Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2013, Vol. 1 Issue (1) : 91-100    https://doi.org/10.1007/s40484-013-0011-5
REVIEW
Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas
Pascal Grange1,1(), Michael Hawrylycz2, and Partha P. Mitra1
1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
2. Allen Institute for Brain Science, Washington, WA 98103, USA
 Download: PDF(563 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We review quantitative methods and software developed to analyze genome-scale, brain-wide spatially-mapped gene-expression data. We expose new methods based on the underlying high-dimensional geometry of voxel space and gene space, and on simulations of the distribution of co-expression networks of a given size. We apply them to the Allen Atlas of the adult mouse brain, and to the co-expression network of a set of genes related to nicotine addiction retrieved from the NicSNP database. The computational methods are implemented in BrainGeneExpressionAnalysis (BGEA), a Matlab toolbox available for download.

Corresponding Author(s): Pascal Grange   
Issue Date: 05 March 2013
 Cite this article:   
Pascal Grange,Michael Hawrylycz,and Partha P. Mitra. Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas[J]. Quant. Biol., 2013, 1(1): 91-100.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0011-5
https://academic.hep.com.cn/qb/EN/Y2013/V1/I1/91
Fig.1  Caption. Monte Carlo analysis of the graph underlying the co-expression matrix of 288 genes from the NicSNP database. Average and maximum size of connected components as a function of the threshold on co-expression.
Fig.2  Caption. The flowchart of computational analysis of the collective neuroanatomical properties of a set of genes in the BrainGeneExpressionAnalysis toolbox. The steps marked as random extractions and computations are described in supplementary materials S2 and S3.
Fig.3  Caption. A toy model with 9 genes, and only three distinct values of co-expression, 0, 0.6 and 0.9, for simplicity. Before any thresholding procedure is applied (on the left-hand side of the figure), there is one connected component. The average and maximum size of connected components are both 9. The graph on the right-hand side is obtained by a thresholding procedure at a threshold of 0.6. There are three connected components, the maximal size is 4, and the average size is 3.
Fig.4  Caption. One of the connected components of the co-expression network, at co-expression threshold 0.9. It is better-fitted to the striatum (STR) than more than 99% of the set of three genes drawn from the coronal Allen Atlas of the adult mouse brain. The symbols for other brain regions read as follows: Basic= ‘basic cell groups’, CTX= cortex, OLF= olfactory areas, HIP= hippocampal region, RHP= retrohippocampal region, PAL= pallidum, TH= thalamus, HY= hypothalamus, MB= midbrain, P= pons, MY= medulla, CB= cerebellum.
Fig.5  Caption. Sorted correlation coefficients between expression energies evaluated from sagittal and coronal sections in the left hemisphere of the mouse brain.
Fig.6  Caption. (A) Sorted elements of the upper-diagonal part of the co-expression matrix of the coronal atlas, Catlas.

(B) Maximal-intensity projection of the expression energy of Atp6v0c.

(C) Maximal-intensity projection of the expression energy of Atp2a2. The pair of genes (Atp6v0c, Atp2a2) has the highest co-expression in the coronal atlas, 0.9781.

Fig.7  Caption Cumulative distribution function of the upper-diagonal entries of the co-expression matrix of 288 genes (the special co-expression network Cset of the flowchart of Figure 1) from the NicSNP database, for which mouse orthologs are found in the Allen Atlas of the adult mouse brain. As the red curve (or CDFset) sits above the simulated average of the simulated mean of CDFs (or<CDF>) of co-expression networks of 288 genes, at low values of the threshold, the special set as a whole appears to be less co-expressed than expected by chance.
Fig.8  Caption. Monte Carlo analysis of the graph underlying the co-expression matrix of 288 genes from the NicSNP database. Estimated probabilities for the average and maximum size of connected components to be larger than in random sets of genes of the same size.
1 M. Bota,, H. W. Dong, and L. W. Swanson, (2003) From gene networks to brain networks. Nat. Neurosci. 6, 795-799. Available at: .
https://doi.org/10.1038/nn1096 pmid: 12886225
2 E.S. Lein,, M.J. Hawrylycz,, N. Ao,, M. Ayres,, A. Bensinger,, A. Bernard,, A.F. Boe,, M.S. Boguski,, K. S. Brockway,, E. J. Byrnes,, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. Available at: .
https://doi.org/10.1038/nature05453 pmid: 17151600
3 S. M. Sunkin,, J. G. Hohmann, (2007) Insights from spatially mapped gene expression in the mouse brain. Hum. Mol. Genet. 16, 2.
4 L. Ng,, M. Hawrylycz, and D. Haynor, (2005) Automated high-throughput registration for localizing 3D mouse brain gene expression using ITK, Insight-Journal.
5 L. Ng,, S. D. Pathak,, C. Kuan,, C. Lau,, H. Dong,, et al. (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans. Comput. Biol. Bioinform. Jul-Sep 4(3), 382-393.
6 A. R. Jones,, C. C. Overly, and S. M. Sunkin, (2009) The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821-828. Available at: and .
https://doi.org/10.1038/nrn2722 pmid: 19826436
7 M. Hawrylycz,, L. Ng,, D. Page,, J. Morris,, C. Lau,, S. Faber,, V. Faber,, S. Sunkin,, V. Menon,, E. Lein,, et al. (2011) Multi-scale correlation structure of gene expression in the brain. Neural Netw. 24, 933-942. Available at: and .
https://doi.org/10.1016/j.neunet.2011.06.012 pmid: 21764550
8 Computational analysis of user-defined sets of genes from the Allen Atlas of mouse and human brain can be conducted online at addiction.brainarchitecture.org
9 P. Grange,, J. W. Bohland,, M. Hawrylycz, and P. P. Mitra,Brain Gene Expression Analysis: a MATLAB toolbox for the analysis of brain-wide gene-expression data, arXiv:1211.6177 [q-bio.QM].
10 C. Y. Li,, X. Mao, and L. Wei, (2008) Genes and (common) pathways underlying drug addiction. PLOS Comput. Biol. 4, e2. Available at: and .
https://doi.org/10.1371/journal.pcbi.0040002 pmid: 18179280
11 S. F. Saccone,, N. L. Saccone,, G. E. Swan,, P. A. F. Madden,, A. M. Goate,, J. P. Rice, and L. J. Bierut, (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24, 1805-1811. Available at: and .
https://doi.org/10.1093/bioinformatics/btn315 pmid: 18565990
12 S. F. Altschul,, W. Gish,, W. Miller,, E. W. Myers, and D. J. Lipman, (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. Available at: .
pmid: 2231712
13 L. Ng,, C. Lau,, R. Young,, S. Pathak,, L. Kuan,, A. Sodt,, M. Sutram,, C. K. Lee,, C. Dang, and M. Hawrylycz, (2007) NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neurosci. 8, 11. Available at: and .
https://doi.org/10.1186/1471-2202-8-S2-P11 pmid: 17261189
14 L. Ng,, A. Bernard,, C. Lau,, C. C. Overly,, H. W. Dong,, C. Kuan,, S. Pathak,, S. M. Sunkin,, C. Dang,, J. W. Bohland,, et al. (2009) An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356-362. Available at: and .
https://doi.org/10.1038/nn.2281 pmid: 19219037
15 B. Zhang, and S. Horvath, (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, e17. Available at: and .
https://doi.org/10.2202/1544-6115.1128 pmid: 16646834
16 P. K. Olszewski,, J. Cedernaes,, F. Olsson,, A. S. Levine, and H.B. Schiöth, (2008) Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev. 32, 945-956. Available at: and .
https://doi.org/10.1016/j.neubiorev.2008.01.007 pmid: 18457878
17 H. W. Dong, (2007) The Allen reference atlas: a digital brain atlas of the C57BL/6J male mouse, Wiley.
18 P. Grange, and P. P. Mitra, (2012) Computational neuroanatomy and gene expression: Optimal sets of marker genes for brain regions. IEEE, in CISS 2012, 46th annual conference on Information Science and Systems (Princeton), arXiv:1205.2721 [q-bio.QM].
19 C. Lau,, L. Ng,, C. Thompson,, S. Pathak,, L. Kuan,, A. Jones, and M. Hawrylycz, (2008) Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153. Available at: and .
https://doi.org/10.1186/1471-2105-9-153 pmid: 18366675
20 M. Hawrylycz,, R. A. Baldock,, A. Burger,, T. Hashikawa,, G. A. Johnson,, M. Martone,, L. Ng,, C. Lau,, S. D. Larson,, J. Nissanov,, et al. (2011) Digital atlasing and standardization in the mouse brain. PLOS Comput. Biol. 7, e1001065. Available at: and .
https://doi.org/10.1371/journal.pcbi.1001065 pmid: 21304938
21 .The Allen Brain Atlas can be used online at
22 J. W. Bohland,, H. Bokil,, S. D. Pathak,, C. K. Lee,, L. Ng,, C. Lau,, C. Kuan,, M. Hawrylycz, and P. P. Mitra, (2010) Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112. Available at: and .
https://doi.org/10.1016/j.ymeth.2009.09.001 pmid: 19733241
23 The developmental atlas of the mouse brain is available from
24 I. Menashe,, P. Grange,, E. C. Larsen,, S. Banerjee-Basu, and P. P. Mitra, (2012) Co-expression profiling of autism genes in the mouse brain, SFN Abstracts, and submitted.
25 M. J. Hawrylycz,, E. S. Lein,, A. L. Guillozet-Bongaarts,, E. H. Shen,, L. Ng,, J. A. Miller,, L. N. van de Lagemaat,, K. A. Smith,, A. Ebbert,, Z. L. Riley,, et al. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399. Available at: and .
https://doi.org/10.1038/nature11405 pmid: 22996553
26 W. C. Warren,, D. F. Clayton,, H. Ellegren,, A. P. Arnold,, L. W. Hillier,, A. Künstner,, S. Searle,, S. White,, A. J. Vilella, and S. Fairley, (2010) The genome of a songbird. Nature 464, 757-762. Available at: and .
https://doi.org/10.1038/nature08819 pmid: 20360741
27 Data can be retrieved from the ZEBrA database. (Oregon Health and Science University, Portland, OR 97239; ).
28 J. A. Miller,, S. Horvath, and D. H. Geschwind, (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA 107, 12698-12703. Available at: and .
https://doi.org/10.1073/pnas.0914257107 pmid: 20616000
29 M. J. Rossner,, J. Hirrlinger,, S. P. Wichert,, C. Boehm,, D. Newrzella,, H. Hiemisch,, G. Eisenhardt,, C. Stuenkel,, O. von Ahsen, and K. A. Nave, (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J. Neurosci. 26, 9956-9966. Available at: .
https://doi.org/10.1523/JNEUROSCI.0468-06.2006 pmid: 17005859
30 J. D. Cahoy,, B. Emery,, A. Kaushal,, L. C. Foo,, J. L. Zamanian,, K. S. Christopherson,, Y. Xing,, J. L. Lubischer,, P. A. Krieg,, S. A. Krupenko,, et al. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278. Available at: and .
https://doi.org/10.1523/JNEUROSCI.4178-07.2008 pmid: 18171944
31 J. P. Doyle,, J. D. Dougherty,, M. Heiman,, E. F. Schmidt,, T. R. Stevens,, G. Ma,, S. Bupp,, P. Shrestha,, R. D. Shah,, M. L. Doughty,, et al. (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749-762. Available at: and .
https://doi.org/10.1016/j.cell.2008.10.029 pmid: 19013282
32 C. Y. Chung,, H. Seo,, K. C. Sonntag,, A. Brooks,, L. Lin, and O. Isacson, (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709-1725. Available at: .
https://doi.org/10.1093/hmg/ddi178 pmid: 15888489
33 P. Arlotta,, B. J. Molyneaux,, J. Chen,, J. Inoue,, R. Kominami, and J. D. Macklis, (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207-221. Available at: .
https://doi.org/10.1016/j.neuron.2004.12.036 pmid: 15664173
34 M. Heiman,, A. Schaefer,, S. Gong,, J. D. Peterson,, M. Day,, K. E. Ramsey,, M. Suárez-Fariñas, C. Schwarz,, D. A. Stephan,, D. J. Surmeier,, et al. (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738-748. Available at: and .
https://doi.org/10.1016/j.cell.2008.10.028 pmid: 19013281
35 K. Sugino,, C. M. Hempel,, M. N. Miller,, A. M. Hattox,, P. Shapiro,, C. Wu,, Z. J. Huang, and S. B. Nelson, (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99-107. Available at: and .
https://doi.org/10.1038/nn1618 pmid: 16369481
36 C. K. Lee,, S. M. Sunkin,, C. Kuan,, C. L. Thompson,, S. Pathak,, L. Ng,, C. Lau,, S. Fischer,, M. Mortrud,, C. Slaughterbeck,, et al. (2008) Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biol. 9, R23. Available at: and .
https://doi.org/10.1186/gb-2008-9-1-r23 pmid: 18234097
37 P. Grange,, J. W. Bohland,, H. Bokil,, S. Nelson,, B. Okaty,, K. Sugino,, L. Ng,, M. Hawrylycz, and P.P. Mitra,A cell-type based model explaining co-expression patterns of genes in the brain, arXiv:1111.6217 [q-bio.QM].
38 R. E. Tarjan, (1972) Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146-160. Available at: .
https://doi.org/10.1137/0201010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed