Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (2) : 115-128    https://doi.org/10.1007/s40484-016-0067-0
REVIEW
Whole genome sequencing and its applications in medical genetics
Jiaxin Wu, Mengmeng Wu, Ting Chen, Rui Jiang()
MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing 100084, China
 Download: PDF(296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing, genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, as well as discuss the challenges of the whole genome sequencing.

Author Summary   

Whole genome sequencing is prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, and giving clinical implications and instructions. In this review, we give a typical pipeline of whole genome sequencing, compare the difference between whole genome and whole exome sequencing, and explore a wide range of applications of whole genome sequencing in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, and discuss the challenges of the whole genome sequencing.

Keywords whole genome sequencing      whole exome sequencing      next-generation sequencing      non-coding      regulatory variant     
Corresponding Author(s): Rui Jiang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 21 March 2016   Online First Date: 11 May 2016    Issue Date: 26 May 2016
 Cite this article:   
Jiaxin Wu,Mengmeng Wu,Ting Chen, et al. Whole genome sequencing and its applications in medical genetics[J]. Quant. Biol., 2016, 4(2): 115-128.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0067-0
https://academic.hep.com.cn/qb/EN/Y2016/V4/I2/115
Fig.1  A typical pipeline of whole genome sequencing.
Platform Total output Time Read length # of single reads Run price
454 (Roche) GS FLX+ 700 Mb 23 h <1 kb 1 M ~$6k
454 (Roche) GS Jr. 35 Mb 10 h ~700 bp 0.1 M ~$1k
Illumina Hiseq X Ten 1.8 Tb 3 d 2 × 150bp 6 B ~$12k
Illumina Hiseq 2500 HT v4 1 Tb 6 d 2 × 125bp 4 B ~$29k
Illumina Hiseq 2500 Rapid 180 Gb 40 h 2 × 150bp 600 M ~$8k
Illumina NextSeq 500 129 Gb 29 h 2 × 150bp 400 M $4k
Illumina MiSeq 15 Gb ~65 h 2 × 300bp 25 M ~$1.4k
Life Technologies SOLiD 5500xl 95 Gb 6 d 2 × 60bp 800 M ~$10k
Life Technologies SOLiD 5500 48 Gb 6 d 2 × 60bp 400 M ~$5k
Life Technologies Ion Torrent PI ~10 Gb 2−4 h <200 bp <82 M >$1k
Tab.1  Comparison of whole genome sequencing platforms.
Name Method Platform
Bowtie2 Alignment Illumina, 454
BWA Alignment Illumina, ABI SOLiD
SOAP3-DP Alignment Illumina
MAQ Reference Illumina, SOLiD
RMAP Reference Illumina
SeqMan NGen Ref/ De novo Illumina, SOLiD, 454, Ion Torrent, Sanger
ABySS De novo Illumina,SOLid
ALLPATHS-LG De novo Illumina
Edena De novo Illumina
Euler-sr De novo Sanger, 454, Illumina
Forge De novo Sanger, 454, Illumina
Newbler De novo 454
SOAPdenovo De novo Illumina
SPAdes De novo Illumina, PacBio
SSAKE De novo Illumina
Velvet De novo Illumina, 454
Tab.2  Alignment and genome assembling tools.
Name Platform
FastQC Illumina, SOLiD, 454, PacBio
FASTX-Toolkit Illumina
HTQC Illumina
NGSQC Illumina, SOLiD
NGS QC Toolkit Illumina, 454
PRINSEQ Illumina, 454
SolexaQA Illumina, 454
TileQC Illumina
Tab.3  Quality assessment tools before the assembling.
Name Properties
ALE ?Reference-independent, statistical measure
Picard A set of tools for processing and analyzing Illumina sequence data
QUAST With and without a reference genome
REAPR Assemblers using paired end reads, without a reference genome
Tab.4  Quality assessment tools for genome assemblers.
Name Type
Bambino SNVs, indels
CORTEX SNVs, indels
GATK SNVs, indels
glfTools SNVs
SAMtools SNVs, indels
SNVer SNVs, indels
SomaticSniper SNVs
VarScan 2 SNVs, CNVs
AS-GENSENG CNVs
cn.mops CNVs
CNV-seq CNVs
CNVrd2 CNVs
CopySeq CNVs
GENSENG CNVs
GROM-RD CNVs
modSaRa CNVs
RDXplorer CNVs
QDNAseq CNVs
BreakDancer SVs
ClipCrop SVs
GASV SVs
Pindel SVs
SLOPE SVs
TIGRA SVs
VariationHunter SVs
Tab.5  Variants calling tools for detect SNVs, CNVs or SVs.
Whole genome sequencing Whole exome sequencing
Time 6–8 weeks 1–3 weeks
Cost $795–$4150/sample $390–$1050/sample
Sequencing depth Usually 30× Usually>50×
Sequenced region Coding and non-coding regions of the genome Exomes, promoters and enhancers
Tab.6  Comparison between whole genome and whole exome sequencing.
Name Molecular trait Other techniques Ref.
eQTL Gene expression RNA-seq or microarray Rockman [ 108]
dsQTL Open chromatin DNaseI-seq Degner [ 109]
sQTL RNA splicing RNA-seq Monlong [ 110]
rtQTL DNA replication timing FACS-sorting Amnon [ 111]
haQTL Histone acetylation ChIP-seq Rosario [ 112]
metQTL DNA methylation Bisulfite-seq Gibbs [ 113]
Tab.7  Various types of QTLs.
1 K. R. Veeramah, and M. F. Hammer, ( 2014 ) The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet. , 15 , 149 – 162
https://doi.org/10.1038/nrg3625
2 R. W. Hendrix, ( 2003 ) Bacteriophage genomics. Curr. Opin. Microbiol. , 6 , 506 – 511
https://doi.org/10.1016/j.mib.2003.09.004
3 M. L. Metzker, ( 2010 ) Sequencing technologies—the next generation. Nat. Rev. Genet. , 11 , 31 – 46
https://doi.org/10.1038/nrg2626
4 J. Zimmermann, , H. Voss, , C. Schwager, , J. Stegemann, and W. Ansorge, ( 1988 ) Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett. , 233 , 432 – 436
https://doi.org/10.1016/0014-5793(88)80477-0
5 J. D. Watson, ( 1990 ) The human genome project: past, present, and future. Science , 248 , 44 – 49
https://doi.org/10.1126/science.2181665
6 R. Fleischmann, , M. Adams, , O. White, , R. Clayton, , E. Kirkness, , A. Kerlavage, , C. Bult, , J. Tomb, , B. Dougherty, , J. Merrick, , et al. ( 1995 ) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd . Science , 269 , 496 – 512
https://doi.org/10.1126/science.7542800
7 S. Pabinger, , A. Dander, , M. Fischer, , R. Snajder, , M. Sperk, , M. Efremova, , B. Krabichler, , M. R. Speicher, , J. Zschocke, and Z. Trajanoski, ( 2014 ) A surveyof tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. , 15 , 256 – 278
https://doi.org/10.1093/bib/bbs086
8 L. Liu, , Y. H. Li, , S. L. Li, , N. Hu, , Y. M. He, , R. Pong, , D. N. Lin, , L. H. Lu, and M. Law, ( 2012 ) Comparison of next-generation sequencing systems . J. BioMed. Biotech. , 251364
9 K. V. Voelkerding, , S. A. Dames, and J. D. Durtschi, ( 2009 ) Next-generation sequencing: from basic research to diagnostics. Clin. Chem. , 55 , 641 – 658
https://doi.org/10.1373/clinchem.2008.112789
10 P. C. Ng, and E. F. Kirkness, ( 2010 ) Whole Genome Sequencing. In Genetic Variation , pp. 215 – 226 , Springer
11 P. J. Hurd, and C. J. Nelson, ( 2009 ) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics , 8, 174 – 183
12 H. Y. Lam, , M. J. Clark, , R. Chen, , R. Chen, , G. Natsoulis, , M. O’Huallachain, , F. E. Dewey, , L. Habegger, , E. A. Ashley, , M. B. Gerstein, , et al. ( 2012 ) Performance comparison of whole-genome sequencing platforms. Nat. Biotechnol. , 30 , 78 – 82
https://doi.org/10.1038/nbt.2065
13 J. M. Carlton, , S. V. Angiuoli, , B. B. Suh, , T. W. Kooij, , M. Pertea, , J. C. Silva, , M. D. Ermolaeva, , J. E. Allen, , J. D. Selengut, , H. L. Koo, , et al. ( 2002 ) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii . Nature , 419 , 512 – 519
https://doi.org/10.1038/nature01099
14 C. D. Herring, , A. Raghunathan, , C. Honisch, , T. Patel, , M. K. Applebee, , A. R. Joyce, , T. J. Albert, , F. R. Blattner, , D. van den Boom, , C. R. Cantor, , et al. ( 2006 ) Comparative genome sequencing of Escherichia coli allows observationof bacterial evolution on a laboratory timescale. Nat. Genet. , 38 , 1406 – 1412
https://doi.org/10.1038/ng1906
15 J. R. Lupski, ( 2015 ) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ. Mol. Mutagen. , 56 , 419 – 436
https://doi.org/10.1002/em.21943
16 C. J. Saunders, , N. A. Miller, , S. E. Soden, , D. L. Dinwiddie, , A. Noll, , N. A. Alnadi, , N. Andraws, , M. L. Patterson, , L. A. Krivohlavek , J. Fellis, , et al. ( 2012 ) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Trans. Med. 4 , 154ra135
17 E. T. Cirulli, and D. B. Goldstein, ( 2010 ) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. , 11 , 415 – 425
https://doi.org/10.1038/nrg2779
18 S. B. Foley, , J. J. Rios, , V. E. Mgbemena, , L. S. Robinson, , H. L. Hampel, , A. E. Toland, , L. Durham, and T. S. Ross, ( 2015 ) Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine , 2 , 74 – 81
https://doi.org/10.1016/j.ebiom.2014.12.003
19 K. Chen, and F. Meric-Bernstam, ( 2015 ) Whole genome sequencing in cancer clinics. EBioMedicine , 2 , 15 – 16
https://doi.org/10.1016/j.ebiom.2014.12.007
20 J. S. Berg, , M. J. Khoury, and J. P. Evans, ( 2011 ) Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet.Med. , 13 , 499 – 504
https://doi.org/10.1097/GIM.0b013e318220aaba
21 F. E. Dewey, , M. E. Grove, , C. Pan, , B. A. Goldstein, , J. A. Bernstein, , H. Chaib, , J. D. Merker, , R. L. Goldfeder, , G. M. Enns, , S. P. David, , et al. ( 2014 ) Clinical interpretation and implications of whole-genome sequencing. JAMA , 311 , 1035 – 1045
https://doi.org/10.1001/jama.2014.1717
22 A. Belkadi, , A. Bolze, , Y. Itan, , A. Cobat, , Q. B. Vincent, , A. Antipenko, , L. Shang, , B. Boisson, , J.-L. Casanova, and L. Abel, ( 2015 ) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA , 112 , 5473 – 5478
https://doi.org/10.1073/pnas.1418631112
23 R. Ekblom, and J. B. Wolf, ( 2014 ) A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. , 7 , 1026 – 1042
https://doi.org/10.1111/eva.12178
24
25 E. L. van Dijk, , Y. Jaszczyszyn, and C. Thermes, ( 2014 ) Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res. , 322 , 12 – 20
https://doi.org/10.1016/j.yexcr.2014.01.008
26 M. Miyamoto, , D. Motooka, , K. Gotoh, , T. Imai, , K. Yoshitake, , N. Goto, , T. Iida, , T. Yasunaga, , T. Horii, , K. Arakawa, , et al.( 2014 ) Performance comparison of second-and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics , 15 , 699
https://doi.org/10.1186/1471-2164-15-699
27
28 S. Bao, , R. Jiang, , W. K. Kwan, , B. B. Wang, , X. Ma, and Y.-Q. Song, ( 2011 ) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet. , 56 , 406 – 414
https://doi.org/10.1038/jhg.2011.43
29 S. R. Swindell, and €T. N. Plasterer, ( 1997 ) SEQMAN. In Sequence Data Analysis Guidebook , pp. 75 – 89 , New York : Springer
30 A. Sundquist, , M. Ronaghi, , H. Tang, , P. Pevzner, and S. Batzoglou, ( 2007 ) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One , 2 , e484
https://doi.org/10.1371/journal.pone.0000484
31 K. Paszkiewicz, and D. J. Studholme, ( 2010 ) De novo assembly of short sequence reads. Brief. Bioinform. , 11, 457 – 472
32 M. Hunt, , T. Kikuchi, , M. Sanders, , C. Newbold, , M. Berriman, and T. D. Otto, ( 2013 ) REAPR: a universal tool for genome assembly evaluation. Genome Biol. , 14 , R47
https://doi.org/10.1186/gb-2013-14-5-r47
33 X. Liu, , S. Han, , Z. Wang, , J. Gelernter, and B.-Z. Yang, ( 2013 ) Variant callers for next-generation sequencing data: a comparison study. PLoS One , 8 , e75619
https://doi.org/10.1371/journal.pone.0075619
34 A. Altmann, , P. Weber, , D. Bader, , M. Preuß, , E. B. Binder, and B. Müller-Myhsok, ( 2012 ) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum. Genet. , 131 , 1541 – 1554
https://doi.org/10.1007/s00439-012-1213-z
35 M. Pirooznia, , F. S. Goes, and P. P Zandi, ( 2015 ) Whole-genome CNV analysis: advances in computational approaches. Front.Genet. , 6, 138
36 M. A. DePristo, , E. Banks, , R. Poplin, , K. V. Garimella, , J. R. Maguire, , C. Hartl, , A. A. Philippakis, , G. del Angel, , M. A. Rivas, , M. Hanna, , et al. ( 2011 ) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. , 43 , 491 – 498
https://doi.org/10.1038/ng.806
37 M. Kircher, , D. M. Witten, , P. Jain, , B. J. O’Roak, , G. M. Cooper, and J. Shendure, ( 2014 ) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. , 46 , 310 – 315
https://doi.org/10.1038/ng.2892
38 X. Liu, , X. Jian, and E. Boerwinkle, ( 2011 ) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. , 32 , 894 – 899
https://doi.org/10.1002/humu.21517
39 A. McKenna, , M. Hanna, , E. Banks, , A. Sivachenko, , K. Cibulskis, , A. Kernytsky, , K. Garimella, , D. Altshuler, , S. Gabriel, , M. Daly, , et al. ( 2010 ) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencingdata. Genome Res. , 20 , 1297 – 1303
https://doi.org/10.1101/gr.107524.110
40 U. Paila, , B. A. Chapman, , R. Kirchner, and A. R. Quinlan, ( 2013 ) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol. , 9 , e1003153
https://doi.org/10.1371/journal.pcbi.1003153
41 J. Wu, , Y. Li, and R. Jiang, ( 2014 ) Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet. , 10 , e1004237
https://doi.org/10.1371/journal.pgen.1004237
42 V. Makarov, , T. O’Grady, , G. Cai, , J. Lihm, , J. D. Buxbaum, and S. Yoon, ( 2012 ) AnnTools: a comprehensive and versatile annotation toolkit for genomic variants. Bioinformatics , 28 , 724 – 725
https://doi.org/10.1093/bioinformatics/bts032
43 K. Wang, , M. Li, and H. Hakonarson, ( 2010 ) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. , 38 , e164
https://doi.org/10.1093/nar/gkq603
44 M. Zhao, and Z. Zhao, ( 2013 ) CNVannotator: a comprehensive annotation server for copy number variation in the human genome . 8 , e80170
45 W. McLaren, , B. Pritchard, , D. Rios, , Y. Chen, , P. Flicek, and F. Cunningham, ( 2010 ) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics , 26 , 2069 – 2070
https://doi.org/10.1093/bioinformatics/btq330
46 D. Bick, and D. Dimmock, ( 2011 ) Whole exome and whole genome sequencing. Curr. Opin. Pediatr. , 23 , 594 – 600
https://doi.org/10.1097/MOP.0b013e32834b20ec
47 C. A. Gilchrist, , S. D. Turner, , M. F. Riley, , W. A. Petri, Jr and E. L. Hewlett, ( 2015 ) Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev. , 28 , 541 – 563
https://doi.org/10.1128/CMR.00075-13
48
49 Online Mendelian Inheritance in Man . Johns Hopkins University (Baltimore,MD) ,
50 D. Botstein, and N. Risch, ( 2003 ) Discovering genotypes underlying human phenotypes: pastsuccesses for mendelian disease, future approaches for complex disease. Nat. Genet. , 33 , 228 – 237
https://doi.org/10.1038/ng1090
51 C.-S. Ku, , N. Naidoo, and Y. Pawitan, ( 2011 ) Revisiting Mendelian disorders through exome sequencing. Hum. Genet. , 129 , 351 – 370
https://doi.org/10.1007/s00439-011-0964-2
52 M. J. Bamshad, , S. B. Ng, , A. W. Bigham, , H. K. Tabor, , M. J. Emond, , D. A. Nickerson, and J. Shendure, ( 2011 ) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. , 12 , 745 – 755
https://doi.org/10.1038/nrg3031
53 S. B. Ng, , K. J. Buckingham, , C. Lee, , A. W. Bigham, , H. K. Tabor, , K. M. Dent, , C. D. Huff, , P. T. Shannon, , E. W. Jabs, , D. A. Nickerson, , et al. ( 2010 ) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. , 42 , 30 – 35
https://doi.org/10.1038/ng.499
54 Y. Yang, , D. M. Muzny, , J. G. Reid, , M. N. Bainbridge, , A. Willis, , P. A. Ward, , A. Braxton, , J. Beuten, , F. Xia, , Z. Niu, , et al. ( 2013 ) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. , 369 , 1502 – 1511
https://doi.org/10.1056/NEJMoa1306555
55 S. B. Ng, , A. W. Bigham, , K. J. Buckingham, , M. C. Hannibal, , M. J. McMillin, , H.I. Gildersleeve, , A. E. Beck, , H. K. Tabor, , G. M. Cooper, , H. C. Mefford, , et al. ( 2010 ) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. , 42 , 790 – 793
https://doi.org/10.1038/ng.646
56 J. C. Roach, , G. Glusman, , A. F. A. Smit, , C. D. Huff, , R. Hubley, , P. T. Shannon, , L. Rowen, , K. P. Pant, , N. Goodman, , M. Bamshad, , et al. ( 2010 ) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science , 328 , 636 – 639
https://doi.org/10.1126/science.1186802
57 J. R. Lupski, , J. G. Reid, , C. Gonzaga-Jauregui, , D. Rio Deiros, , D. C. Y. Chen, , L. Nazareth, , M. Bainbridge, , H. Dinh, , C. Jing, , D. A. Wheeler, , et al. ( 2010 ) Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. , 362 , 1181 – 1191
https://doi.org/10.1056/NEJMoa0908094
58 G. M. Cooper, , et al. ( 2005 ) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. , 15 , 901 – 913
https://doi.org/10.1101/gr.3577405
59 J. C. Taylor, , H. C. Martin, , S. Lise, , J. Broxholme, , J.-B. Cazier, , A. Rimmer, , A. Kanapin, , G. Lunter, , S. Fiddy, , C. Allan, , et al. ( 2015 ) Factors influencing successof clinical genome sequencing across a broad spectrum of disorders. Nat. Genet. , 47 , 717 – 726
https://doi.org/10.1038/ng.3304
60 P. Kumar, , S. Henikoff, and P. C. Ng, ( 2009 ) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. , 4 , 1073 – 1081
https://doi.org/10.1038/nprot.2009.86
61 I. A. Adzhubei, , S. Schmidt, , L. Peshkin, , V. E. Ramensky, , A. Gerasimova, , P. Bork, , A. S. Kondrashov, and S. R. Sunyaev, ( 2010 ) A method and server for predicting damaging missense mutations. Nat. Methods , 7 , 248 – 249
https://doi.org/10.1038/nmeth0410-248
62 M. Kircher, , D. M. Witten, , P. Jain, , B. J. O’Roak, , G. M. Cooper, and J. Shendure, ( 2014 ) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. , 46 , 310 – 315
https://doi.org/10.1038/ng.2892
63 D. Quang, , Y. Chen, and X. Xie, ( 2015 ) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics , 31 , 761 – 763
https://doi.org/10.1093/bioinformatics/btu703
64 H. A. Shihab, , M. F. Rogers, , J. Gough, , M. Mort, , D. N. Cooper, , I. N. M Day, ., T. R. Gaunt, and C. Campbell ( 2015 ) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics , 10.1093/bioinformatics/btv009
https://doi.org/10.1093/bioinformatics/btv009
65 Y. Fu, , Z. Liu, , S. Lou, , J. Bedford, , X. J. Mu, , K. Y. Yip, , E. Khurana, and M. Gerstein, ( 2014 ) FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol. , 15 , 480
https://doi.org/10.1186/s13059-014-0480-5
66 E. Khurana, , Y. Fu, , V. Colonna, , X. J. Mu, , H. M. Kang, , T. Lappalainen, , A. Sboner, , L. Lochovsky, , J. Chen, , A. Harmanci, , et al. ( 2013 ) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science , 342 , 1235587
https://doi.org/10.1126/science.1235587
67 K.-V. Lehmann, and T. Chen, ( 2013 ) Exploring functional variant discovery in non-coding regions with SInBaD. Nucleic Acids Res. , 41 , e7
https://doi.org/10.1093/nar/gks800
68 D. Lee, , D. U. Gorkin, , M. Baker, , B. J. Strober, , A. L. Asoni, , A. S. McCallion, and M. A. Beer, ( 2015 ) A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. , 47 , 955 – 961
https://doi.org/10.1038/ng.3331
69 G. R. Ritchie, , I. Dunham, , E. Zeggini, and P. Flicek, ( 2014 ) Functional annotation of noncoding sequence variants. Nat. Methods , 11 , 294 – 296
https://doi.org/10.1038/nmeth.2832
70 F. Zhang, and J. R. Lupski, ( 2015 ) Noncoding genetic variants in human disease. Hum. Mol. Genet. ,
https://doi.org/10.1093/hmg/ddv259.
71 J. R. Lupski, ( 1998 ) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. , 14 , 417 – 422
https://doi.org/10.1016/S0168-9525(98)01555-8
72 C. Lee, and C. C. Morton, ( 2008 ) Structural genomic variation and personalized medicine. N. Engl. J. Med. , 358 , 740 – 741
https://doi.org/10.1056/NEJMcibr0708452
73 J. R. Lupski, ( 2009 ) Genomic disorders ten years on. Genome Med. , 1 , 42
https://doi.org/10.1186/gm42
74 J. F. Sathirapongsasuti, , H. Lee, , B. A. J. Horst, , G. Brunner, , A. J. Cochran, , S. Binder, , J. Quackenbush, and S. F. Nelson, ( 2011 ) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics , 27 , 2648 – 2654
https://doi.org/10.1093/bioinformatics/btr462
75 M. Fromer, , J. L. Moran, , K. Chambert, , E. Banks, , S. E. Bergen, , D. M. Ruderfer, , R. E. Handsaker, , S. A. McCarroll, , M. C. O’Donovan, , M. J. Owen, , et al. ( 2012 ) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet. , 91 , 597 – 607
https://doi.org/10.1016/j.ajhg.2012.08.005
76 C. Zong, , S. Lu, , A. R. Chapman, and X. S. Xie, ( 2012 ) Genome-wide detectionof single-nucleotide and copy-number variations of a single humancell. Science , 338 , 1622 – 1626
https://doi.org/10.1126/science.1229164
77 L. R. Cardon, and J. I. Bell, ( 2001 ) Association study designs for complex diseases. Nat. Rev. Genet. , 2 , 91 – 99
https://doi.org/10.1038/35052543
78 T. A. Manolio, , F. S. Collins, , N. J. Cox, , D. B. Goldstein, , L. A. Hindorff, , D. J. Hunter, , M. I. McCarthy, , E. M. Ramos, , L. R. Cardon, , A. Chakravarti, , et al. ( 2009 ) Finding the missing heritability of complex diseases. Nature , 461 , 747 – 753
https://doi.org/10.1038/nature08494
79 N. J. Schork, , S. S. Murray, , K. A. Frazer, and E. J. Topol, ( 2009 ) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. , 19 , 212 – 219
https://doi.org/10.1016/j.gde.2009.04.010
80 S. L. Spain, and J. C. Barrett, ( 2015 ) Strategies for fine-mapping complex traits. Hum. Mol. Genet. ,
https://doi.org/10.1093/hmg/ddv260.
81 CONVERGE consortium ( 2015 ) Sparse whole-genome sequencing identifiestwo loci for major depressive disorder . Nature , 523 , 588 –591.
82 C. Lippert, , J. Listgarten, , Y. Liu, , C. M. Kadie, , R. I. Davidson, and D. Heckerman, ( 2011 ) FaST linear mixed models for genome-wide association studies. Nat. Methods , 8 , 833 – 835
https://doi.org/10.1038/nmeth.1681
83 C. Widmer, , C. Lippert, , O. Weissbrod, , N. Fusi, , C. Kadie, , R. Davidson, , J Listgarten, . and , D. Heckerman ( 2014 ) Further improvements to linear mixed models for genome-wide association studies. Sci. Rep. , 4 , 6874
84 M. C. Wu, , S. Lee, , T. Cai, , Y. Li, , M. Boehnke, and X. Lin, ( 2011 ) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. , 89 , 82 – 93
https://doi.org/10.1016/j.ajhg.2011.05.029
85 P. N. Taylor, , E. Porcu, , S. Chew, , P. J. Campbell, , M. Traglia, , S. J. Brown, , B. H. Mullin, , H. A. Shihab, , J. Min, , K. Walter, , et al.( 2015 ) Whole-genome sequence-based analysis of thyroid function. Nat. Commun. , 6 , 5681
86 A. C. Morrison, , A. Voorman, , A. D. Johnson, , X. M. Liu, , J. Yu, , A. Li, , D. Muzny, , F. L. Yu, , K. Rice, , C. S. Zhu, , et al. ( 2013 ) Whole genome sequence-based analysis of a model complex trait, high density lipoprotein cholesterol. Nat. Genet. , 45, 899–901
https://doi.org/10.1038/ng.2671
87 G. Gibson, ( 2012 ) Rare and common variants: twenty arguments. Nat. Rev. Genet. , 13 , 135 – 145
https://doi.org/10.1038/nrg3118
88 J. Yang, , B. Benyamin, , B. P. McEvoy, , S. Gordon, , A. K. Henders, , D. R. Nyholt, , P. A. Madden, , A. C. Heath, , N. G. Martin, , G. W. Montgomery, , et al. ( 2010 ) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. , 42 , 565 – 569
https://doi.org/10.1038/ng.608
89 Y. Li, , C. Sidore, , H. M. Kang, , M. Boehnke, and G. R. Abecasis, ( 2011 ) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. , 21 , 940 – 951
https://doi.org/10.1101/gr.117259.110
90 S. L. Edwards, , J. Beesley, , J. D. French, and A. M. Dunning, ( 2013 ) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. , 93 , 779 – 797
https://doi.org/10.1016/j.ajhg.2013.10.012
91 K. K.-H. Farh, , A. Marson, , J. Zhu, , M. Kleinewietfeld, , W. J. Housley, , S. Beik, , N. Shoresh, , H. Whitton, , R. J. H. Ryan, , A. A. Shishkin, , et al. ( 2015 ) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature , 518 , 337 – 343
https://doi.org/10.1038/nature13835
92 J. B. Maller, , G. McVean, , J. Byrnes, , D. Vukcevic, , K. Palin, , Z. Su, , J. M. M. Howson, , A. Auton, , S. Myers, , A. Morris, , et al. ( 2012 ) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. , 44 , 1294 – 1301
https://doi.org/10.1038/ng.2435
93 C. E. Barbieri, , S. C. Baca, , M. S. Lawrence, , F. Demichelis, , M. Blattner, , J.-P. Theurillat, , T. A. White, , P. Stojanov, , E. Van Allen, , N. Stransky, , et al. ( 2012 ) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. , 44 , 685 – 689
https://doi.org/10.1038/ng.2279
94 K. Wang, , J. Kan, , S. T. Yuen, , S. T. Shi, , K. M. Chu, , S. Law, , T. L. Chan, , Z. Kan, , A. S. Y. Chan, , W. Y. Tsui, , et al. ( 2011 ) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. , 43 , 1219 – 1223
https://doi.org/10.1038/ng.982
95 H. Nakagawa, , C. P. Wardell, , M. Furuta, , H. Taniguchi, and A. Fujimoto, ( 2015 ) Cancer whole-genome sequencing: present and future. Oncogene , 34 , 5943 – 5950
https://doi.org/10.1038/onc.2015.90
96 F. W. Huang, , E. Hodis, , M. J. Xu, , G. V. Kryukov, , L. Chin, and L. A. Garraway, ( 2013 ) Highly recurrent TERT promoter mutations in human melanoma. Science , 339 , 957 – 959
https://doi.org/10.1126/science.1229259
97 J. Vinagre, , A. Almeida, , H. Pópulo, , R. Batista, , J. Lyra, , V. Pinto, , R. Coelho, , R. Celestino, , H. Prazeres, , L. Lima, , et al. ( 2013 ) Frequency of TERT promoter mutations in human cancers. Nat.Commun. , 4 , 2185
98 M. R. Mansour, , B. J. Abraham, , L. Anders, , A. Berezovskaya, , A. Gutierrez, , A. D. Durbin, , J. Etchin, , L. Lawton, , S. E. Sallan, , L. B. Silverman, , et al. ( 2014 ) An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science , 346 , 1373 – 1377
https://doi.org/10.1126/science.1259037
99 N. Weinhold, , A. Jacobsen, , N. Schultz, , C. Sander, and W. Lee, ( 2014 ) Genome-wide analysis of noncoding regulatory mutationsin cancer. Nat. Genet. , 46 , 1160 – 1165
https://doi.org/10.1038/ng.3101
100 N. J. Fredriksson, , L. Ny, , J. A. Nilsson, and E. Larsson, ( 2014 ) Systematic analysisof noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. , 46 , 1258 – 1263
https://doi.org/10.1038/ng.3141
101 C. Melton, , J. A. Reuter, , D. V. Spacek, and M. Snyder, ( 2015 ) Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet. , 47 , 710 – 716
https://doi.org/10.1038/ng.3332
102 B. Li, and S. M. Leal, ( 2008 ) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. , 83 , 311 – 321
https://doi.org/10.1016/j.ajhg.2008.06.024
103 D.-Y. Lin, and Z.-Z. Tang, ( 2011 ) A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. , 89 , 354 – 367
https://doi.org/10.1016/j.ajhg.2011.07.015
104 A. Gonzalez-Perez, , V. Mustonen, , B. Reva, , G. R. S. Ritchie, , P. Creixell, , R. Karchin, , M. Vazquez, , J. L. Fink, , K. S. Kassahn, , J. V. Pearson, , et al. ( 2013 ) Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods , 10 , 723 – 729
https://doi.org/10.1038/nmeth.2562
105 F. W. Albert, and L. Kruglyak, ( 2015 ) The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. , 16 , 197 – 212
https://doi.org/10.1038/nrg3891
106 M. J. Li, , B. Yan, , P. C. Sham, , and J.W. Wang, ( 2014 ) Exploring the function of genetic variants in the non-codinggenomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform. , 16 , 393 – 412
107 L. D. Ward, and M. Kellis, ( 2012 ) Interpreting noncoding genetic variation in complex traitsand human disease. Nat. Biotechnol. , 30 , 1095 – 1106
https://doi.org/10.1038/nbt.2422
108 M. V. Rockman, and L. Kruglyak, ( 2006 ) Genetics of global gene expression. Nat. Rev. Genet. , 7 , 862 – 872
https://doi.org/10.1038/nrg1964
109 J. F. Degner, , A. A. Pai, , R. Pique-Regi, , J.-B. Veyrieras, , D. J. Gaffney, , J. K. Pickrell, , S. De Leon, , K. Michelini, , N. Lewellen, , G. E. Crawford, , et al. ( 2012 ) DNase I sensitivity QTLs area major determinant of human expression variation. Nature , 482 , 390 – 394
https://doi.org/10.1038/nature10808
110 J. Monlong, , M. Calvo, , P. G. Ferreira, and R. Guigó, ( 2014 ) Identification of genetic variants associated with alternative splicing using sQTLseekeR . Nat. Commun. , 5 , 4698
111 A. Koren, , R. E. Handsaker, , N. Kamitaki, , R. Karlić, , S. Ghosh, , P. Polak, , K. Eggan, and S. A. McCarroll, ( 2014 ) Genetic variation in human DNA replication timing. Cell , 159 , 1015 – 1026
https://doi.org/10.1016/j.cell.2014.10.025
112 R. C.-H. del Rosario, , J. Poschmann, , S. L. Rouam, , E. Png, , C. C. Khor, , M. L. Hibberd, and S. Prabhakar, ( 2015 ) Sensitive detection of chromatin-altering polymorphisms reveals autoimmune diseasemechanisms. Nat. Methods , 12 , 458 – 464
https://doi.org/10.1038/nmeth.3326
113 J. R. Gibbs, , M. P. van der Brug, , D. G. Hernandez, , B. J. Traynor, , M. A. Nalls, , S.-L. Lai, , S. Arepalli, , A. Dillman, , I. P. Rafferty, , J. Troncoso, , et al. ( 2010 ) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. , 6 , e1000952
https://doi.org/10.1371/journal.pgen.1000952
114 T. Lappalainen, , M. Sammeth, , M. R. Friedländer, , P. A. C. ‘t Hoen, , J. Monlong, , M. A. Rivas, , M. Gonzàlez-Porta, , N. Kurbatova, , T. Griebel, , P. G. Ferreira, , et al., ( 2013 ) Transcriptome and genome sequencing uncovers functional variationin humans. Nature , 501 , 506 – 511
https://doi.org/10.1038/nature12531
115 M. T. Maurano, , R. Humbert, , E. Rynes, , R. E. Thurman, , E. Haugen, , H. Wang, , A. P. Reynolds, , R. Sandstrom, , H. Qu, , J. Brody, , et al. ( 2012 ) Systematic localization of common disease-associated variation in regulatory DNA. Science , 337 , 1190 – 1195
https://doi.org/10.1126/science.1222794
116 M. T. Maurano, , E. Haugen, , R. Sandstrom, , J. Vierstra, , A. Shafer, , R. Kaul, and J. A. Stamatoyannopoulos, ( 2015 ) Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo . Nat. Genet. , 47 , 1393 – 1401
https://doi.org/10.1038/ng.3432
117 M. Kasowski, , F. Grubert, , C. Heffelfinger, , M. Hariharan, , A. Asabere, , S. M. Waszak, , Lukas. Habegger, , J. Rozowsky, , M. Shi, , A. E. Urban, , et al. ( 2010 ) Variation in transcription factor binding among humans. Science 328 , 232 – 235
118 K. J. Karczewski, , J. T. Dudley, , K. R. Kukurba, , R. Chen, , A. J. Butte, , S. B. Montgomery, and M. Snyder, ( 2013 ) Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA , 110 , 9607 – 9612
https://doi.org/10.1073/pnas.1219099110
119 C. Chiang, , R. M. Layer, , G. G. Faust, , M. R. Lindberg, , D. B. Rose, , E. P. Garrison, , G. T. Marth, , A. R. Quinlan, and I. M. Hall, ( 2014 ) SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat. Meth., 12 , 966 – 968
120 P. J. Park, ( 2009 ) ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. , 10 , 669 – 680
https://doi.org/10.1038/nrg2641
121 L. Song, and G. E. Crawford, ( 2010 ) DNase-seq: a high-resolution technique for mapping activegene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. pdb . prot5384
122 J. D. Buenrostro, , P. G. Giresi, , L. C. Zaba, , H. Y. Chang, and W. J. Greenleaf, ( 2013 ) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods , 10 , 1213 – 1218
https://doi.org/10.1038/nmeth.2688
123 dbWGFP :
124 L. G. Biesecker, ( 2013 ) Hypothesis-generating research and predictive medicine. Genome Res. , 23 , 1051 – 1053
https://doi.org/10.1101/gr.157826.113
125 R. Simon, ( 2011 ) Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol. Med. , 3 , 429 – 435
https://doi.org/10.1002/emmm.201100153
126 S. Matsui, , R. Simon, , P. Qu, , J. D. Shaughnessy, , B. Barlogie, and J. Crowley, ( 2012 ) Developing and validating continuous genomic signatures in randomized clinical trials for predictive medicine. Clin. Cancer Res. , 18 , 6065 – 6073
https://doi.org/10.1158/1078-0432.CCR-12-1206
127 F. S. Collins, and H. Varmus, ( 2015 ) A new initiative on precision medicine. N. Engl. J. Med. , 372 , 793 – 795
https://doi.org/10.1056/NEJMp1500523
128 M. A. Rubin, ( 2015 ) Health: Make precision medicine work for cancer care. Nature , 520 , 290 – 291
https://doi.org/10.1038/520290a
129 J. Bellmunt, , A. Orsola, and G. Sonpavde, ( 2015 ) Precision and predictive medicine in urothelial cancer: Are we making progress? Eur. Urol. , 68 , 547 – 549
https://doi.org/10.1016/j.eururo.2015.04.025
130 D. H. Geschwind, and M. W. State, ( 2015 ) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. , 14 , 1109 – 1120
https://doi.org/10.1016/S1474-4422(15)00044-7
131 H. C. Mak, ( 2012 ) Genome interpretation and assembly—recent progress and next steps. Nat. Biotechnol. , 30 , 1081 – 1083
https://doi.org/10.1038/nbt.2425
132 J. Shendure, and E. L. Aiden, ( 2012 ) The expanding scope of DNA sequencing. Nat. Biotechnol. , 30 , 1084 – 1094
https://doi.org/10.1038/nbt.2421
133 A. Fujimoto, , H. Nakagawa, , N. Hosono, , K. Nakano, , T. Abe, , K. A. Boroevich, , M. Nagasaki, , R. Yamaguchi, , T. Shibuya, , M. Kubo, , et al. ( 2010 ) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet. , 42 , 931 – 936
https://doi.org/10.1038/ng.691
134 C. Gonzaga-Jauregui, , J. R. Lupski, and R. A. Gibbs, ( 2012 ) Human genome sequencing in health and disease. Annu. Rev. Med. , 63 , 35 – 61
https://doi.org/10.1146/annurev-med-051010-162644
[1] Minzhen Tao, Qiaochu Mu, Yurui Zhang, Zhen Xie. Construction of a CRISPR-based paired-sgRNA library for chromosomal deletion of long non-coding RNAs[J]. Quant. Biol., 2020, 8(1): 31-42.
[2] Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang. ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor[J]. Quant. Biol., 2020, 8(1): 43-50.
[3] Zhixin Ma, Pan M. Chu, Yingtong Su, Yue Yu, Hui Wen, Xiongfei Fu, Shuqiang Huang. Applications of single-cell technology on bacterial analysis[J]. Quant. Biol., 2019, 7(3): 171-181.
[4] Xingyu Liao, Min Li, You Zou, Fang-Xiang Wu, Yi-Pan, Jianxin Wang. Current challenges and solutions of de novo assembly[J]. Quant. Biol., 2019, 7(2): 90-109.
[5] Chaima Aouiche, Xuequn Shang, Bolin Chen. Copy number variation related disease genes[J]. Quant. Biol., 2018, 6(2): 99-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed