|
|
Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas |
Pascal Grange1,1( ), Michael Hawrylycz2, and Partha P. Mitra1 |
1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA 2. Allen Institute for Brain Science, Washington, WA 98103, USA |
|
|
Abstract We review quantitative methods and software developed to analyze genome-scale, brain-wide spatially-mapped gene-expression data. We expose new methods based on the underlying high-dimensional geometry of voxel space and gene space, and on simulations of the distribution of co-expression networks of a given size. We apply them to the Allen Atlas of the adult mouse brain, and to the co-expression network of a set of genes related to nicotine addiction retrieved from the NicSNP database. The computational methods are implemented in BrainGeneExpressionAnalysis (BGEA), a Matlab toolbox available for download.
|
Corresponding Author(s):
Pascal Grange
|
Issue Date: 05 March 2013
|
|
1 |
M. Bota,, H. W. Dong, and L. W. Swanson, (2003) From gene networks to brain networks. Nat. Neurosci. 6, 795-799. Available at: .
https://doi.org/10.1038/nn1096
pmid: 12886225
|
2 |
E.S. Lein,, M.J. Hawrylycz,, N. Ao,, M. Ayres,, A. Bensinger,, A. Bernard,, A.F. Boe,, M.S. Boguski,, K. S. Brockway,, E. J. Byrnes,, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. Available at: .
https://doi.org/10.1038/nature05453
pmid: 17151600
|
3 |
S. M. Sunkin,, J. G. Hohmann, (2007) Insights from spatially mapped gene expression in the mouse brain. Hum. Mol. Genet. 16, 2.
|
4 |
L. Ng,, M. Hawrylycz, and D. Haynor, (2005) Automated high-throughput registration for localizing 3D mouse brain gene expression using ITK, Insight-Journal.
|
5 |
L. Ng,, S. D. Pathak,, C. Kuan,, C. Lau,, H. Dong,, et al. (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans. Comput. Biol. Bioinform. Jul-Sep 4(3), 382-393.
|
6 |
A. R. Jones,, C. C. Overly, and S. M. Sunkin, (2009) The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821-828. Available at: and .
https://doi.org/10.1038/nrn2722
pmid: 19826436
|
7 |
M. Hawrylycz,, L. Ng,, D. Page,, J. Morris,, C. Lau,, S. Faber,, V. Faber,, S. Sunkin,, V. Menon,, E. Lein,, et al. (2011) Multi-scale correlation structure of gene expression in the brain. Neural Netw. 24, 933-942. Available at: and .
https://doi.org/10.1016/j.neunet.2011.06.012
pmid: 21764550
|
8 |
Computational analysis of user-defined sets of genes from the Allen Atlas of mouse and human brain can be conducted online at addiction.brainarchitecture.org
|
9 |
P. Grange,, J. W. Bohland,, M. Hawrylycz, and P. P. Mitra,Brain Gene Expression Analysis: a MATLAB toolbox for the analysis of brain-wide gene-expression data, arXiv:1211.6177 [q-bio.QM].
|
10 |
C. Y. Li,, X. Mao, and L. Wei, (2008) Genes and (common) pathways underlying drug addiction. PLOS Comput. Biol. 4, e2. Available at: and .
https://doi.org/10.1371/journal.pcbi.0040002
pmid: 18179280
|
11 |
S. F. Saccone,, N. L. Saccone,, G. E. Swan,, P. A. F. Madden,, A. M. Goate,, J. P. Rice, and L. J. Bierut, (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24, 1805-1811. Available at: and .
https://doi.org/10.1093/bioinformatics/btn315
pmid: 18565990
|
12 |
S. F. Altschul,, W. Gish,, W. Miller,, E. W. Myers, and D. J. Lipman, (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. Available at: .
pmid: 2231712
|
13 |
L. Ng,, C. Lau,, R. Young,, S. Pathak,, L. Kuan,, A. Sodt,, M. Sutram,, C. K. Lee,, C. Dang, and M. Hawrylycz, (2007) NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neurosci. 8, 11. Available at: and .
https://doi.org/10.1186/1471-2202-8-S2-P11
pmid: 17261189
|
14 |
L. Ng,, A. Bernard,, C. Lau,, C. C. Overly,, H. W. Dong,, C. Kuan,, S. Pathak,, S. M. Sunkin,, C. Dang,, J. W. Bohland,, et al. (2009) An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356-362. Available at: and .
https://doi.org/10.1038/nn.2281
pmid: 19219037
|
15 |
B. Zhang, and S. Horvath, (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, e17. Available at: and .
https://doi.org/10.2202/1544-6115.1128
pmid: 16646834
|
16 |
P. K. Olszewski,, J. Cedernaes,, F. Olsson,, A. S. Levine, and H.B. Schiöth, (2008) Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev. 32, 945-956. Available at: and .
https://doi.org/10.1016/j.neubiorev.2008.01.007
pmid: 18457878
|
17 |
H. W. Dong, (2007) The Allen reference atlas: a digital brain atlas of the C57BL/6J male mouse, Wiley.
|
18 |
P. Grange, and P. P. Mitra, (2012) Computational neuroanatomy and gene expression: Optimal sets of marker genes for brain regions. IEEE, in CISS 2012, 46th annual conference on Information Science and Systems (Princeton), arXiv:1205.2721 [q-bio.QM].
|
19 |
C. Lau,, L. Ng,, C. Thompson,, S. Pathak,, L. Kuan,, A. Jones, and M. Hawrylycz, (2008) Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153. Available at: and .
https://doi.org/10.1186/1471-2105-9-153
pmid: 18366675
|
20 |
M. Hawrylycz,, R. A. Baldock,, A. Burger,, T. Hashikawa,, G. A. Johnson,, M. Martone,, L. Ng,, C. Lau,, S. D. Larson,, J. Nissanov,, et al. (2011) Digital atlasing and standardization in the mouse brain. PLOS Comput. Biol. 7, e1001065. Available at: and .
https://doi.org/10.1371/journal.pcbi.1001065
pmid: 21304938
|
21 |
.The Allen Brain Atlas can be used online at
|
22 |
J. W. Bohland,, H. Bokil,, S. D. Pathak,, C. K. Lee,, L. Ng,, C. Lau,, C. Kuan,, M. Hawrylycz, and P. P. Mitra, (2010) Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112. Available at: and .
https://doi.org/10.1016/j.ymeth.2009.09.001
pmid: 19733241
|
23 |
The developmental atlas of the mouse brain is available from
|
24 |
I. Menashe,, P. Grange,, E. C. Larsen,, S. Banerjee-Basu, and P. P. Mitra, (2012) Co-expression profiling of autism genes in the mouse brain, SFN Abstracts, and submitted.
|
25 |
M. J. Hawrylycz,, E. S. Lein,, A. L. Guillozet-Bongaarts,, E. H. Shen,, L. Ng,, J. A. Miller,, L. N. van de Lagemaat,, K. A. Smith,, A. Ebbert,, Z. L. Riley,, et al. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399. Available at: and .
https://doi.org/10.1038/nature11405
pmid: 22996553
|
26 |
W. C. Warren,, D. F. Clayton,, H. Ellegren,, A. P. Arnold,, L. W. Hillier,, A. Künstner,, S. Searle,, S. White,, A. J. Vilella, and S. Fairley, (2010) The genome of a songbird. Nature 464, 757-762. Available at: and .
https://doi.org/10.1038/nature08819
pmid: 20360741
|
27 |
Data can be retrieved from the ZEBrA database. (Oregon Health and Science University, Portland, OR 97239; ).
|
28 |
J. A. Miller,, S. Horvath, and D. H. Geschwind, (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA 107, 12698-12703. Available at: and .
https://doi.org/10.1073/pnas.0914257107
pmid: 20616000
|
29 |
M. J. Rossner,, J. Hirrlinger,, S. P. Wichert,, C. Boehm,, D. Newrzella,, H. Hiemisch,, G. Eisenhardt,, C. Stuenkel,, O. von Ahsen, and K. A. Nave, (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J. Neurosci. 26, 9956-9966. Available at: .
https://doi.org/10.1523/JNEUROSCI.0468-06.2006
pmid: 17005859
|
30 |
J. D. Cahoy,, B. Emery,, A. Kaushal,, L. C. Foo,, J. L. Zamanian,, K. S. Christopherson,, Y. Xing,, J. L. Lubischer,, P. A. Krieg,, S. A. Krupenko,, et al. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278. Available at: and .
https://doi.org/10.1523/JNEUROSCI.4178-07.2008
pmid: 18171944
|
31 |
J. P. Doyle,, J. D. Dougherty,, M. Heiman,, E. F. Schmidt,, T. R. Stevens,, G. Ma,, S. Bupp,, P. Shrestha,, R. D. Shah,, M. L. Doughty,, et al. (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749-762. Available at: and .
https://doi.org/10.1016/j.cell.2008.10.029
pmid: 19013282
|
32 |
C. Y. Chung,, H. Seo,, K. C. Sonntag,, A. Brooks,, L. Lin, and O. Isacson, (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709-1725. Available at: .
https://doi.org/10.1093/hmg/ddi178
pmid: 15888489
|
33 |
P. Arlotta,, B. J. Molyneaux,, J. Chen,, J. Inoue,, R. Kominami, and J. D. Macklis, (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207-221. Available at: .
https://doi.org/10.1016/j.neuron.2004.12.036
pmid: 15664173
|
34 |
M. Heiman,, A. Schaefer,, S. Gong,, J. D. Peterson,, M. Day,, K. E. Ramsey,, M. Suárez-Fariñas, C. Schwarz,, D. A. Stephan,, D. J. Surmeier,, et al. (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738-748. Available at: and .
https://doi.org/10.1016/j.cell.2008.10.028
pmid: 19013281
|
35 |
K. Sugino,, C. M. Hempel,, M. N. Miller,, A. M. Hattox,, P. Shapiro,, C. Wu,, Z. J. Huang, and S. B. Nelson, (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99-107. Available at: and .
https://doi.org/10.1038/nn1618
pmid: 16369481
|
36 |
C. K. Lee,, S. M. Sunkin,, C. Kuan,, C. L. Thompson,, S. Pathak,, L. Ng,, C. Lau,, S. Fischer,, M. Mortrud,, C. Slaughterbeck,, et al. (2008) Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biol. 9, R23. Available at: and .
https://doi.org/10.1186/gb-2008-9-1-r23
pmid: 18234097
|
37 |
P. Grange,, J. W. Bohland,, H. Bokil,, S. Nelson,, B. Okaty,, K. Sugino,, L. Ng,, M. Hawrylycz, and P.P. Mitra,A cell-type based model explaining co-expression patterns of genes in the brain, arXiv:1111.6217 [q-bio.QM].
|
38 |
R. E. Tarjan, (1972) Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146-160. Available at: .
https://doi.org/10.1137/0201010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|