Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant Biol    2013, Vol. 1 Issue (1) : 32-49    https://doi.org/10.1007/s40484-013-0007-1
REVIEW
From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis
Gaowei Wang1,2, Xiaomei Zhu3, Leroy Hood4, Ping Ao1,2,5()
1. Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; 3. GenMath, Corp., Seattle, WA 98105, USA; 4. Institute for Systems Biology, Seattle, WA 98103, USA; 5. Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(516 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Experimental evidences and theoretical analyses have amply suggested that in cancer genesis and progression genetic information is very important but not the whole. Nevertheless, “cancer as a disease of the genome” is still currently the dominant doctrine. With such a background and based on the fundamental properties of biological systems, a new endogenous molecular-cellular network theory for cancer was recently proposed by us. Similar proposals were also made by others. The new theory attempts to incorporate both genetic and environmental effects into one single framework, with the possibility to give a quantitative and dynamical description. It is asserted that the complex regulatory machinery behind biological processes may be modeled by a nonlinear stochastic dynamical system similar to a noise perturbed Morse-Smale system. Both qualitative and quantitative descriptions may be obtained. The dynamical variables are specified by a set of endogenous molecular-cellular agents and the structure of the dynamical system by the interactions among those biological agents. Here we review this theory from a pedagogical angle which emphasizes the role of modularization, hierarchy and autonomous regulation. We discuss how the core set of assumptions is exemplified in detail in one of the simple, important and well studied model organisms, Phage lambda. With this concrete and quantitative example in hand, we show that the application of the hypothesized theory in human cancer, such as hepatocellular carcinoma (HCC), is plausible, and that it may provide a set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care.

Corresponding Author(s): Ao Ping,Email:aoping@sjtu.edu.cn   
Issue Date: 05 March 2013
 Cite this article:   
Gaowei Wang,Xiaomei Zhu,Leroy Hood, et al. From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis[J]. Quant Biol, 2013, 1(1): 32-49.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0007-1
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/32
Fig.1  Life cycle, whole genome, regulatory network of Phage lambda.
(A) After infection, there are two possible fates of the Phage lambda, one is lysis, Phage lambda replicating and releasing the . The other is lysogeny, the phage DNA integrated into the host cell chromosome. Phage lambda can switch from lysogeny to lysis under the influence of temperature, nutrients, and mutated genes.
(B) Whole genome of Phage lambda containing a total of about 40 genes, signaling transduction pathways and gene regulatory network of Phage lambda.
(C) configrations of right operator O at lysogeny state and lysis state.
(D) Endogenous molecular-cellular network of Phage lambda, the core network.
Fig.1  Life cycle, whole genome, regulatory network of Phage lambda.
(A) After infection, there are two possible fates of the Phage lambda, one is lysis, Phage lambda replicating and releasing the . The other is lysogeny, the phage DNA integrated into the host cell chromosome. Phage lambda can switch from lysogeny to lysis under the influence of temperature, nutrients, and mutated genes.
(B) Whole genome of Phage lambda containing a total of about 40 genes, signaling transduction pathways and gene regulatory network of Phage lambda.
(C) configrations of right operator O at lysogeny state and lysis state.
(D) Endogenous molecular-cellular network of Phage lambda, the core network.
StatePRMOR1OR2OR3PRi(s)j(s)k(s)
1000
2R2100
3R2100
4R2100
5R2R2200
6R2R2200
7R2R2200
8R2R2R2300
9C2010
10C2010
11C2010
12C2C2020
13C2C2020
14C2C2020
15C2C2C2030
16C2R2110
17C2R2110
18C2C2R2120
19C2R2110
20R2C2110
21C2R2C2120
22R2C2110
23R2C2110
24R2C2C2120
25C2R2R2210
26R2R2C2210
27R2C2R2210
28RNAp001
29R2RNAp101
30C2RNAp011
31RNApR2101
32RNApR2R2201
33RNApR2C2111
34RNAp001
35RNApR2101
36RNApC2011
37RNApC2011
38RNApC2R2111
39RNApC2C2021
40RNApRNAp002
Tab.1  The 40 configurations corresponding to right operator.
Fig.2  Illustration of adaptive landscape of Phage lambda genetic switch.
(A) The dynamic state of the network is represented by a particle whose position is given by instantaneous protein numbers. The potential function maps a landscape in the protein number space. For Phage lambda genetic switch, there are two potential minima corresponding to two epigenetic states. The area around each of the minima forms the attractive basin. The state of the network always tends to relax to one of the minima. The fluctuation may bring the network from one minimum to another.
(B) Before switching the Phage grows in lysogenic state. The potential barrier separating the lysogenic state and the lytic state is high. When is activated, this barrier is lowered. The lifetime of lysogenic state reduces drastically and the Phage switches to lytic state.
(C) When stochastic effect is included, the switching happens when the lysogenic potential minimum become too shallow to confine fluctuation.
Fig.2  Illustration of adaptive landscape of Phage lambda genetic switch.
(A) The dynamic state of the network is represented by a particle whose position is given by instantaneous protein numbers. The potential function maps a landscape in the protein number space. For Phage lambda genetic switch, there are two potential minima corresponding to two epigenetic states. The area around each of the minima forms the attractive basin. The state of the network always tends to relax to one of the minima. The fluctuation may bring the network from one minimum to another.
(B) Before switching the Phage grows in lysogenic state. The potential barrier separating the lysogenic state and the lytic state is high. When is activated, this barrier is lowered. The lifetime of lysogenic state reduces drastically and the Phage switches to lytic state.
(C) When stochastic effect is included, the switching happens when the lysogenic potential minimum become too shallow to confine fluctuation.
Phage genotypeRelative CI level in lysogenRelative Cro level in lysisSwitching frequency to lytic state recA- per minuteSwitching frequency to lytic state recA+ per minute
Theoretical(Experimental)TheoreticalTheoretical(Experimental)Theoretical
λ+λOR121λOR323λOR323100% (100%)20% (25%–30%)70% (60%–75%)50% (50%–60%)100%100%70%130%1×10–93×10–97×10–91×10–91×10–53×10–51×10–52×10–5
Tab.2  Comparison between the calculation and the experiment data (adapted from Ref. []).
Fig.3  Minimum set of modules of HCC and typical situations of the adaptive landscape.
(A) The minimum modules include cell proliferation, cell death, inflammation, metabolism, cell adhesion, angiogenesis, liver specific functions, in molecular-cellular level, these modules and cross-talks between modules may be simplified and specified by regulatory proteins, modules cross talk to each other to form the endogenous molecular-cellular network.
(B) Endogenous molecular-cellular network of HCC (incomplete).
(C) Three typical situations of the functional landscape, the vertical scale illustrates the relative stability of robust states, healthy, tumor and others, in the multiple dimensional state space. (a) The healthy state is a globally stable under normal conditions; (b) due to genetic and epidemiologic influence on the endogenous network, tumor or cancer states may become more stable than healthy state. Such metastable healthy state may still have a long life time for the whole organism being viable; (c) a very ‘damaged’ endogenous network may not be able to produce a locally stable healthy state.
Fig.3  Minimum set of modules of HCC and typical situations of the adaptive landscape.
(A) The minimum modules include cell proliferation, cell death, inflammation, metabolism, cell adhesion, angiogenesis, liver specific functions, in molecular-cellular level, these modules and cross-talks between modules may be simplified and specified by regulatory proteins, modules cross talk to each other to form the endogenous molecular-cellular network.
(B) Endogenous molecular-cellular network of HCC (incomplete).
(C) Three typical situations of the functional landscape, the vertical scale illustrates the relative stability of robust states, healthy, tumor and others, in the multiple dimensional state space. (a) The healthy state is a globally stable under normal conditions; (b) due to genetic and epidemiologic influence on the endogenous network, tumor or cancer states may become more stable than healthy state. Such metastable healthy state may still have a long life time for the whole organism being viable; (c) a very ‘damaged’ endogenous network may not be able to produce a locally stable healthy state.
1 Kumar, V., Robbins, S., Zhai, Q. and Chen, J. (2009) Textbook of Pathology. Peking University Medical Press .
2 Hajdu, S. I. (2011) A note from history: landmarks in history of cancer, part 1. Cancer, 117, 1097-1102 .
doi: 10.1002/cncr.25553 pmid:.20960499
3 Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses , 70, 678-684 .
doi: 10.1016/j.mehy.2007.03.043 pmid:.17766049
4 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell , 144, 646-674 .
doi: 10.1016/j.cell.2011.02.013 pmid:.21376230
5 Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science , 194, 23-28 .
doi: .959840" target="_blank">10.1126/science pmid:.959840 pmid:.959840
6 Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature , 481, 306-313 .
doi: 10.1038/nature10762 pmid:.22258609
7 Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., . (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell , 148, 873-885 .
doi: 10.1016/j.cell.2012.02.028 pmid:.22385957
8 Land, H., Parada, L. F. and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature , 304, 596-602 .
doi: 10.1038/304596a0 pmid:.6308472
9 Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell , 81, 323-330 .
doi: 10.1016/0092-8674(95)90385-2 pmid:.7736585
10 Paget, S. (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. , 8, 98-101 .
pmid:2673568.
11 Fidler, I. J. and Poste, G. (2008) The “seed and soil” hypothesis revisited. Lancet Oncol. , 9, 808.
doi: 10.1016/S1470-2045(08)70201-8 pmid:.18672217
12 Wang, X., Ouyang, H., Yamamoto, Y., Kumar, P. A., Wei, T. S., Dagher, R., Vincent, M., Lu, X., Bellizzi, A. M., Ho, K. Y., . (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell , 145, 1023-1035 .
doi: 10.1016/j.cell.2011.05.026 pmid:.21703447
13 Koshland, D. E. Jr, Goldbeter, A. and Stock, J. B. (1982) Amplification and adaptation in regulatory and sensory systems. Science , 217, 220-225 .
doi: .7089556" target="_blank">10.1126/science pmid:.7089556 pmid:.7089556
14 Ao, P. (2009) Global view of bionetwork dynamics: adaptive landscape. J. Genet. Genomics , 36, 63-73 .
doi: 10.1016/S1673-8527(08)60093-4 pmid:.19232305
15 Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004) The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA , 101, 4781-4786 .
doi: 10.1073/pnas.0305937101 pmid:.15037758
16 Zhu, X. M., Yin, L., Hood, L. and Ao, P. (2004) Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis. J. Bioinform. Comput. Biol. , 2, 785-817 .
doi: 10.1142/S0219720004000946 pmid:.15617166
17 Zhu, X., Yin, L., Hood, L., Galas, D. and Ao, P. (2007) Efficiency, robustness, and stochasticity of gene regulatory networks in systems biology: λ switch as a working example. In 机构Choi, S. (ed.), Introduction to Systems Biology . Humana Press, 336-371 .
18 Bizzarri, M., Giuliani, A., Cucina, A., D’Anselmi, F., Soto, A. M. and Sonnenschein, C. (2011) Fractal analysis in a systems biology approach to cancer. Semin. Cancer Biol. , 21, 175-182 .
doi: 10.1016/j.semcancer.2011.04.002 pmid:.21514387
19 Pastan, I. and Gottesman, M. (1987) Multiple-drug resistance in human cancer. N. Engl. J. Med. , 316, 1388-1393 .
doi: 10.1056/NEJM198705283162207 pmid:.3553950
20 Gimbrone, M. A. Jr, Leapman, S. B., Cotran, R. S. and Folkman, J. (1972) Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. , 136, 261-276 .
doi: 10.1084/jem.136.2.261 pmid:.5043412
21 Hartwell, L. H., Hopfield, J. J., Leibler, S. and Murray, A. W. (1999) From molecular to modular cell biology. Nature , 402, C47-C52 .
doi: 10.1038/35011540 pmid:.10591225
22 Akhurst, R. J. and Derynck, R. (2001) TGF-β signaling in cancer — a double-edged sword. Trends Cell Biol. , 11, S44-S51 .
23 Feng, G.-S. (2012) Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell , 21, 150-154 .
doi: 10.1016/j.ccr.2012.01.001 pmid:.22340589
24 Kauffman, S. (2008) Control circuits for determination and transdetermination: interpreting positional information in a binary epigenetic code. In 机构Porter, R. and Rivers J. (eds.), Ciba Foundation Symposium 29- Cell Patterning . John Wiley & Sons, Ltd., 201-221 .
25 Auffray, C., Chen, Z. and Hood, L. (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med. , 1, 2.
26 Chalancon, G., Ravarani, C. N. J., Balaji, S., Martinez-Arias, A., Aravind, L., Jothi, R. and Babu, M. M. (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet. , 28, 221-232 .
doi: 10.1016/j.tig.2012.01.006 pmid:.22365642
27 Hood, L. and Flores, M. (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. , 29, 613-624 .
doi: 10.1016/j.nbt.2012.03.004 pmid:.22450380
28 Vital-Lopez, F., Memi?evi?, V. and Dutta, B. (2012) Tutorial on biological networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. , 2, 298-325 .
doi: 10.1002/widm.1061.
29 Ao, P., Galas, D., Hood, L., Yin, L. and Zhu, X. M. (2010) Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscip. Sci. , 2, 140-144 .
doi: 10.1007/s12539-010-0072-3 pmid:.20640781
30 Nurse, P. (2000) A long twentieth century of the cell cycle and beyond. Cell , 100, 71-78 .
doi: 10.1016/S0092-8674(00)81684-0 pmid:.10647932
31 Garber, K. (2001) Beyond the Nobel Prize: cell cycle research offers new view of cancer. J. Natl. Cancer Inst. , 93, 1766-1768 .
doi: 10.1093/jnci/93.23.1766 pmid:.11734586
32 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 131, 861-872 .
doi: 10.1016/j.cell.2007.11.019 pmid:.18035408
33 Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X. and Hui, L. (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature , 475, 386-389 .
doi: 10.1038/nature10116 pmid:.21562492
34 Tyson, J. J. and Novak, B. (2008) Temporal organization of the cell cycle. Curr. Biol. , 18, R759-R768 .
doi: 10.1016/j.cub.2008.07.001 pmid:.18786381
35 Spencer, S. L. and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells. Cell , 144, 926-939 .
doi: 10.1016/j.cell.2011.03.002 pmid:.21414484
36 Meyer, B. J., Maurer, R. and Ptashne, M. (1980) Gene regulation at the right operator (OR) of bacteriophage λ. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J. Mol. Biol. , 139, 163-194 .
doi: 10.1016/0022-2836(80)90303-4 pmid:.6447795
37 Yuh, C. H., Bolouri, H. and Davidson, E. H. (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902 .
doi: 10.1126/science.279.5358.1896 pmid:.9506933
38 Baker, S. G. and Kramer, B. S. (2011) Systems biology and cancer: promises and perils. Prog. Biophys. Mol. Biol. , 106, 410-413 .
doi: 10.1016/j.pbiomolbio.2011.03.002 pmid:.21419159
39 Alberts, B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P. (2007) Molecular Biology of the Cell (5th ed.). Garland Science .
40 Smale, S., Hirsch, M. and Devaney, R. (2003) Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Science .
41 Bar-Yam, Y., Harmon, D. and de Bivort, B. (2009) Attractors and democratic dynamics. Science , 323, 1016-1017 .10.1126/science.1163225.
pmid:19229023
42 Ao, P. (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev. , 2, 117-156 .
doi: 10.1016/j.plrev.2005.03.002.
43 Sch?fer, M. and Werner, S. (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. , 9, 628-638 .
doi: 10.1038/nrm2455 pmid:.18628784
44 Williams, C. S., Mann, M. and DuBois, R. N. (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18, 7908-7916 .
doi: 10.1038/sj.onc.1203286 pmid:.10630643
45 Neidhardt, F. (1987) Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology .
46 Cairns, J., Stent, G. S. and Watson, J. D. (2007) Phage and the Origins of Molecular Biology (The Centennial Edition). Cold Spring Harbor Laboratory Press .
47 Ptashne, M. (2004) A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press .
48 Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol. , 181, 211-230 .
doi: 10.1016/0022-2836(85)90086-5 pmid:.3157005
49 Waddington, C. (1957) The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. Allen & Unwin .
50 Wright, S. (1982) The shifting balance theory and macroevolution. Annu. Rev. Genet. , 16, 1-19 .
doi: 10.1146/annurev.ge.16.120182.000245 pmid:.6760797
51 Wang, J., Zhang, K., Xu, L. and Wang, E. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA , 108, 8257-8262 .
doi: 10.1073/pnas.1017017108 pmid:.21536909
52 Cao, Y., Lu, H. M. and Liang, J. (2010) Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proc. Natl. Acad. Sci. USA , 107, 18445-18450 .
doi: 10.1073/pnas.1001455107 pmid:.20937911
53 Bryngelson, J. D., Onuchic, J. N., Socci, N. D. and Wolynes, P. G. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Func. Bioinfo. , 21, 167-195 .
doi: 10.1002/prot.340210302.
54 Ao, P., Kwon, C. and Qian, H. (2007) On the existence of potential landscape in the evolution of complex systems. Complexity , 12, 19-27 .
doi: 10.1002/cplx.20171.
55 Yuan, R. S. and Ao, P. (2012) Beyond It? versus Stratonovich. J. Stat. Mech. , 2012, P07010.
doi: 10.1088/1742-5468/2012/07/P07010.
56 Tian, W., Zhu, H., Lei, X. and Ao, P. (2011) Extrinsic vs. intrinsic noises in Phage lambda genetic switch. In Proceedings of 2011 IEEE Conference on Systems Biology . 67-71
57 El-Serag, H. B. and Rudolph, K. L. (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology , 132, 2557-2576 .
doi: 10.1053/j.gastro.2007.04.061 pmid:.17570226
58 Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin. , 55, 74-108 .
doi: 10.3322/canjclin.55.2.74 pmid:.15761078
59 Monga, S. and Cagle, P. (2010) Molecular Pathology of Liver Diseases. Springer .
60 Michalopoulos, G. (2011) Liver regeneration. In 机构Monga, S. P. S. (ed.), Molecular Pathology of Liver Diseases . Springer US, 5, 261-278 .
61 Higgins, G. M. (1931) Experimental pathology of the liver: I. Restoration of the liver of the while rat following surgical removal. Arch. Pathol. (Chic) , 12, 186-202 .
62 Grisham, J. W. (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. , 22, 842-849 .
pmid:13902009.
63 Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roesler, W. J. and Timchenko, N. A. (2001) C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell , 8, 817-828 .
doi: 10.1016/S1097-2765(01)00366-5 pmid:.11684017
64 Ilyin, G. P., Glaise, D., Gilot, D., Baffet, G. and Guguen-Guillouzo, C. (2003) Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am. J. Physiol. Gastrointest. Liver Physiol. , 285, G115-G127 .
pmid:12646420.
65 Papakyriakou, P., Tzardi, M., Valatas, V., Kanavaros, P., Karydi, E., Notas, G., Xidakis, C. and Kouroumalis, E. (2002) Apoptosis and apoptosis related proteins in chronic viral liver disease. Apoptosis , 7, 133-141 .
doi: 10.1023/A:1014472430976 pmid:.11865197
66 Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. , 10, 348-355 .
doi: 10.1038/ni.1714 pmid:.19295631
67 Green, D. R. and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science , 305, 626-629 .
doi: 10.1126/science.1099320 pmid:.15286356
68 Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science , 281, 1322-1326 .
doi: 10.1126/science.281.5381.1322 pmid:.9735050
69 Walensky, L. D., Pitter, K., Morash, J., Oh, K. J., Barbuto, S., Fisher, J., Smith, E., Verdine, G. L. and Korsmeyer, S. J. (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell , 24, 199-210 .
doi: 10.1016/j.molcel.2006.08.020 pmid:.17052454
70 Jost, P. J., Grabow, S., Gray, D., McKenzie, M. D., Nachbur, U., Huang, D. C., Bouillet, P., Thomas, H. E., Borner, C., Silke, J., . (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature , 460, 1035-1039 .
doi: 10.1038/nature08229 pmid:.19626005
71 Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science , 292, 727-730 .
doi: 10.1126/science.1059108 pmid:.11326099
72 Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell , 102, 33-42 .
doi: 10.1016/S0092-8674(00)00008-8 pmid:.10929711
73 Zhao, Z., Yang, P., Eckert, R. L. and Reece, E. A. (2009) Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res. B Dev. Reprod. Toxicol. , 86, 72-77 .
doi: 10.1002/bdrb.20185 pmid:.19194987
74 Trautwein, C., B?ker, K. and Manns, M. P. (1994) Hepatocyte and immune system: acute phase reaction as a contribution to early defence mechanisms. Gut , 35, 1163-1166 .
doi: 10.1136/gut.35.9.1163 pmid:.7525420
75 Diehl, A. M. (2000) Cytokine regulation of liver injury and repair. Immunol. Rev. , 174, 160-171 .
doi: 10.1034/j.1600-0528.2002.017411.x pmid:.10807515
76 Ben-Neriah, Y. and Karin, M. (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. , 12, 715-723 .
doi: 10.1038/ni.2060 pmid:.21772280
77 Schwabe, R. F. and Brenner, D. A. (2006) Mechanisms of Liver Injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. , 290, G583-G589 .
doi: 10.1152/ajpgi.00422.2005 pmid:.16537970
78 Sakurai, T., He, G., Matsuzawa, A., Yu, G.-Y., Maeda, S., Hardiman, G. and Karin, M. (2008) Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell , 14, 156-165 .
doi: 10.1016/j.ccr.2008.06.016 pmid:.18691550
79 Bromberg, J. and Wang, T. C. (2009) Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell , 15, 79-80 .
doi: 10.1016/j.ccr.2009.01.009 pmid:.19185839
80 Louis, H., Le Moine, O., Goldman, M. and Devière, J. (2003) Modulation of liver injury by interleukin-10. Acta Gastroenterol. Belg. , 66, 7-14 .
pmid:12812143.
81 Cairns, R. A., Harris, I. S. and Mak, T. W. (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer , 11, 85-95 .
doi: 10.1038/nrc2981 pmid:.21258394
82 Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science , 324, 1029-1033 .
doi: 10.1126/science.1160809 pmid:.19460998
83 Semenza, G. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. , 20, 51-56 .
84 Lau, C. K., Yang, Z. F., Ho, D. W., Ng, M. N., Yeoh, G. C., Poon, R. T. and Fan, S. T. (2009) An Akt/hypoxia-inducible factor-1α/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin. Cancer Res. , 15, 3462-3471 .
doi: 10.1158/1078-0432.CCR-08-2127 pmid:.19447872
85 Adams, R. H. and Alitalo, K. (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. , 8, 464-478 .
doi: 10.1038/nrm2183 pmid:.17522591
86 Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., . (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature , 380, 435-439 .
doi: 10.1038/380435a0 pmid:.8602241
87 Massagué, J. (1998) TGF-β signal transduction. Annu. Rev. Biochem. , 67, 753-791 .
doi: 10.1146/annurev.biochem.67.1.753 pmid:.9759503
88 Lu, Z., Ghosh, S., Wang, Z. and Hunter, T. (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell , 4, 499-515 .
doi: 10.1016/S1535-6108(03)00304-0 pmid:.14706341
89 Odom, D. T., Dowell, R. D., Jacobsen, E. S., Nekludova, L., Rolfe, P. A., Danford, T. W., Gifford, D. K., Fraenkel, E., Bell, G. I. and Young, R. A. (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol. , 2, 2006.0017 .
doi: 10.1038/msb4100059 pmid:.16738562
90 Lu, T. T., Makishima, M., Repa, J. J., Schoonjans, K., Kerr, T. A., Auwerx, J. and Mangelsdorf, D. J. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell , 6, 507-515 .
doi: 10.1016/S1097-2765(00)00050-2 pmid:.11030331
91 Vellela, M. and Qian, H. (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schl?gl model revisited. J. R. Soc. Interface , 6, 925-940 .
doi: 10.1098/rsif.2008.0476 pmid:.19095615
92 Rosenfeld, S. (2011) Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog. Biophys. Mol. Biol. , 106, 400-409 .
doi: 10.1016/j.pbiomolbio.2011.03.003 pmid:.21419158
93 Villarreal, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2012) General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks. Phys. Rev. Lett. , 109, 118102.
doi: 10.1103/PhysRevLett.109.118102 pmid:.23005679
94 Xu, X. R., Huang, J., Xu, Z. G., Qian, B. Z., Zhu, Z. D., Yan, Q., Cai, T., Zhang, X., Xiao, H. S., Qu, J., . (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl. Acad. Sci. USA , 98, 15089-15094 .
doi: 10.1073/pnas.241522398 pmid:.11752456
95 Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., Zhang, S. H., Huang, D. D., Tang, L., Kong, X. N., . (2008) Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. , 68, 4287-4295 .
doi: 10.1158/0008-5472.CAN-07-6691 pmid:.18519688
96 Holmes, P. (2005) Ninety plus thirty years of nonlinear dynamics: less is more and more is different. Int. J. Bifurcat. Chaos , 15, 2703-2716 .
doi: 10.1142/S0218127405013678.
97 Ao, P. (2007) Darwinian dynamics implies developmental ascendency. Biol. Theory , 2, 113-115 .
doi: 10.1162/biot.2007.2.1.113.
98 Ao, P. (2007) Orders of magnitude change in phenotype rate caused by mutation. Cell. Oncol. , 29, 67-69 .
pmid:17429143.
99 Lee, L., Yin, L., Zhu, X. and Ao, P. (2007) Generic enzymatic rate equation under living conditions. J. Biol. Syst. , 15, 495-514 .
doi: 10.1142/S0218339007002295.
100 Ao, P., Lee, L. W., Lidstrom, M. E., Yin, L. and Zhu, X. (2008) Towards kinetic modeling of global metabolic networks: methylobacterium extorquens AM1 growth as validation. Chin. J. Biotechnol. , 24, 980-994 .
pmid:18807980.
101 Liu, C., Fan, D., Shi, Y. and Zhou, Q. (2012) A glimpse of enzymology within the idea of systems. Sci. China Life Sci. , 55, 826-833 .
doi: 10.1007/s11427-012-4371-2 pmid:.23015132
102 Huang, S. (2011) On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin. Cancer Biol. , 21, 183-199 .
doi: 10.1016/j.semcancer.2011.05.003 pmid:.21640825
103 Zhou, J. X., Aliyu, M. D., Aurell, E. and Huang, S. (2012) Quasi-potential landscape in complex multi-stable systems. J. R. Soc. Interface , 9, 3539-3553 .
doi: 10.1098/rsif.2012.0434 pmid:.22933187
104 Baverstock, K. and Karotki, A. V. (2011) Towards a unifying theory of late stochastic effects of ionizing radiation. Mutat. Res. , 718, 1-9 .
doi: 10.1016/j.mrgentox.2010.11.003 pmid:.21078408
105 Davies, P. C. W. and Lineweaver, C. H. (2011) Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys. Biol. , 8, 015001.
doi: 10.1088/1478-3975/8/1/015001 pmid:.21301065
106 Vincent, M. D. (2011) Cancer: beyond speciation. Adv. Cancer Res. , 112, 283-350 .
doi: 10.1016/B978-0-12-387688-1.00010-7 pmid:.21925308
107 Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., . (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA , 108, 7950-7955 .
doi: 10.1073/pnas.1102454108 pmid:.21498687
108 Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell , 146, 633-644 .
doi: 10.1016/j.cell.2011.07.026 pmid:.21854987
109 Heng, H. H. Q., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., Abdallah, B. Y., Horne, S. D. and Ye, C. J. (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics , 98, 242-252 .
doi: 10.1016/j.ygeno.2011.05.008 pmid:.21640814
110 Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.-K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., . (2012) Architecture of the human regulatory network derived from ENCODE data. Nature , 489, 91-100 .
doi: 10.1038/nature11245 pmid:.22955619
111 Yamanaka, S. (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature , 460, 49-52 .
doi: 10.1038/nature08180 pmid:.19571877
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed