Mol. Genet., 19, R227-R240 .
doi: 10.1093/hmg/ddq416 pmid:.20858600
22 Hayden, E. (2012) Nanopore genome sequencer makes its debut. Nature ,
doi: 10.1038/nature.2012.10051.
23 Bainbridge, M. N., Wang, M., Burgess, D. L., Kovar, C., Rodesch, M. J., D’Ascenzo, M., Kitzman, J., Wu, Y. Q., Newsham, I., Richmond, T. A., (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol., 11, R62.
doi: 10.1186/gb-2010-11-6-r62 pmid:.20565776
24 Clark, M. J., Chen, R., Lam, H. Y., Karczewski, K. J., Chen, R., Euskirchen, G., Butte, A. J. and Snyder, M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol., 29, 908-914 .
doi: 10.1038/nbt.1975 pmid:.21947028
25 .The International HapMap Consortium. (2005) A haplotype map of the human genome. Nature, 437, 1299-1320 .
doi: 10.1038/nature04226 pmid:.16255080
26 .The International HapMap Consortium, Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851-861 .
doi: 10.1038/nature06258 pmid:.17943122
27 Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M. and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308-311 .
doi: 10.1093/nar/29.1.308 pmid:.11125122
28 Altshuler, D. and Clark, A. G. (2005) Genetics. Harvesting medical information from the human family tree. Science, 307, 1052-1053 .
doi: 10.1126/science.1109682 pmid:.15718454
29 Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., Szpiech, Z. A., Degnan, J. H., Wang, K., Guerreiro, R., (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451, 998-1003 .
doi: 10.1038/nature06742 pmid:.18288195
30 Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., (2008) Genes mirror geography within Europe. Nature, 456, 98-101 .
doi: 10.1038/nature07331 pmid:.18758442
31 Kidd, J. M., Gravel, S., Byrnes, J., Moreno-Estrada, A., Musharoff, S., Bryc, K., Degenhardt, J. D., Brisbin, A., Sheth, V., Chen, R., (2012) Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation. Am. J. Hum. Genet., 91, 660-671 .
doi: 10.1016/j.ajhg.2012.08.025 pmid:.23040495
32 Galanter, J. M., Fernandez-Lopez, J. C., Gignoux, C. R., Barnholtz-Sloan, J., Fernandez-Rozadilla, C., Via, M., Hidalgo-Miranda, A., Contreras, A. V., Figueroa, L. U., Raska, P., (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet., 8, e1002554.
doi: 10.1371/journal.pgen.1002554 pmid:.22412386
33 Bryc, K., Auton, A., Nelson, M. R., Oksenberg, J. R., Hauser, S. L., Williams, S., Froment, A., Bodo, J. M., Wambebe, C., Tishkoff, S. A., (2010) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl. Acad. Sci. USA, 107, 786-791 .
doi: 10.1073/pnas.0909559107 pmid:.20080753
34 Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., (2006) Global variation in copy number in the human genome. Nature, 444, 444-454 .
doi: 10.1038/nature05329 pmid:.17122850
35 Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D., Barnes, C., Campbell, P., (2010) Origins and functional impact of copy number variation in the human genome. Nature, 464, 704-712 .
doi: 10.1038/nature08516 pmid:.19812545
36 Alkan, C., Coe, B. P. and Eichler, E. E. (2011) Genome structural variation discovery and genotyping. Nat. Rev. Genet., 12, 363-376 .
doi: 10.1038/nrg2958 pmid:.21358748
37 Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. and Snyder, M. (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE, 6, e27859.
doi: 10.1371/journal.pone.0027859 pmid:.22140474
38 Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420-426 .
doi: 10.1126/science.1149504 pmid:.17901297
39 Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods, 6, 677-681 .
doi: 10.1038/nmeth.1363 pmid:.19668202
40 Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Cayting, P., Zhang, Z., Snyder, M. and Gerstein, M. B. (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol., 10, R23.
doi: 10.1186/gb-2009-10-2-r23 pmid:.19236709
41 Quinlan, A. R. and Hall, I. M. (2012) Characterizing complex structural variation in germline and somatic genomes. Trends Genet., 28, 43-53 .
doi: 10.1016/j.tig.2011.10.002 pmid:.22094265
42 The ENCODE Project Consortium, Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74 .
doi: 10.1038/nature11247 pmid:.22955616
43 Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100 .
doi: 10.1038/nature11245 pmid:.22955619
44 Ecker, J. R., Bickmore, W. A., Barroso, I., Pritchard, J. K., Gilad, Y. and Segal, E. (2012) Genomics: ENCODE explained. Nature, 489, 52-55 .
doi: 10.1038/489052a pmid:.22955614
45 Birney, E. (2012) The making of ENCODE: lessons for big-data projects. Nature, 489, 49-51 .
doi: 10.1038/489049a pmid:.22955613
46 Boyle, A. P., Hong,E. L., Hariharan, M., Cheng, Y., Schaub, M. A., Kasowski, M., Karczewski, K. J., Park, J., Hitz, B. C., Weng, S., (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res., 22, 1790-1797 .
doi: 10.1101/gr.137323.112 pmid:.22955989
47 1000 Genomes Project Consortium. (2010) A map of human genome variation from population-scale sequencing. Nature , 467, 1061-1073 .
48 Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S. and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 106, 9362-9367 .
doi: 10.1073/pnas.0903103106 pmid:.19474294
49 Haack, T. B., Danhauser, K., Haberberger, B., Hoser, J., Strecker, V., Boehm, D., Uziel, G., Lamantea, E., Invernizzi, F., Poulton, J., (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet., 42, 1131-1134 .
doi: 10.1038/ng.706 pmid:.21057504
50 Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts,P., Wieskamp, N., del Rosario, M., (2010) A de novo paradigm for mental retardation. Nat. Genet., 42, 1109-1112 .
doi: 10.1038/ng.712 pmid:.21076407
51 Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., Gibbs, J. R., Brunetti, M., Gronka, S., Wuu, J., (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68, 857-864 .
doi: 10.1016/j.neuron.2010.11.036 pmid:.21145000
52 Bilgüvar, K., Oztürk, A. K., Louvi, A., Kwan, K. Y., Choi,M., Tatli, B., Yalnizo?lu, D., Tüysüz,B., Ca?layan, A. O., G?kben, S., (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature, 467, 207-210 .
doi: 10.1038/nature09327 pmid:.20729831
53 Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30-35 .
doi: 10.1038/ng.499 pmid:.19915526
54 Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790-793 .
doi: 10.1038/ng.646 pmid:.20711175
55 Musunuru, K., Pirruccello, J. P., Do, R., Peloso, G. M., Guiducci, C., Sougnez, C., Garimella, K. V., Fisher, S., Abreu, J., Barry, A. J., (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 363, 2220-2227 .
doi: 10.1056/NEJMoa1002926 pmid:.20942659
56 Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237-241 .
doi: 10.1038/nature10945 pmid:.22495306
57 Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M. O., Carter, S. L., Cibulskis, K., Erlich, R. L., (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488, 106-110 .
doi: 10.1038/nature11329 pmid:.22820256
58 Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., Fakhry, C., Xie,T. X., Zhang, J., Wang, J., (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154-1157 .
doi: 10.1126/science.1206923 pmid:.21798897
59 Xu, X., Hou,Y., Yin, X., Bao, L., Tang, A., Song, L., Li,F., Tsang, S., Wu, K., Wu, H., (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886-895 .
doi: 10.1016/j.cell.2012.02.025 pmid:.22385958
60 Hou, Y., Song,L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li,F., Wu, K., Liang, J., Shao, D., (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873-885 .
doi: 10.1016/j.cell.2012.02.028 pmid:.22385957
61 .The Cancer Genome Atlas Research Network. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609-615 .
doi: 10.1038/nature10166 pmid:.21720365
62 Küntzer, J., Maisel, D., Lenhof, H. P., Klostermann, S. and Burtscher, H. (2011) The Roche Cancer Genome Database 2.0. BMC Med. Genomics, 4, 43.
doi: 10.1186/1755-8794-4-43 pmid:.21586118
63 Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603-607 .
doi: 10.1038/nature11003 pmid:.22460905
64 Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin,M. L., Ordó?ez, G. R., Bignell, G. R., (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191-196 .
doi: 10.1038/nature08658 pmid:.20016485
65 Puente, X. S., Pinyol, M., Quesada, V., Conde, L., Ordó?ez, G. R., Villamor, N., Escaramis, G., Jares, P., Beà, S., González-Díaz, M., (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475, 101-105 .
doi: 10.1038/nature10113 pmid:.21642962
66 Ellis, M. J., Ding,L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., Van Tine, B. A., Hoog, J., Goiffon, R. J., Goldstein, T. C., (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486, 353-360 .
pmid:22722193.
67 Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen,K., Wallis, J. W., Harris, C. C., McLellan, M. D., Fulton, R. S., Fulton, L. L., (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999-1005 .
doi: 10.1038/nature08989 pmid:.20393555
68 Yost, S. E., Smith, E. N., Schwab, R. B., Bao, L., Jung,H., Wang, X., Voest, E., Pierce, J. P., Messer, K., Parker, B. A., (2012) Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens. Nucleic Acids Res., 40, e107.
doi: 10.1093/nar/gks299 pmid:.22492626
69 Natrajan, R., Mackay, A., Lambros, M. B., Weigelt, B., Wilkerson, P. M., Manie, E., Grigoriadis, A., A’hern, R., van der Groep, P., Kozarewa, I., (2012) A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and-positive breast cancers. J. Pathol., 227, 29-41 .
doi: 10.1002/path.4003 pmid:.22362584
70 Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., Dooling, D., Dunford-Shore, B. H., McGrath, S., Hickenbotham, M., (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66-72 .
doi: 10.1038/nature07485 pmid:.18987736
71 Link, D. C., Schuettpelz, L. G., Shen, D., Wang, J., Walter, M. J., Kulkarni, S., Payton, J. E., Ivanovich, J., Goodfellow, P. J., Le Beau, M., (2011) Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA , 305, 1568-1576 .
72 Dewey, F. E., Chen,R., Cordero, S. P., Ormond, K. E., Caleshu, C., Karczewski, K. J., Whirl-Carrillo, M., Wheeler, M. T., Dudley, J. T., Byrnes, J. K., (2011) Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet., 7, e1002280.
doi: 10.1371/journal.pgen.1002280 pmid:.21935354
73 Chen, R., Mias,G. I., Li-Pook-Than, J., Jiang, L., Lam,H. Y., Chen, R., Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293-1307 .
doi: 10.1016/j.cell.2012.02.009 pmid:.22424236
74 Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant,K. P., Goodman, N., Bamshad, M., (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636-639 .
doi: 10.1126/science.1186802 pmid:.20220176
75 Bainbridge, M. N., Wiszniewski, W., Murdock, D. R., Friedman, J., Gonzaga-Jauregui, C., Newsham, I., Reid, J. G., Fink,J. K., Morgan, M. B., Gingras, M. C., (2011) Whole-genome sequencing for optimized patient management. Sci. Transl. Med., 3, 87re3.
doi: 10.1126/scitranslmed.3002243 pmid:.21677200
76 Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Morgan, A. A., (2010) Clinical assessment incorporating a personal genome. Lancet, 375, 1525-1535 .
doi: 10.1016/S0140-6736(10)60452-7 pmid:.20435227
77 Lesko, L. J. and Schmidt, S. (2012) Individualization of drug therapy: history, present state, and opportunities for the future. Clin. Pharmacol. Ther., 92, 458-466 .
pmid:22948891.
78 Evans, W. E. and Relling, M. V. (2004) Moving towards individualized medicine with pharmacogenomics. Nature, 429, 464-468 .
doi: 10.1038/nature02626 pmid:.15164072
79 Zineh, I. and Johnson, J. A. (2006) Pharmacogenetics of chronic cardiovascular drugs: applications and implications. Expert Opin. Pharmacother., 7, 1417-1427 .
doi: 10.1517/14656566.7.11.1417 pmid:.16859425
80 Gupta, S., Jain,S., Brahmachari, S. K. and Kukreti, R. (2006) Pharmacogenomics: a path to predictive medicine for schizophrenia. Pharmacogenomics, 7, 31-47 .
doi: 10.2217/14622416.7.1.31 pmid:.16354123
81 Thorn, C. F., Klein, T. E. and Altman, R. B. (2010) Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics, 11, 501-505 .
doi: 10.2217/pgs.10.15 pmid:.20350130
82 McDonagh, E. M., Whirl-Carrillo, M., Garten, Y., Altman, R. B. and Klein, T. E. (2011) From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med., 5, 795-806 .
doi: 10.2217/bmm.11.94 pmid:.22103613
83 Lunshof, J. E., Bobe,J., Aach, J., Angrist, M., Thakuria, J. V., Vorhaus, D. B., Hoehe, M. R. and Church, G. M. (2010) Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin. Neurosci., 12, 47-60 .
pmid:20373666.
84 Ball, M. P., Thakuria, J. V., Zaranek, A. W., Clegg, T., Rosenbaum, A. M., Wu, X., Angrist, M., Bhak,J., Bobe, J., Callow, M. J., (2012) A public resource facilitating clinical use of genomes. Proc. Natl. Acad. Sci. USA, 109, 11920-11927 .
doi: 10.1073/pnas.1201904109 pmid:.22797899
85 Church, G. M. (2005) The personal genome project. Mol. Syst. Biol., 1, 2005.0030.
86 Jones, B. (2012) Genomics: personal genome project. Nat. Rev. Genet., 13, 599.
doi: 10.1038/nrg3309 pmid:.22825475
87 Clark, T. A., Sugnet, C. W. and Ares, M. Jr. (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science, 296, 907-910 .
doi: 10.1126/science.1069415 pmid:.11988574
88 Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308, 1149-1154 .
doi: 10.1126/science.1108625 pmid:.15790807
89 Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., Rinn, J. L., Tongprasit, W., Samanta, M., Weissman, S., (2004) Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242-2246 .
doi: 10.1126/science.1103388 pmid:.15539566
90 Yamada, K., Lim,J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C., Nguyen, M., (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842-846 .
doi: 10.1126/science.1088305 pmid:.14593172
91 David, L., Huber, W., Granovskaia, M., Toedling, J., Palm,C. J., Bofkin, L., Jones, T., Davis, R. W. and Steinmetz, L. M. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA, 103, 5320-5325 .
doi: 10.1073/pnas.0601091103 pmid:.16569694
92 Okoniewski, M. J. and Miller, C. J. (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics, 7, 276.
doi: 10.1186/1471-2105-7-276 pmid:.16749918
93 Royce, T. E., Rozowsky, J. S. and Gerstein, M. B. (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res., 35, e99.
doi: 10.1093/nar/gkm549 pmid:.17686789
94 Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57-63 .
doi: 10.1038/nrg2484 pmid:.19015660
95 Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood,V., Goodhead, I., Penkett, C. J., Rogers, J. and B?hler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453, 1239-1243 .
doi: 10.1038/nature07002 pmid:.18488015
96 Nagalakshmi, U., Wang,Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344-1349 .
doi: 10.1126/science.1158441 pmid:.18451266
97 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621-628 .
doi: 10.1038/nmeth.1226 pmid:.18516045
98 Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517 .
doi: 10.1101/gr.079558.108 pmid:.18550803
99 Maher, C. A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., Sam, L., Barrette, T., Palanisamy, N. and Chinnaiyan, A. M. (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature, 458, 97-101 .
doi: 10.1038/nature07638 pmid:.19136943
100 Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673-684 .
doi: 10.1016/j.cell.2009.06.016 pmid:.19703394
101 Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., Stebbings, L. A., Leroy, C., Edkins, S., Hardy, C., (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet., 40, 722-729 .
doi: 10.1038/ng.128 pmid:.18438408
102 Shah, S. P., Roth,A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding, J., Tse, K., Haffari, G., (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486, 395-399 .
pmid:22495314.
103 Delahaye, N. F., Rusakiewicz, S., Martins, I., Ménard, C., Roux,S., Lyonnet, L., Paul, P., Sarabi, M., Chaput, N., Semeraro, M., (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med., 17, 700-707 .
doi: 10.1038/nm.2366 pmid:.21552268
104 Rajan, P., Elliott, D. J., Robson, C. N. and Leung, H. Y. (2009) Alternative splicing and biological heterogeneity in prostate cancer. Nat. Rev. Urol., 6, 454-460 .
doi: 10.1038/nrurol.2009.125 pmid:.19657379
105 Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 19, 1720-1730 .
pmid:10022859.
106 Lu, P., Vogel, C., Wang, R., Yao, X. and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol., 25, 117-124 .
doi: 10.1038/nbt1270 pmid:.17187058
107 Cravatt, B. F., Simon, G. M. and Yates, J. R. 3rd. (2007) The biological impact of mass-spectrometry-based proteomics. Nature, 450, 991-1000 .
doi: 10.1038/nature06525 pmid:.18075578
108 Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature, 422, 198-207 .
doi: 10.1038/nature01511 pmid:.12634793
109 Aebersold, R. (2003) Quantitative proteome analysis: methods and applications. J. Infect. Dis., 187, S315-S320 .
doi: 10.1086/374756 pmid:.12792845
110 Aebersold, R. (2003) A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom., 14, 685-695 .
doi: 10.1016/S1044-0305(03)00289-7 pmid:.12837590
111 Yates, J. R. 3rd, Gilchrist, A., Howell, K. E. and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol., 6, 702-714 .
doi: 10.1038/nrm1711 pmid:.16231421
112 Cox, J. and Mann, M. (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem., 80, 273-299 .
doi: 10.1146/annurev-biochem-061308-093216 pmid:.21548781
113 Mann, M. and Jensen, O. N. (2003) Proteomic analysis of post-translational modifications. Nat. Biotechnol., 21, 255-261 .
doi: 10.1038/nbt0303-255 pmid:.12610572
114 Allmer, J. (2012) Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids, 42, 129-138 .
doi: 10.1007/s00726-010-0614-3 pmid:.20473535
115 Michalski, A., Damoc, E., Hauschild, J. P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox,J., Mann, M. and Horning, S. (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics , 10, M111.011015.
116 Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol., 1, 252-262 .
doi: 10.1038/nchembio736 pmid:.16408053
117 Ong, S. E. and Mann, M. (2007) Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol., 359, 37-52 .
doi: 10.1007/978-1-59745-255-7_3 pmid:.17484109
118 Ong, S. E. and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc., 1, 2650-2660 .
doi: 10.1038/nprot.2006.427 pmid:.17406521
119 Ong, S. E., Kratchmarova, I. and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res., 2, 173-181 .
doi: 10.1021/pr0255708 pmid:.12716131
120 Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 1, 376-386 .
doi: 10.1074/mcp.M200025-MCP200 pmid:.12118079
121 Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y. and Mann, M. (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat. Protoc., 6, 147-157 .
doi: 10.1038/nprot.2010.192 pmid:.21293456
122 Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D., Ross,P., Williamson, B., Guertin, S., Pribil, P. and Lee, K. H. (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics, 7, 3651-3660 .
doi: 10.1002/pmic.200700316 pmid:.17880003
123 Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3, 1154-1169 .
doi: 10.1074/mcp.M400129-MCP200 pmid:.15385600
124 Thompson, A., Sch?fer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K. and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 75, 1895-1904 .
doi: 10.1021/ac0262560 pmid:.12713048
125 Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn,K., Hochstrasser, D. F., Burkhard, P. R. and Sanchez, J. C. (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 80, 2921-2931 .
doi: 10.1021/ac702422x pmid:.18312001
126 Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science, 312, 212-217 .
doi: 10.1126/science.1124619 pmid:.16614208
127 Zybailov, B. L., Florens, L. and Washburn, M. P. (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst., 3, 354-360 .
doi: 10.1039/b701483j pmid:.17460794
128 Mueller, L. N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M. Y., Vitek, O., Aebersold, R. and Müller, M. (2007) SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics, 7, 3470-3480 .
doi: 10.1002/pmic.200700057 pmid:.17726677
129 May, D., Fitzgibbon, M., Liu, Y., Holzman, T., Eng,J., Kemp, C. J., Whiteaker, J., Paulovich, A. and McIntosh, M. (2007) A platform for accurate mass and time analyses of mass spectrometry data. J. Proteome Res., 6, 2685-2694 .
doi: 10.1021/pr070146y pmid:.17559252
130 Lundgren, D. H., Hwang, S. I., Wu, L. and Han, D. K. (2010) Role of spectral counting in quantitative proteomics. Expert Rev. Proteomics, 7, 39-53 .
doi: 10.1586/epr.09.69 pmid:.20121475
131 Liu, H., Sadygov, R. G. and Yates, J. R. 3rd. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem., 76, 4193-4201 .
doi: 10.1021/ac0498563 pmid:.15253663
132 Kusunoki, M., Tsutsumi, K., Nakayama, M., Kurokawa, T., Nakamura, T., Ogawa, H., Fukuzawa, Y., Morishita, M., Koide, T. and Miyata, T. (2007) Relationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. J. Med. Invest., 54, 243-247 .
doi: 10.2152/jmi.54.243 pmid:.17878672
133 Shaffer, J. P. (2007) Controlling the false discovery rate with constraints: the Newman-Keuls test revisited. Biom. J., 49, 136-143 .
doi: 10.1002/bimj.200610297 pmid:.17342955
134 Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol., 21, 921-926 .
doi: 10.1038/nbt849 pmid:.12872131
135 Ahdesm?ki, M., L?hdesm?ki, H., Pearson, R., Huttunen, H. and Yli-Harja, O. (2005) Robust detection of periodic time series measured from biological systems. BMC Bioinformatics, 6, 117.
doi: 10.1186/1471-2105-6-117 pmid:.15892890
136 Gygi, S. P., Rist,B., Gerber, S. A., Turecek, F., Gelb,M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994-999 .
doi: 10.1038/13690 pmid:.10504701
137 Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., Deciu, C., Winzeler, E. and Yates, J. R. 3rd. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 100, 3107-3112 .
doi: 10.1073/pnas.0634629100 pmid:.12626741
138 Ning, K., Fermin, D. and Nesvizhskii, A. I. (2012) Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J. Proteome Res., 11, 2261-2271 .
doi: 10.1021/pr201052x pmid:.22329341
139 Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algen?s, C., Lundeberg, J., Mann, M. and Uhlen, M. (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol., 6, 450.
doi: 10.1038/msb.2010.106 pmid:.21179022
140 Kislinger, T., Cox,B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell, 125, 173-186 .
doi: 10.1016/j.cell.2006.01.044 pmid:.16615898
141 Gry, M., Rimini, R., Str?mberg, S., Asplund, A., Pontén, F., Uhlén, M. and Nilsson, P. (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics, 10, 365.
doi: 10.1186/1471-2164-10-365 pmid:.19660143
142 Greenbaum, D., Jansen, R. and Gerstein, M. (2002) Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics, 18, 585-596 .
doi: 10.1093/bioinformatics/18.4.585 pmid:.12016056
143 Petricoin, E. F. III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572-577 .
doi: 10.1016/S0140-6736(02)07746-2 pmid:.11867112
144 Nagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., Kircher, M., Kelso, J., P??bo, S. and Mann, M. (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol., 7, 548.
doi: 10.1038/msb.2011.81 pmid:.22068331
145 Guo, T., Fan,L., Ng, W. H., Zhu, Y., Ho, M., Wan, W. K., Lim,K. H., Ong, W. S., Lee, S. S., Huang, S., (2012) Multidimensional identification of tissue biomarkers of gastric cancer. J. Proteome Res. , 11, 3405-3413 .
146 Woolfson, A., Ellmark, P., Chrisp, J. S., A Scott, M. and Christopherson, R. I. (2006) The application of CD antigen proteomics to pharmacogenomics. Pharmacogenomics, 7, 759-771 .
doi: 10.2217/14622416.7.5.759 pmid:.16886900
147 Griffin, N. M. and Schnitzer, J. E. (2011) Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol. Cell. Proteomics , 10, R110.000935.
148 Suhre, K. and Gieger, C. (2012) Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet., 13, 759-769 .
doi: 10.1038/nrg3314 pmid:.23032255
149 Theodoridis, G., Gika,H. G. and Wilson, I. D. (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom. Rev. , 30, 884-906 .
150 Psychogios, N., Hau,D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I., Krishnamurthy, R., Eisner, R., Gautam, B., (2011) The human serum metabolome. PLoS ONE, 6, e16957.
doi: 10.1371/journal.pone.0016957 pmid:.21359215
151 Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27-30 .
doi: 10.1093/nar/28.1.27 pmid:.10592173
152 Wang, Y., Xiao,J., Suzek, T. O., Zhang, J., Wang,J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B. A., (2012) PubChem’s BioAssay Database. Nucleic Acids Res., 40, D400-D412 .
doi: 10.1093/nar/gkr1132 pmid:.22140110
153 Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742-D753 .
doi: 10.1093/nar/gkr1014 pmid:.22102576
154 Tautenhahn, R., Cho,K., Uritboonthai, W., Zhu, Z., Patti, G. J. and Siuzdak, G. (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol., 30, 826-828 .
doi: 10.1038/nbt.2348 pmid:.22965049
155 Sana, T. R., Roark, J. C., Li, X., Waddell, K. and Fischer, S. M. (2008) Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech., 19, 258-266 .
pmid:19137116.
156 Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R. and Siuzdak, G. (2005) METLIN: a metabolite mass spectral database. Ther. Drug Monit., 27, 747-751 .
doi: 10.1097/01.ftd.0000179845.53213.39 pmid:.16404815
157 Vastrik, I., D’Eustachio, P., Schmidt, E., Gopinath, G., Croft, D., de Bono, B., Gillespie, M., Jassal, B., Lewis, S., Matthews, L., (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol., 8, R39.
doi: 10.1186/gb-2007-8-3-r39 pmid:.17367534
158 Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res., 37, D619-D622 .
doi: 10.1093/nar/gkn863 pmid:.18981052
159 Matthews, L., D’Eustachio, P., Gillespie, M., Croft, D., de Bono, B., Gopinath, G., Jassal, B., Lewis, S., Schmidt, E., Vastrik, I., (2007) An introduction to the reactome knowledgebase of human biological pathways and processes. Bioinformatics Primer, NCI/Nature Pathway Interaction Database .
160 Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33, D428-D432 .
doi: 10.1093/nar/gki072 pmid:.15608231
161 Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691-D697 .
doi: 10.1093/nar/gkq1018 pmid:.21067998
162 Dumont, J., Huybrechts, I., Spinneker, A., Gottrand, F., Grammatikaki, E., Bevilacqua, N., Vyncke, K., Widhalm, K., Kafatos, A., Molnar, D., (2011) FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J. Nutr., 141, 1247-1253 .
doi: 10.3945/jn.111.140392 pmid:.21593353
163 Lu, Y., Feskens, E. J., Dollé, M. E., Imholz, S., Verschuren, W. M., Müller, M. and Boer, J. M. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am. J. Clin. Nutr., 92, 258-265 .
doi: 10.3945/ajcn.2009.29130 pmid:.20484448
164 Serkova, N. J. and Glunde, K. (2009) Metabolomics of cancer. Methods Mol. Biol., 520, 273-295 .
doi: 10.1007/978-1-60327-811-9_20 pmid:.19381962
165 Griffin, J. L. and Shockcor, J. P. (2004) Metabolic profiles of cancer cells. Nat. Rev. Cancer, 4, 551-561 .
doi: 10.1038/nrc1390 pmid:.15229480
166 Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., Kafri, R., Kirschner, M. W., Clish, C. B. and Mootha, V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336, 1040-1044 .
doi: 10.1126/science.1218595 pmid:.22628656
167 Newgard, C. B. (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab., 15, 606-614 .
doi: 10.1016/j.cmet.2012.01.024 pmid:.22560213
168 Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. and Snyder, M. (2010) Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell, 143, 639-650 .
doi: 10.1016/j.cell.2010.09.048 pmid:.21035178
169 MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760-1763 .
pmid:10976071.
170 Haab, B. B., Dunham, M. J. and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. , 2, RESEARCH0004.
171 Robinson, W. H., Steinman, L. and Utz, P. J. (2003) Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics, 3, 2077-2084 .
doi: 10.1002/pmic.200300583 pmid:.14595805
172 Robinson, W. H., DiGennaro, C., Hueber, W., Haab, B. B., Kamachi, M., Dean, E. J., Fournel, S., Fong,D., Genovese, M. C., de Vegvar, H. E., (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med., 8, 295-301 .
doi: 10.1038/nm0302-295 pmid:.11875502
173 Sharon, D., Chen,R. and Snyder, M. (2010) Systems biology approaches to disease marker discovery. Dis. Markers, 28, 209-224 .
pmid:20534906.
174 Hudson, M. E., Pozdnyakova, I., Haines, K., Mor, G. and Snyder, M. (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl. Acad. Sci. USA, 104, 17494-17499 .
doi: 10.1073/pnas.0708572104 pmid:.17954908
175 Zhu, H., Hu,S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B. M., Mazzulli, T., Liu, G., Song, Q., Chen,P., (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl. Acad. Sci. USA, 103, 4011-4016 .
doi: 10.1073/pnas.0510921103 pmid:.16537477
176 Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu,P., Davidson, M. G., Alonso, M. N., (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med., 17, 610-617 .
doi: 10.1038/nm.2353 pmid:.21499269
177 Miersch, S. and LaBaer, J. (2011) Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr. Protoc. Protein Sci. , Chapter 27, Unit27.2.
178 Sibani, S. and LaBaer, J. (2011) Immunoprofiling using NAPPA protein microarrays. Methods Mol. Biol., 723, 149-161 .
doi: 10.1007/978-1-61779-043-0_10 pmid:.21370064
179 Andresen, H. and Bier, F. F. (2009) Peptide microarrays for serum antibody diagnostics. Methods Mol. Biol., 509, 123-134 .
doi: 10.1007/978-1-59745-372-1_8 pmid:.19212718
180 Andresen, H., Gr?tzinger, C., Zarse, K., Kreuzer, O. J., Ehrentreich-F?rster, E. and Bier, F. F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics, 6, 1376-1384 .
doi: 10.1002/pmic.200500343 pmid:.16456884
181 Wong, S. J., Demarest, V. L., Boyle, R. H., Wang, T., Ledizet, M., Kar, K., Kramer, L. D., Fikrig, E. and Koski, R. A. (2004) Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol., 42, 65-72 .
doi: 10.1128/JCM.42.1.65-72.2004 pmid:.14715733
182 Weinstock, G. M. (2012) Genomic approaches to studying the human microbiota. Nature, 489, 250-256 .
doi: 10.1038/nature11553 pmid:.22972298
183 Clemente, J. C., Ursell, L. K., Parfrey, L. W. and Knight, R. (2012) The impact of the gut microbiota on human health: an integrative view. Cell, 148, 1258-1270 .
doi: 10.1016/j.cell.2012.01.035 pmid:.22424233
184 Grice, E. A. and Segre, J. A. (2012) The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet., 13, 151-170 .
doi: 10.1146/annurev-genom-090711-163814 pmid:.22703178
185 Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D. and Knight, R. (2012) Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet., 13, 47-58 .
doi: 10.1038/nrg3129 pmid:.22179717
186 Sonnenburg, J. L. and Fischbach, M. A. (2011) Community health care: therapeutic opportunities in the human microbiome. Sci. Transl. Med., 3, 78ps12.
doi: 10.1126/scitranslmed.3001626 pmid:.21490274
187 Cho, I. and Blaser, M. J. (2012) The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 13, 260-270 .
pmid:22411464.
188 Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1031 .
doi: 10.1038/nature05414 pmid:.17183312
189 Wen, L., Ley,R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong,F. S., Szot, G. L., Bluestone, J. A., (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455, 1109-1113 .
doi: 10.1038/nature07336 pmid:.18806780
190 Qin, J., Li,Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen,D., (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55-60 .
doi: 10.1038/nature11450 pmid:.23023125
191 Littman, D. R. and Pamer, E. G. (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe, 10, 311-323 .
doi: 10.1016/j.chom.2011.10.004 pmid:.22018232
192 Pelizzola, M. and Ecker, J. R. (2011) The DNA methylome. FEBS Lett., 585, 1994-2000 .
doi: 10.1016/j.febslet.2010.10.061 pmid:.21056564
193 Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484-492 .
doi: 10.1038/nrg3230 pmid:.22641018
194 Bock, C. (2012) Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13, 705-719 .
doi: 10.1038/nrg3273 pmid:.22986265
195 Laird, P. W. (2010) Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11, 191-203 .
doi: 10.1038/nrg2732 pmid:.20125086
196 Li, Y., Zhu,J., Tian, G., Li, N., Li, Q., Ye, M., Zheng, H., Yu, J., Wu, H., Sun,J., (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol., 8, e1000533.
doi: 10.1371/journal.pbio.1000533 pmid:.21085693
197 Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery,J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471, 68-73 .
doi: 10.1038/nature09798 pmid:.21289626
198 Green,E. D., Guyer, M. S.. and National Human Genome Research Institute. (2011) Charting a course for genomic medicine from base pairs to bedside. Nature, 470, 204-213 .
doi: 10.1038/nature09764 pmid:.21307933
199 Moch, H., Blank, P. R., Dietel, M., Elmberger, G., Kerr,K. M., Palacios, J., Penault-Llorca, F., Rossi, G. and Szucs, T. D. (2012) Personalized cancer medicine and the future of pathology. Virchows Archiv: an International Journal of Pathology , 460, 3-8 .
200 Tsimberidou, A. M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., Piha-Paul, S. A., Naing, A., Janku, F., Luthra, R., (2012) Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center Initiative. Clin. Cancer Res. , 18, 6373-6383 .
201 Parkinson, D. R., Johnson, B. E. and Sledge, G. W. (2012) Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res., 18, 619-624 .
doi: 10.1158/1078-0432.CCR-11-2017 pmid:.22298894
202 Modugno, F. and Edwards, R. P. (2012) Ovarian cancer: prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int. J. Gynecol. Cancer , 22, S45-S57 .
203 Cho, S. H., Jeon,J. and Kim, S. I. (2012) Personalized medicine in breast cancer: a systematic review. J. Breast Cancer , 15, 265-272 .
204 Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu,Y. M., Cao, X., Kalyana-Sundaram, S., Sam, L., Balbin, O. A., Quist, M. J., (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. , 3, 111ra121.
205 Bar-Joseph, Z., Gitter, A. and Simon, I. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552-564 .
doi: 10.1038/nrg3244 pmid:.22805708
206 Dennis, G. Jr, Sherman, B. T., Hosack, D. A., Yang, J., Gao,W., Lane, H. C. and Lempicki, R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 4, P3.
doi: 10.1186/gb-2003-4-5-p3 pmid:.12734009
207 Smoot, M. E., Ono,K., Ruscheinski, J., Wang, P. L. and Ideker, T. (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-432 .
doi: 10.1093/bioinformatics/btq675 pmid:.21149340
208 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang,J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498-2504 .
doi: 10.1101/gr.1239303 pmid:.14597658
209 Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448-3449 .
doi: 10.1093/bioinformatics/bti551 pmid:.15972284
210 Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., (2007) Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2, 2366-2382 .
doi: 10.1038/nprot.2007.324 pmid:.17947979
211 Lam, H. Y., Pan,C., Clark, M. J., Lacroute, P., Chen,R., Haraksingh, R., O’Huallachain, M., Gerstein, M. B., Kidd,J. M., Bustamante, C. D., (2012) Detecting and annotating genetic variations using the HugeSeq pipeline. Nat. Biotechnol., 30, 226-229 .
doi: 10.1038/nbt.2134 pmid:.22398614
212 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. and Marra, M. A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res., 19, 1639-1645 .
doi: 10.1101/gr.092759.109 pmid:.19541911
213 Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys., 80, 1275-1335 .
doi: 10.1103/RevModPhys.80.1275.
214 Albert, R. and Barabasi, A. L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47-97 .
doi: 10.1103/RevModPhys.74.47.
215 Alon, U. (2003) Biological networks: the tinkerer as an engineer. Science, 301, 1866-1867 .
doi: 10.1126/science.1089072 pmid:.14512615
216 Costa, L. F., Rodrigues, F. A. and Cristino, A. S. (2008) Complex networks: the key to systems biology. Genet. Mol. Biol., 31, 591-601 .
doi: 10.1590/S1415-47572008000400001.
217 Levy, E. D. and Pereira-Leal, J. B. (2008) Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol., 18, 349-357 .
doi: 10.1016/j.sbi.2008.03.003 pmid:.18448325
218 Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L. and Nolan, G. P. (2011) Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat. Rev. Genet., 12, 224, 10.1038/nrg2857-c2.
doi: 10.1038/nrg2857-c2 pmid:.21301474
219 Trelles, O., Prins, P., Snir, M. and Jansen, R. C. (2011) Big data, but are we ready? Nat. Rev. Genet., 12, 224, 10.1038/nrg2857-c1.
doi: 10.1038/nrg2857-c1 pmid:.21301471
220 Biesecker, L. G. (2012) Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet. Med. , 14, 393-398 .
221 Li, R., Li,Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713-714 .
doi: 10.1093/bioinformatics/btn025 pmid:.18227114
222 Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760 .
doi: 10.1093/bioinformatics/btp324 pmid:.19451168
223 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297-1303 .
doi: 10.1101/gr.107524.110 pmid:.20644199
224 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and 1000 Genome Project Data Processing Subgroup. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079 .
doi: 10.1093/bioinformatics/btp352 pmid:.19505943
225 Wang, K., Li,M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164.
doi: 10.1093/nar/gkq603 pmid:.20601685
226 Ng, P. C. and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 31, 3812-3814 .
doi: 10.1093/nar/gkg509 pmid:.12824425
227 Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248-249 .
doi: 10.1038/nmeth0410-248 pmid:.20354512
228 Flanagan, S. E., Patch, A. M. and Ellard, S. (2010) Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet. Test. Mol. Biomarkers , 14, 533-537 .
229 Abyzov, A., Urban, A. E., Snyder, M. and Gerstein, M. (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 21, 974-984 .
doi: 10.1101/gr.114876.110 pmid:.21324876
230 Wang, L. Y., Abyzov, A., Korbel, J. O., Snyder, M. and Gerstein, M. (2009) MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res., 19, 106-117 .
doi: 10.1101/gr.080069.108 pmid:.19037015
231 Ye, K., Schulz, M. H., Long, Q., Apweiler, R. and Ning, Z. (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics, 25, 2865-2871 .
doi: 10.1093/bioinformatics/btp394 pmid:.19561018
232 Lam, H. Y., Mu,X. J., Stütz, A. M., Tanzer, A., Cayting, P. D., Snyder, M., Kim, P. M., Korbel, J. O. and Gerstein, M. B. (2010) Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat. Biotechnol., 28, 47-55 .
doi: 10.1038/nbt.1600 pmid:.20037582
233 Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V. and Korbel, J. O. (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28, i333-i339 .
doi: 10.1093/bioinformatics/bts378 pmid:.22962449
234 Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5, R80.
doi: 10.1186/gb-2004-5-10-r80 pmid:.15461798
235 Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.
doi: 10.1186/gb-2009-10-3-r25 pmid:.19261174
236 Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359 .
doi: 10.1038/nmeth.1923 pmid:.22388286
237 Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics , Chapter 11, Unit 11.7.
238 Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim,D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562-578 .
doi: 10.1038/nprot.2012.016 pmid:.22383036
239 Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111 .
doi: 10.1093/bioinformatics/btp120 pmid:.19289445
240 Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325-2329 .
doi: 10.1093/bioinformatics/btr355 pmid:.21697122
241 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan,G., van Baren, M. J., Salzberg, S. L., Wold,B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511-515 .
doi: 10.1038/nbt.1621 pmid:.20436464
242 Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P. and Mesirov, J. P. (2006) GenePattern 2.0. Nat. Genet., 38, 500-501 .
doi: 10.1038/ng0506-500 pmid:.16642009
243 Kuehn, H., Liberzon, A., Reich, M. and Mesirov, J. P. (2008) Using GenePattern for gene expression analysis. Curr. Protoc. Bioinformatics , Chapter 7, Unit 7.12.
244 Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503-510 .
doi: 10.1038/nbt.1633 pmid:.20436462
245 Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
doi: 10.1186/gb-2010-11-10-r106 pmid:.20979621
246 Li, J. W., Schmieder, R., Ward, R. M., Delenick, J., Olivares, E. C. and Mittelman, D. (2012) SEQanswers: an open access community for collaboratively decoding genomes. Bioinformatics, 28, 1272-1273 .
doi: 10.1093/bioinformatics/bts128 pmid:.22419780
247 Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Rompp, A., Neumann, S., Pizarro, A. D., (2011) mzML - a community standard for mass spectrometry data. Mol. Cell. Proteomics , 10, R110.000133.
248 Deutsch, E. W. (2010) Mass spectrometer output file format mzML. Methods Mol. Biol., 604, 319-331 .
doi: 10.1007/978-1-60761-444-9_22 pmid:.20013381
249 Deutsch, E. (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics, 8, 2776-2777 .
doi: 10.1002/pmic.200890049 pmid:.18655045
250 Kessner, D., Chambers, M., Burke, R., Agus, D. and Mallick, P. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534-2536 .
doi: 10.1093/bioinformatics/btn323 pmid:.18606607
251 Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20, 1466-1467 .
doi: 10.1093/bioinformatics/bth092 pmid:.14976030
252 Eng, J. K., McCormack, A. L. and Yates, J. R. III. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 5, 976-989 .
doi: 10.1016/1044-0305(94)80016-2.
253 Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551-3567 .
doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 pmid:.10612281
254 Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu,M., Maynard, D. M., Yang, X., Shi,W. and Bryant, S. H. (2004) Open mass spectrometry search algorithm. J. Proteome Res., 3, 958-964 .
doi: 10.1021/pr0499491 pmid:.15473683
255 Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res., 2, 43-50 .
doi: 10.1021/pr025556v pmid:.12643542
256 Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P. and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol., 22, 214-219 .
doi: 10.1038/nbt930 pmid:.14730315
257 Zhang, J., Xin,L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A. and Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics , 11, M111.010587.
258 Pedrioli, P. G. (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis. Methods Mol. Biol., 604, 213-238 .
doi: 10.1007/978-1-60761-444-9_15 pmid:.20013374
259 Keller, A. and Shteynberg, D. (2011) Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Methods Mol. Biol., 694, 169-189 .
doi: 10.1007/978-1-60761-977-2_12 pmid:.21082435
260 Deutsch, E. W., Shteynberg, D., Lam, H., Sun, Z., Eng,J. K., Carapito, C., von Haller, P. D., Tasman, N., Mendoza, L., Farrah, T., (2010) Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics, 10, 1190-1195 .
doi: 10.1002/pmic.200900567 pmid:.20082347
261 Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam,H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics, 10, 1150-1159 .
doi: 10.1002/pmic.200900375 pmid:.20101611
262 Sturm, M., Bertsch, A., Gr?pl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics, 9, 163.
doi: 10.1186/1471-2105-9-163 pmid:.18366760
263 Kohlbacher, O., Reinert, K., Gr?pl, C., Lange, E., Pfeifer, N., Schulz-Trieglaff,O. and Sturm, M. (2007) TOPP — the OpenMS proteomics pipeline. Bioinformatics, 23, e191-e197 .
doi: 10.1093/bioinformatics/btl299 pmid:.17237091
264 Bertsch, A., Gr?pl, C., Reinert, K. and Kohlbacher, O. (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol. Biol., 696, 353-367 .
doi: 10.1007/978-1-60761-987-1_23 pmid:.21063960
265 Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., McBee, J., Baliga, N. S. and Siuzdak, G. (2011) metaXCMS: second-order analysis of untargeted metabolomics data. Anal. Chem., 83, 696-700 .
doi: 10.1021/ac102980g pmid:.21174458
266 Tautenhahn, R., Patti, G. J., Rinehart, D. and Siuzdak, G. (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem., 84, 5035-5039 .
doi: 10.1021/ac300698c pmid:.22533540
267 Smith, C. A., Want,E. J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem., 78, 779-787 .
doi: 10.1021/ac051437y pmid:.16448051
268 Pluskal, T., Castillo, S., Villar-Briones, A. and Oresic, M. (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.
doi: 10.1186/1471-2105-11-395 pmid:.20650010
269 Katajamaa, M., Miettinen, J. and Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634-636 .
doi: 10.1093/bioinformatics/btk039 pmid:.16403790
270 Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee,S. Y., Shearer, A. G., Tissier, C., (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 36, D623-D631 .
doi: 10.1093/nar/gkm900 pmid:.17965431
271 Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M., (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473-D479 .
doi: 10.1093/nar/gkp875 pmid:.19850718
272 Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44-57 .
doi: 10.1038/nprot.2008.211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed