Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant Biol    2013, Vol. 1 Issue (1) : 54-70    https://doi.org/10.1007/s40484-013-0006-2
REVIEW
Computational methodology for ChIP-seq analysis
Hyunjin Shin1, Tao Liu1, Xikun Duan2, Yong Zhang2, X. Shirley Liu1()
1. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute/Harvard School of Public Health, Boston, MA 02115, USA; 2. Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China
 Download: PDF(634 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modified histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workflows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profiling and genome-wide association studies, to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes.

Corresponding Author(s): Liu X. Shirley,Email:xsliu@jimmy.harvard.edu   
Issue Date: 05 March 2013
 Cite this article:   
Hyunjin Shin,Tao Liu,Xikun Duan, et al. Computational methodology for ChIP-seq analysis[J]. Quant Biol, 2013, 1(1): 54-70.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0006-2
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/54
Fig.1  A schematic of peak modelling for ChIP-seq.
(A) The bimodal distributions of+ and – sequence reads (red and blue arrows, respectively) surrounding a transcription factor binding center (marked by the yellow vertical arrow). The distance () between the summits of the+ and – distributions is considered to be an estimate of the length of DNA fragments pulled down by the antibody.
(B) The ChIP enrichment signal can be obtained as the count of the+ and- sequence reads extended by the estimated at every base.
Fig.1  A schematic of peak modelling for ChIP-seq.
(A) The bimodal distributions of+ and – sequence reads (red and blue arrows, respectively) surrounding a transcription factor binding center (marked by the yellow vertical arrow). The distance () between the summits of the+ and – distributions is considered to be an estimate of the length of DNA fragments pulled down by the antibody.
(B) The ChIP enrichment signal can be obtained as the count of the+ and- sequence reads extended by the estimated at every base.
Fig.2  An UCSC genome browser snapshot of ChIP enrichments of NF-κB and H3K79me2 in human lymphoblastoid cell line GM12878 from ENCODE data.
The bottom gene track shows RefSeq genes near the binding sites. While NF-κB shows sharp binding patterns (the 1st green track from the top), H3K79me2 diffuses over a broad region (the 3rd green track). The black horizontal bars represent peaks called by MACS. The control tracks of DNA inputs (the 2nd and 4th green tracks) are used to model the background including the chromatin bias in ChIP-seq. The significance of binding site detection is estimated considering the background from the control; therefore, region A (near chr11 62610000) of NF-κB is not identified as a peak because its background level is relatively high compared to region B (near chr11 62625000) although the ChIP enrichments of these regions are similar.
Fig.2  An UCSC genome browser snapshot of ChIP enrichments of NF-κB and H3K79me2 in human lymphoblastoid cell line GM12878 from ENCODE data.
The bottom gene track shows RefSeq genes near the binding sites. While NF-κB shows sharp binding patterns (the 1st green track from the top), H3K79me2 diffuses over a broad region (the 3rd green track). The black horizontal bars represent peaks called by MACS. The control tracks of DNA inputs (the 2nd and 4th green tracks) are used to model the background including the chromatin bias in ChIP-seq. The significance of binding site detection is estimated considering the background from the control; therefore, region A (near chr11 62610000) of NF-κB is not identified as a peak because its background level is relatively high compared to region B (near chr11 62625000) although the ChIP enrichments of these regions are similar.
Fig.3  A sample analysis for two replicates of NF-κB ChIP-seq from ENCODE data.
(A) The Venn diagram of the peak sets identified from the two individual replicates at the same cut-off for peak calling (7281 and 7525 peaks, respectively). A large intersection indicates high consistency between the replicates (e.g.,>50%).
(B) Another consistency measure is to see the pair-wise correlation of ChIP enrichments of the replicates. Each dot represents the average ChIP enrichments of the replicates every 2 kb. Consistent replicates show a tight distribution around the local regression line (red), resulting in a large correlation coefficient (e.g., 0.86 in this example).
Fig.3  A sample analysis for two replicates of NF-κB ChIP-seq from ENCODE data.
(A) The Venn diagram of the peak sets identified from the two individual replicates at the same cut-off for peak calling (7281 and 7525 peaks, respectively). A large intersection indicates high consistency between the replicates (e.g.,>50%).
(B) Another consistency measure is to see the pair-wise correlation of ChIP enrichments of the replicates. Each dot represents the average ChIP enrichments of the replicates every 2 kb. Consistent replicates show a tight distribution around the local regression line (red), resulting in a large correlation coefficient (e.g., 0.86 in this example).
Fig.4  Useful QC measures for ChIP-seq peak calling.
(A) The average PhastCons score at TF binding sites can be used to assess the quality of ChIP-seq peak calls. The plot indicates that the center of NF-κB binding sites is more evolutionarily conserved than the background.
(B) If ChIP-seq is successful and the factor of interest has specific DNA binding motifs, the motifs should be significantly enriched near the summits of detected binding sites. This example shows that a NF-κB binding motif registered in JASPAR database was found at NF-κB binding sites.
(C) The pie chart visualizes the distribution of H3K36me3 peaks over different categories of elements such as promoter, UTRs, coding exon, and intron. Since H3K36me3 is associated with transcriptional elongation, its peaks are primarily present in exons (i.e., 9.6% in the pie chart) and introns (i.e., 76.7%).
(D) This trend was also observed using the meta-gene plot of H3K36me3 ChIP enrichment. Every gene was normalized to have the same length of 3 kb and then the average ChIP signal was profiled on the meta-gene including 1 kb upstream and downstream of TSS and TTS. The red and purple lines represent the average ChIP enrichments of H3K36me3 on highly expressed (top 10%, red) and lowly expressed (bottom 10%, purple) genes, respectively, which shows that H3K36me3 is positively correlated with gene expression levels.
Fig.4  Useful QC measures for ChIP-seq peak calling.
(A) The average PhastCons score at TF binding sites can be used to assess the quality of ChIP-seq peak calls. The plot indicates that the center of NF-κB binding sites is more evolutionarily conserved than the background.
(B) If ChIP-seq is successful and the factor of interest has specific DNA binding motifs, the motifs should be significantly enriched near the summits of detected binding sites. This example shows that a NF-κB binding motif registered in JASPAR database was found at NF-κB binding sites.
(C) The pie chart visualizes the distribution of H3K36me3 peaks over different categories of elements such as promoter, UTRs, coding exon, and intron. Since H3K36me3 is associated with transcriptional elongation, its peaks are primarily present in exons (i.e., 9.6% in the pie chart) and introns (i.e., 76.7%).
(D) This trend was also observed using the meta-gene plot of H3K36me3 ChIP enrichment. Every gene was normalized to have the same length of 3 kb and then the average ChIP signal was profiled on the meta-gene including 1 kb upstream and downstream of TSS and TTS. The red and purple lines represent the average ChIP enrichments of H3K36me3 on highly expressed (top 10%, red) and lowly expressed (bottom 10%, purple) genes, respectively, which shows that H3K36me3 is positively correlated with gene expression levels.
Fig.5  A distance-based method for inferring the role of a sharply binding TF as a transcriptional activator or repressor.
(A) Each curve is the cumulative distribution of the distances from genes to the nearest AR binding sites in prostate cancer cell line LNCaP. The red and green colors correspond to the sets of genes that are up- and down-regulated by DHT treatment, respectively. The black dotted line indicates the distance distribution of all genes, which can be used as a background distribution. From this analysis, it is can be seen that AR more directly regulates the up-regulated genes than the down-regulated ones.
(B) A similar analysis was done with breast cancer cell line MCF-7. When it compared to AR (A), ER regulates the up- and down-regulated genes by E2 treatment almost equally.
Fig.5  A distance-based method for inferring the role of a sharply binding TF as a transcriptional activator or repressor.
(A) Each curve is the cumulative distribution of the distances from genes to the nearest AR binding sites in prostate cancer cell line LNCaP. The red and green colors correspond to the sets of genes that are up- and down-regulated by DHT treatment, respectively. The black dotted line indicates the distance distribution of all genes, which can be used as a background distribution. From this analysis, it is can be seen that AR more directly regulates the up-regulated genes than the down-regulated ones.
(B) A similar analysis was done with breast cancer cell line MCF-7. When it compared to AR (A), ER regulates the up- and down-regulated genes by E2 treatment almost equally.
Fig.6  An example analysis for the ChIP-seq data of two collaborating factors.
(A) The Venn diagram of Rev-erbα and HDAC3 (histone deacetylase 3) binding in mouse liver. This shows that Rev-erbα and HDAC3 are highly colocalized. However, this example is an extreme case for highly collaborating factors. In general, collaborating factor ChIP-Seq peaks tend to show a smaller intersection than that between two replicates of the same factor.
(B) The scatter plot of the ChIP-seq enrichments of the factors at their union binding sites (blue dots) and a regression line (red line). The correlation coefficient of these two factors was also calculated (0.89).
(C) Heatmap analysis for Rev-erbα and HDAC3 binding sites. The heatmaps also confirm the high association of these two factors (left and right). The binding sites with similar binding patterns are grouped using -means clustering ( = 4) and distinguished by yellow horizontal lines. The 1st and 2nd groups reflect strand bias in binding. The individual groups can be further analyzed by associating with differentially expressed genes.
Fig.6  An example analysis for the ChIP-seq data of two collaborating factors.
(A) The Venn diagram of Rev-erbα and HDAC3 (histone deacetylase 3) binding in mouse liver. This shows that Rev-erbα and HDAC3 are highly colocalized. However, this example is an extreme case for highly collaborating factors. In general, collaborating factor ChIP-Seq peaks tend to show a smaller intersection than that between two replicates of the same factor.
(B) The scatter plot of the ChIP-seq enrichments of the factors at their union binding sites (blue dots) and a regression line (red line). The correlation coefficient of these two factors was also calculated (0.89).
(C) Heatmap analysis for Rev-erbα and HDAC3 binding sites. The heatmaps also confirm the high association of these two factors (left and right). The binding sites with similar binding patterns are grouped using -means clustering ( = 4) and distinguished by yellow horizontal lines. The 1st and 2nd groups reflect strand bias in binding. The individual groups can be further analyzed by associating with differentially expressed genes.
1 Metzker, M. L. (2010) Sequencing technologies - the next generation. Nat. Rev. Genet. , 11, 31-46 .
doi: 10.1038/nrg2626 pmid:.19997069
2 Ansorge, W. J. (2009) Next-generation DNA sequencing techniques. New Biotechnol. , 25, 195-203 .
doi: 10.1016/j.nbt.2008.12.009 pmid:.19429539
3 Kircher, M., Heyn,P. and Kelso, J. (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics , 12, 382.
doi: 10.1186/1471-2164-12-382 pmid:.21801405
4 Schuster, S. C. (2008) Next-generation sequencing transforms today’s biology. Nat. Methods , 5, 16-18 .
doi: 10.1038/nmeth1156 pmid:.18165802
5 Solomon, M. J., Larsen, P. L. and Varshavsky, A. (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell , 53, 937-947 .
doi: 10.1016/S0092-8674(88)90469-2 pmid:.2454748
6 Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. and Carroll, J. S. (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet., 43, 27-33 .
doi: 10.1038/ng.730 pmid:.21151129
7 Lupien, M., Eeckhoute, J., Meyer, C. A., Wang, Q., Zhang,Y., Li, W., Carroll, J. S., Liu, X. S. and Brown, M. (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell , 132, 958-970 .
doi: 10.1016/j.cell.2008.01.018 pmid:.18358809
8 Young, R. A. (2011) Control of the embryonic stem cell state. Cell , 144, 940-954 .
doi: 10.1016/j.cell.2011.01.032 pmid:.21414485
9 Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature , 467, 430-435 .
doi: 10.1038/nature09380 pmid:.20720539
10 Chen, X., Xu,H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong,E., Orlov, Y. L., Zhang, W., Jiang, J., (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell , 133, 1106-1117 .
doi: 10.1016/j.cell.2008.04.043 pmid:.18555785
11 Kim, J., Chu,J., Shen, X., Wang, J. and Orkin, S. H. (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell , 132, 1049-1061 .
doi: 10.1016/j.cell.2008.02.039 pmid:.18358816
12 Rahl, P. B., Lin,C. Y., Seila, A. C., Flynn, R. A., McCuine, S., Burge, C. B., Sharp,P. A. and Young, R. A. (2010) c-Myc regulates transcriptional pause release. Cell , 141, 432-445 .
doi: 10.1016/j.cell.2010.03.030 pmid:.20434984
13 Handoko, L., Xu,H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee,C. W., Ye, C., Ping, J. L., Mulawadi, F., (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. , 43, 630-638 .
doi: 10.1038/ng.857 pmid:.21685913
14 Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee,W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. , 16, 1299-1309 .
doi: 10.1101/gr.5571506 pmid:.16954542
15 Espinoza, C. A. and Ren, B. (2011) Mapping higher order structure of chromatin domains. Nat. Genet. , 43, 615-616 .
doi: 10.1038/ng.869 pmid:.21709679
16 Fullwood, M. J., Han, Y., Wei, C. L., Ruan, X.and Ruan, Y. (2010) Chromatin interaction analysis using paired-end tag sequencing. Curr. Protoc. Mol. Biol., Chapter 21 , Unit 21.15.1-25 .
17 Fullwood, M. J., Liu,M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov,Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature , 462, 58-64 .
doi: 10.1038/nature08497 pmid:.19890323
18 Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C., (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. , 11, R22.
doi: 10.1186/gb-2010-11-2-r22 pmid:.20181287
19 Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science , 326, 289-293 .
doi: 10.1126/science.1181369 pmid:.19815776
20 Rusk, N. (2009) When ChIA PETs meet Hi-C. Nat. Methods , 6, 863.
doi: 10.1038/nmeth1209-863.
21 Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. , 42, 53-61 .
doi: 10.1038/ng.496 pmid:.20010836
22 Theodorou, V. and Carroll, J. S. (2010) Estrogen receptor action in three dimensions - looping the loop. Breast Cancer Res. , 12, 303.
doi: 10.1186/bcr2470 pmid:.20156333
23 Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell , 129, 823-837 .
doi: 10.1016/j.cell.2007.05.009 pmid:.17512414
24 Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. , 40, 897-903 .
25 .The ENCODE Project Consortium. (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. , 9, e1001046.
doi: 10.1371/journal.pbio.1001046 pmid:.21526222
26 The modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P. V., Kheradpour, P., Negre, N., Eaton, M. L., Landolin, J. M., Bristow, C. A., Ma, L., Lin, M. F., et al. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science , 330, 1787-1797 .
27 Liu, T., Rechtsteiner, A., Egelhofer, T. A., Vielle, A., Latorre, I., Cheung, M. S., Ercan, S., Ikegami, K., Jensen, M., Kolasinska-Zwierz, P., (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. , 21, 227-236 .
doi: 10.1101/gr.115519.110 pmid:.21177964
28 Kharchenko, P. V., Alekseyenko, A. A., Schwartz, Y. B., Minoda, A., Riddle, N. C., Ernst, J., Sabo, P. J., Larschan, E., Gorchakov, A. A., Gu, T., (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature , 471, 480-485 .
doi: 10.1038/nature09725 pmid:.21179089
29 Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward,L. D., Epstein, C. B., Zhang, X., Wang,L., Issner, R., Coyne, M., (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature , 473, 43-49 .
doi: 10.1038/nature09906 pmid:.21441907
30 Auerbach, R. K., Euskirchen, G., Rozowsky, J., Lamarre-Vincent, N., Moqtaderi, Z., Lefran?ois, P., Struhl, K., Gerstein, M. and Snyder, M. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. USA , 106, 14926-14931 .
doi: 10.1073/pnas.0905443106 pmid:.19706456
31 Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. , 10, 669-680 .
doi: 10.1038/nrg2641 pmid:.19736561
32 de Magalh?es, J. P., Finch, C. E. and Janssens, G. (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res. Rev. , 9, 315-323 .
doi: 10.1016/j.arr.2009.10.006 pmid:.19900591
33 Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J. and Knight, R. (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods , 5, 235-237 .
doi: 10.1038/nmeth.1184 pmid:.18264105
34 Kim, J. B., Porreca, G. J., Song, L., Greenway, S. C., Gorham, J. M., Church, G. M., Seidman, C. E. and Seidman, J. G. (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science , 316, 1481-1484 .
doi: 10.1126/science.1137325 pmid:.17556586
35 Meyer, M. and Kircher M. (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. , 2010, pdb.prot5448.
36 Liu, T., Ortiz,J. A., Taing, L., Meyer, C. A., Lee, B., Zhang, Y., Shin,H., Wong, S. S., Ma, J., Lei, Y., (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. , 12, R83.
doi: 10.1186/gb-2011-12-8-r83 pmid:.21859476
37 Ji, H., Jiang,H., Ma, W., Johnson, D. S., Myers, R. M. and Wong, W. H. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol. , 26, 1293-1300 .
doi: 10.1038/nbt.1505 pmid:.18978777
38 Ji, H., Jiang, H., Ma, W. and Wong, W. H. (2011) Using CisGenome to analyze ChIP-chip and ChIP-seq data. Curr. Protoc. Bioinformatics , Chapter 2, Unit2.13.
39 Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. , 10, R25.
doi: 10.1186/gb-2009-10-3-r25 pmid:.19261174
40 Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods , 9, 357-359 .
doi: 10.1038/nmeth.1923 pmid:.22388286
41 Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics , 25, 1754-1760 .
doi: 10.1093/bioinformatics/btp324 pmid:.19451168
42 Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics , 26, 589-595 .
doi: 10.1093/bioinformatics/btp698 pmid:.20080505
43 Li, H., Ruan,J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. , 18, 1851-1858 .
doi: 10.1101/gr.078212.108 pmid:.18714091
44 Lunter, G. and Goodson, M. (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. , 21, 936-939 .
doi: 10.1101/gr.111120.110 pmid:.20980556
45 Krawitz, P., R?delsperger, C., J?ger, M., Jostins, L., Bauer,S. and Robinson, P. N. (2010) Microindel detection in short-read sequence data. Bioinformatics , 26, 722-729 .
doi: 10.1093/bioinformatics/btq027 pmid:.20144947
46 Li, R., Yu,C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics , 25, 1966-1967 .
doi: 10.1093/bioinformatics/btp336 pmid:.19497933
47 Bao, S., Jiang, R., Kwan, W., Wang, B., Ma, X. and Song, Y. Q. (2011) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet. , 56, 406-414 .
48 Zhang, Y., Liu,T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li,W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. , 9, R137.
doi: 10.1186/gb-2008-9-9-r137 pmid:.18798982
49 Kharchenko, P. V., Tolstorukov, M. Y. and Park, P. J. (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. , 26, 1351-1359 .
doi: 10.1038/nbt.1508 pmid:.19029915
50 Nix, D. A., Courdy, S. J. and Boucher, K. M. (2008) Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics , 9, 523.
doi: 10.1186/1471-2105-9-523 pmid:.19061503
51 Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K. and Peng, W. (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics , 25, 1952-1958 .
52 Rozowsky, J., Euskirchen, G., Auerbach, R. K., Zhang, Z. D., Gibson, T., Bjornson, R., Carriero, N., Snyder, M. and Gerstein, M. B. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. , 27, 66-75 .
doi: 10.1038/nbt.1518 pmid:.19122651
53 Ji, H. (2010) Computational analysis of ChIP-seq data. Methods Mol. Biol. , 674, 143-159 .
doi: 10.1007/978-1-60761-854-6_9 pmid:.20827590
54 Fejes, A. P., Robertson, G., Bilenky, M., Varhol, R., Bainbridge, M. and Jones, S. J. (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics , 24, 1729-1730 .
doi: 10.1093/bioinformatics/btn305 pmid:.18599518
55 Jothi, R., Cuddapah, S., Barski, A., Cui, K. and Zhao, K. (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. , 36, 5221-5231 .
doi: 10.1093/nar/gkn488 pmid:.18684996
56 Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods , 8, 469-477 .
doi: 10.1038/nmeth.1613 pmid:.21623353
57 Pepke, S., Wold,B. and Mortazavi, A. (2009) Computation for ChIP-seq and RNA-seq studies. Nat. Methods , 6, S22-S32 .
doi: 10.1038/nmeth.1371 pmid:.19844228
58 Wilbanks, E. G. and Facciotti, M. T. (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE , 5, e11471.
doi: 10.1371/journal.pone.0011471 pmid:.20628599
59 Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B , 57, 289-300 .
60 Storey, J. D. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. B , 64, 479-498 .
61 Storey, J. D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA , 100, 9440-9445 .
doi: 10.1073/pnas.1530509100 pmid:.12883005
62 Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton,E., Batzoglou, S., Myers, R. M. and Sidow, A. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods , 5, 829-834 .
doi: 10.1038/nmeth.1246 pmid:.19160518
63 Tuteja, G., White,P., Schug, J. and Kaestner, K. H. (2009) Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res. , 37, e113.
doi: 10.1093/nar/gkp536 pmid:.19553195
64 Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science , 316, 1497-1502 .
doi: 10.1126/science.1141319 pmid:.17540862
65 Zhang, Y., Shin,H., Song, J. S., Lei, Y. and Liu, X. S. (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics , 9, 537.
doi: 10.1186/1471-2164-9-537 pmid:.19014516
66 Chen, Y., Meyer,C. A., Liu, T., Li, W., Liu, J. S. and Liu, X. S. (2011) MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data. Genome Biol. , 12, R11.
doi: 10.1186/gb-2011-12-2-r11 pmid:.21284836
67 Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. and Haussler, D. (2002) The human genome browser at UCSC. Genome Res. , 12, 996-1006 .
68 Fujita, P. A., Rhead,B., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Cline, M. S., Goldman, M., Barber, G. P., Clawson, H., Coelho, A., (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res. , 39, D876-D882 .
doi: 10.1093/nar/gkq963 pmid:.20959295
69 Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D. and Kent, W. J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res. , 32, D493-D496 .
doi: 10.1093/nar/gkh103 pmid:.14681465
70 Raney, B. J., Cline,M. S., Rosenbloom, K. R., Dreszer, T. R., Learned, K., Barber, G. P., Meyer, L. R., Sloan,C. A., Malladi, V. S., Roskin, K. M., (2011) ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res. , 39, D871-D875 .
doi: 10.1093/nar/gkq1017 pmid:.21037257
71 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. and Mesirov, J. P. (2011) Integrative genomics viewer. Nat. Biotechnol. , 29, 24-26 .
doi: 10.1038/nbt.1754 pmid:.21221095
72 Nicol, J. W., Helt,G. A., Blanchard, S. G. Jr, Raja, A. and Loraine, A. E. (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics , 25, 2730-2731 .
doi: 10.1093/bioinformatics/btp472 pmid:.19654113
73 Donlin, M. J. (2009) Using the Generic Genome Browser (GBrowse). Curr. Protoc. Bioinformatics , Chapter 9, Unit 9.9.
74 Podicheti, R. and Dong, Q. (2011) Administering GBrowse sites with WebGBrowse. Curr. Protoc. Bioinformatics , Chapter 9, Unit 9.14.
75 Huang, W. and Marth, G. (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res. , 18, 1538-1543 .
doi: 10.1101/gr.076067.108 pmid:.18550804
76 Milne, I., Bayer,M., Cardle, L., Shaw, P., Stephen, G., Wright, F. and Marshall, D. (2010) Tablet — next generation sequence assembly visualization. Bioinformatics , 26, 401-402 .
doi: 10.1093/bioinformatics/btp666 pmid:.19965881
77 Nicol, J. W., Helt,G. A., Blanchard, S. G. Jr, Raja, A. and Loraine, A. E. (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics , 25, 2730-2731 .
doi: 10.1093/bioinformatics/btp472 pmid:.19654113
78 Bao, H., Guo,H., Wang, J., Zhou, R., Lu, X. and Shi, S. (2009) MapView: visualization of short reads alignment on a desktop computer. Bioinformatics , 25, 1554-1555 .
doi: 10.1093/bioinformatics/btp255 pmid:.19369497
79 Lewis, S. E., Searle, S. M., Harris, N., Gibson, M., Lyer, V., Richter, J., Wiel, C., Bayraktaroglir, L., Birney, E., Crosby, M. A., . (2002) Apollo: a sequence annotation editor. Genome Biol. , 3, RESEARCH0082.
80 Li, Q. H., Brown,J. B., Huang, H. and Bickel, P. J. (2011) Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. , 5, 1752-1779 .
doi: 10.1214/11-AOAS466.
81 Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou,M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. W., Richards, S., (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. , 15, 1034-1050 .
doi: 10.1101/gr.3715005 pmid:.16024819
82 Robasky, K. and Bulyk, M. L. (2011) UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. , 39, D124-D128 .
doi: 10.1093/nar/gkq992 pmid:.21037262
83 Xie, Z., Hu,S., Blackshaw, S., Zhu, H. and Qian, J. (2010) hPDI: a database of experimental human protein-DNA interactions. Bioinformatics , 26, 287-289 .
doi: 10.1093/bioinformatics/btp631 pmid:.19900953
84 Bryne, J. C., Valen,E., Tang, M. H., Marstrand, T., Winther, O., da Piedade, I., Krogh,A., Lenhard, B. and Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. , 36, D102-D106 .
doi: 10.1093/nar/gkm955 pmid:.18006571
85 AlQuraishi, M. and McAdams, H. H. (2011) Direct inference of protein-DNA interactions using compressed sensing methods. Proc. Natl. Acad. Sci. USA , 108, 14819-14824 .
86 Nutiu, R., Friedman, R. C., Luo, S., Khrebtukova, I., Silva,D., Li, R., Zhang, L., Schroth, G. P. and Burge, C. B. (2011) Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. , 29, 659-664 .
doi: 10.1038/nbt.1882 pmid:.21706015
87 Bailey, T. L. (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics , 27, 1653-1659 .
88 Machanick, P. and Bailey T. L. (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics , 27, 1696-1697 .
89 Liu, X. S., Brutlag, D. L. and Liu, J. S. (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. , 20, 835-839 .
pmid:12101404.
90 Ma, X., Kulkarni, A., Zhang, Z., Xuan, Z., Serfling, R. and Zhang, M. Q. (2012) A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information. Nucleic Acids Res. , 40, e50.
doi: 10.1093/nar/gkr1135 pmid:.22228832
91 Meyer, C. A., He, H. H., Brown, M. and Liu, X. S. (2011) BINOCh: binding inference from nucleosome occupancy changes. Bioinformatics , 27, 1867-1868 .
92 Bell, O., Tiwari, V. K., Thom?, N. H. and Schübeler, D. (2011) Determinants and dynamics of genome accessibility. Nat. Rev. Genet. , 12, 554-564 .
doi: 10.1038/nrg3017 pmid:.21747402
93 Crawford, G. E., Holt,I. E., Mullikin, J. C., Tai, D., Blakesley, R., Bouffard, G., Young, A., Masiello, C., Green, E. D., Wolfsberg, T. G., (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl. Acad. Sci. USA , 101, 992-997 .
doi: 10.1073/pnas.0307540100 pmid:.14732688
94 Sabo, P. J., Humbert, R., Hawrylycz, M., Wallace, J. C., Dorschner, M. O., McArthur, M. and Stamatoyannopoulos, J. A. (2004) Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl. Acad. Sci. USA , 101, 4537-4542 .
doi: 10.1073/pnas.0400678101 pmid:.15070753
95 Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra,M. A., Beaudet, A. L., Ecker, J. R., (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. , 28, 1045-1048 .
doi: 10.1038/nbt1010-1045 pmid:.20944595
96 Gerstein, M. B., Lu,Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., Yip, K. Y., Robilotto, R., Rechtsteiner, A., Ikegami, K., (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science , 330, 1775-1787 .
doi: 10.1126/science.1196914 pmid:.21177976
97 Moorman, C., Sun,L. V., Wang, J., de Wit, E., Talhout, W., Ward, L. D., Greil,F., Lu, X. J., White, K. P., Bussemaker, H. J., (2006) Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA , 103, 12027-12032 .
doi: 10.1073/pnas.0605003103 pmid:.16880385
98 Nègre, N., Brown,C. D., Ma, L., Bristow, C. A., Miller, S. W., Wagner, U., Kheradpour, P., Eaton, M. L., Loriaux, P., Sealfon, R., (2011) A cis-regulatory map of the Drosophila genome. Nature , 471, 527-531 .
doi: 10.1038/nature09990 pmid:.21430782
99 Shin, H., Liu,T., Manrai, A. K. and Liu, X. S. (2009) CEAS: cis-regulatory element annotation system. Bioinformatics , 25, 2605-2606 .
doi: 10.1093/bioinformatics/btp479 pmid:.19689956
100 Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Liu, W., Kaikkonen, M. U., Ohgi, K. A., et al. (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature , 474, 390-394 .
101 Cheung, I., Shulha, H. P., Jiang, Y., Matevossian, A., Wang,J., Weng, Z. and Akbarian, S. (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. USA , 107, 8824-8829 .
doi: 10.1073/pnas.1001702107 pmid:.20421462
102 Xu, H., Wei,C. L., Lin, F. and Sung, W. K. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics , 24, 2344-2349 .
doi: 10.1093/bioinformatics/btn402 pmid:.18667444
103 Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics , 26, 139-140 .
doi: 10.1093/bioinformatics/btp616 pmid:.19910308
104 Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol. , 11, R106.
doi: 10.1186/gb-2010-11-10-r106 pmid:.20979621
105 Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics , 11, 422.
doi: 10.1186/1471-2105-11-422 pmid:.20698981
106 Verzi, M. P., Shin,H., He, H. H., Sulahian, R., Meyer, C. A., Montgomery, R. K., Fleet, J. C., Brown, M., Liu, X. S. and Shivdasani, R. A. (2010) Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev. Cell , 19, 713-726 .
doi: 10.1016/j.devcel.2010.10.006 pmid:.21074721
107 Tang, Q., Chen, Y., Meyer, C., Geistlinger, T., Lupien, M., Wang, Q., Liu, T., Zhang, Y., Brown, M. and Liu, X. S. (2011) A comprehensive view of nuclear receptor cancer cistromes. Cancer Res. , 71, 6940-6947 .
108 The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature , 447, 799-816 .
doi: 10.1038/nature05874 pmid:.17571346
109 Wang, Q., Li,W., Zhang, Y., Yuan, X., Xu, K., Yu, J., Chen,Z., Beroukhim, R., Wang, H., Lupien, M., (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell , 138, 245-256 .
doi: 10.1016/j.cell.2009.04.056 pmid:.19632176
110 Carroll, J. S., Meyer,C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall,G. F., (2006) Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. , 38, 1289-1297 .
doi: 10.1038/ng1901 pmid:.17013392
111 Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. , 37, 1-13 .
doi: 10.1093/nar/gkn923 pmid:.19033363
112 Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. ,4, 44-57 .
doi: 10.1038/nprot.2008.211 pmid:.19131956
113 Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A. and Narechania, A. (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. , 13, 2129-2141 .
doi: 10.1101/gr.772403 pmid:.12952881
114 McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M. and Bejerano, G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. , 28, 495-501 .
doi: 10.1038/nbt.1630 pmid:.20436461
115 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert,B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA , 102, 15545-15550 .
doi: 10.1073/pnas.0506580102 pmid:.16199517
116 Zhang, Z., Chang, C. W., Goh, W. L., Sung, W. K. and Cheung, E. (2011) CENTDIST: discovery of co-associated factors by motif distribution. Nucleic Acids Res. , 39, W391-W399 .
117 Carroll, J. S., Liu,X. S., Brodsky, A. S., Li, W., Meyer,C. A., Szary, A. J., Eeckhoute, J., Shao, W., Hestermann, E. V., Geistlinger, T. R., (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell , 122, 33-43 .
doi: 10.1016/j.cell.2005.05.008 pmid:.16009131
118 Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res. , 15, 1451-1455 .
doi: 10.1101/gr.4086505 pmid:.16169926
119 Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841-842 .
doi: 10.1093/bioinformatics/btq033 pmid:.20110278
120 Feng, D., Liu,T., Sun, Z., Bugge, A., Mullican, S. E., Alenghat, T., Liu,X. S. and Lazar, M. A. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science , 331, 1315-1319 .
doi: 10.1126/science.1198125 pmid:.21393543
121 Odom, D. T., Dowell, R. D., Jacobsen, E. S., Gordon, W., Danford, T. W., MacIsaac, K. D., Rolfe, P. A., Conboy, C. M., Gifford, D. K. and Fraenkel, E. (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. , 39, 730-732 .
doi: 10.1038/ng2047 pmid:.17529977
122 Schmidt, D., Wilson, M. D., Ballester, B., Schwalie, P. C., Brown,G. D., Marshall, A., Kutter, C., Watt, S., Martinez-Jimenez, C. P., Mackay, S., (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science , 328, 1036-1040 .
doi: 10.1126/science.1186176 pmid:.20378774
123 Chung, D., Kuan,P. F., Li, B., Sanalkumar, R., Liang, K., Bresnick, E. H., Dewey,C. and Kele?, S. (2011) Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLOS Comput. Biol. , 7, e1002111.
doi: 10.1371/journal.pcbi.1002111 pmid:.21779159
124 Wang, T., Zeng,J., Lowe, C. B., Sellers, R. G., Salama, S. R., Yang, M., Burgess, S. M., Brachmann, R. K. and Haussler, D. (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA , 104, 18613-18618 .
doi: 10.1073/pnas.0703637104 pmid:.18003932
125 Eaton, M. L., Prinz,J. A., MacAlpine, H. K., Tretyakov, G., Kharchenko, P. V. and MacAlpine, D. M. (2011) Chromatin signatures of the Drosophila replication program. Genome Res. , 21, 164-174 .
doi: 10.1101/gr.116038.110 pmid:.21177973
126 Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell , 125, 315-326 .
doi: 10.1016/j.cell.2006.02.041 pmid:.16630819
127 Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu,X. S. and Ahringer, J. (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. , 41, 376-381 .
doi: 10.1038/ng.322 pmid:.19182803
128 Creyghton, M. P., Cheng,A. W., Welstead, G. G., Kooistra, T., Carey,B. W., Steine, E. J., Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A., (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA , 107, 21931-21936 .
doi: 10.1073/pnas.1016071107 pmid:.21106759
129 Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching,C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. , 39, 311-318 .
doi: 10.1038/ng1966 pmid:.17277777
130 Ernst, J. and Kellis, M. (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. , 28, 817-825 .
doi: 10.1038/nbt.1662 pmid:.20657582
131 Hoffman, M. M.,Buske, O. J., Wang, J., Weng, Z., Bilmes, J. A. and Noble, W. S. (2012) Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods , 9, 473-476 .
132 He, H. H., Meyer,C. A., Shin, H., Bailey, S. T., Wei, G., Wang, Q., Zhang,Y., Xu, K., Ni, M., Lupien, M., (2010) Nucleosome dynamics define transcriptional enhancers. Nat. Genet. , 42, 343-347 .
doi: 10.1038/ng.545 pmid:.20208536
133 Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S. M., Habegger, L., Rozowsky, J., Shi, M., Urban, A. E., (2010) Variation in transcription factor binding among humans. Science , 328, 232-235 .
doi: 10.1126/science.1183621 pmid:.20299548
134 McDaniell, R., Lee,B. K., Song, L., Liu, Z., Boyle, A. P., Erdos, M. R., Scott,L. J., Morken, M. A., Kucera, K. S., Battenhouse, A., (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science , 328, 235-239 .
doi: 10.1126/science.1184655 pmid:.20299549
135 Ahmadiyeh, N., Pomerantz, M. M., Grisanzio, C., Herman, P., Jia,L., Almendro, V., He, H. H., Brown, M., Liu, X. S., Davis,M., (2010) 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl. Acad. Sci. USA , 107, 9742-9746 .
doi: 10.1073/pnas.0910668107 pmid:.20453196
136 Birney, E., Lieb,J. D., Furey, T. S., Crawford, G. E. and Iyer, V. R. (2010) Allele-specific and heritable chromatin signatures in humans. Hum. Mol. Genet. , 19, R204-R209 .
doi: 10.1093/hmg/ddq404 pmid:.20846943
137 Pickrell, J. K., Gaffney, D. J., Gilad, Y. and Pritchard, J. K. (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics , 27, 2144-2146 .
doi: 10.1093/bioinformatics/btr354 pmid:.21690102
138 Verzi, M. P., Shin,H., Ho, L. L., Liu, X. S. and Shivdasani, R. A. (2011) Essential and redundant functions of caudal family proteins in activating adult intestinal genes. Mol. Cell. Biol. , 31, 2026-2039 .
doi: 10.1128/MCB.01250-10 pmid:.21402776
139 Iyengar, S., Ivanov, A. V., Jin, V. X., Rauscher, F. J. 3rd and Farnham, P. J. (2011) Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol. , 31, 1833-1847 .
doi: 10.1128/MCB.01331-10 pmid:.21343339
140 O’Geen, H., Echipare, L. and Farnham, P. J. (2011) Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. , 791, 265-286 .
doi: 10.1007/978-1-61779-316-5_20 pmid:.21913086
141 Adli, M., Zhu,J. and Bernstein, B. E. (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods , 7, 615-618 .
doi: 10.1038/nmeth.1478 pmid:.20622861
142 Shankaranarayanan, P., Mendoza-Parra, M. A., Walia, M., Wang, L., Li,N., Trindade, L. M. and Gronemeyer, H. (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat. Methods , 8, 565-567 .
doi: 10.1038/nmeth.1626 pmid:.21642965
143 Rhee, H. S. and Pugh, B. F. (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell , 147, 1408-1419 .
doi: 10.1016/j.cell.2011.11.013 pmid:.22153082
144 Cokus, S. J., Feng,S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature , 452, 215-219 .
doi: 10.1038/nature06745 pmid:.18278030
145 Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry,C. C., Millar, A. H. and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell , 133, 523-536 .
doi: 10.1016/j.cell.2008.03.029 pmid:.18423832
146 Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon,G., Tonti-Filippini, J., Nery, J. R., Lee,L., Ye, Z., Ngo, Q. M., (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature , 462, 315-322 .
doi: 10.1038/nature08514 pmid:.19829295
147 47Xiang, H., Zhu,J., Chen, Q., Dai, F., Li, X., Li, M., Zhang,H., Zhang, G., Li, D., Dong, Y., (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. , 28, 516-520 .
doi: 10.1038/nbt.1626 pmid:.20436463
148 Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo,J. Y., Robert, F., Gordon, D. B., Fraenkel, E., Jaakkola, T. S., Young,R. A., (2003) Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. , 21, 1337-1342 .
doi: 10.1038/nbt890 pmid:.14555958
149 Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R. and Califano, A. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet. , 37, 382-390 .
doi: 10.1038/ng1532 pmid:.15778709
150 Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science , 303, 799-805 .
doi: 10.1126/science.1094068 pmid:.14764868
151 Lee, I., Date,S. V., Adai, A. T. and Marcotte, E. M. (2004) A probabilistic functional network of yeast genes. Science , 306, 1555-1558 .
doi: 10.1126/science.1099511 pmid:.15567862
152 Liao, J. C., Boscolo, R., Yang, Y. L., Tran, L. M., Sabatti, C. and Roychowdhury, V. P. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA , 100, 15522-15527 .
doi: 10.1073/pnas.2136632100 pmid:.14673099
153 Lemmens, K., Dhollander, T., De Bie, T., Monsieurs, P., Engelen, K., Smets, B., Winderickx, J., De Moor, B. and Marchal, K. (2006) Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol. , 7, R37.
doi: 10.1186/gb-2006-7-5-r37 pmid:.16677396
154 Liu, X., Jessen, W. J., Sivaganesan, S., Aronow, B. J. and Medvedovic, M. (2007) Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics , 8, 283.
doi: 10.1186/1471-2105-8-283 pmid:.17683565
155 Youn, A., Reiss,D. J. and Stuetzle, W. (2010) Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics , 26, 1879-1886 .
doi: 10.1093/bioinformatics/btq289 pmid:.20525821
156 Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. and Vogelstein, B. (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA , 108, 9530-9535 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed