|
|
|
Revisiting the false positive rate in detecting recent positive selection |
Jinggong Xiang-Yu1,Zongfeng Yang1,2,Kun Tang1,Haipeng Li1( ) |
1. CAS Key Laboratory of Computational Biology, CAS-MPG Parter Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,China
2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract There is increasing interest in studying the molecular mechanisms of recent adaptations caused by positive selection in the genomics era. Such endeavors to detect recent positive selection, however, have been severely handicapped by false positives due to the confounding impact of demography and the population structure. To reduce false positives, it is critical to conduct a functional analysis to identify the true candidate genes/mutations from those that are filtered through neutrality tests. However, the extremely high cost of such functional analysis may restrict studies within a small number of model species. In particular, when the false positive rate of neutrality tests is high, the efficiency of the functional analysis will also be very low. Therefore, although the recent improvements have been made in the (joint) inference of demography and selection, our ultimate goal, which is to understand the mechanism of adaptation generally in a wide variety of natural populations, may not be achieved using the currently available approaches. More attention should thus be spent on the development of more reliable tests that could not only free themselves from the confounding impact of demography and the population structure but also have reasonable power to detect selection.
|
| Author Summary
Natural selection is the differential reproductive success of individuals due to variation in traits. Positive selection increases the frequency of beneficial alleles and negative selection decreases the frequency of harmful alleles. Natural selection is one of the most important mechanisms for us to understand evolution. A lot of methods have been developed to detect positive selection. However, relatively less attention has been paid to false positives of candidates, mainly due to the confounding effects of demography. By reviewing the advantages and disadvantages of different methods, we suggest that new methods robust with demography should be developed in the future. |
| Keywords
recent positive selection
selective sweep
demography
population structure
false positive
|
|
|
| Fund: |
|
Corresponding Author(s):
Haipeng Li
|
|
Just Accepted Date: 28 June 2016
Online First Date: 10 August 2016
Issue Date: 07 September 2016
|
|
| 1 |
Pulvers, J. N., Journiac, N., Arai, Y., and Nardelli, J (2015) MCPH1: a window into brain development and evolution. Front. Cell. Neurosci., 10.3389/fncel.2015.00092
|
| 2 |
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., Monaco, A. P. and Pääbo, S. (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872
https://doi.org/10.1038/nature01025
pmid: 12192408
|
| 3 |
Swallow, D. M. (2003) Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet., 37, 197–219
https://doi.org/10.1146/annurev.genet.37.110801.143820
pmid: 14616060
|
| 4 |
Poulter, M., Hollox, E., Harvey, C. B., Mulcare, C., Peuhkuri, K., Kajander, K., Sarner, M., Korpela, R. and Swallow, D. M. (2003) The causal element for the lactase persistence/non-persistence polymorphism is located in a 1 Mb region of linkage disequilibrium in Europeans. Ann. Hum. Genet., 67, 298–311
https://doi.org/10.1046/j.1469-1809.2003.00048.x
pmid: 12914565
|
| 5 |
Bersaglieri, T., Sabeti, P. C., Patterson, N., Vanderploeg, T., Schaffner, S. F., Drake, J. A., Rhodes, M., Reich, D. E. and Hirschhorn, J. N. (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet., 74, 1111–1120
https://doi.org/10.1086/421051
pmid: 15114531
|
| 6 |
Nielsen, R. (2009) Adaptionism-30 years after Gould and Lewontin. Evolution, 63, 2487–2490
https://doi.org/10.1111/j.1558-5646.2009.00799.x
pmid: 19744124
|
| 7 |
Hurst, L. D. (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat. Rev. Genet., 10, 83–93
https://doi.org/10.1038/nrg2506
pmid: 19119264
|
| 8 |
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595
pmid: 2513255
|
| 9 |
Fu, Y.-X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925
pmid: 9335623
|
| 10 |
Fay, J. C. and Wu, C.-I. (2000) Hitchhiking under positive Darwinian selection. Genetics, 155, 1405–1413
pmid: 10880498
|
| 11 |
Smith, J. M. and Haigh, J. (1974) The hitch-hiking effect of a favourable gene. Genet. Res., 23, 23–35
https://doi.org/10.1017/S0016672300014634
pmid: 4407212
|
| 12 |
Galtier, N., Depaulis, F. and Barton, N. H. (2000) Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics, 155, 981–987
pmid: 10835415
|
| 13 |
Kim, Y. and Stephan, W. (2002) Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics, 160, 765–777
pmid: 11861577
|
| 14 |
Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G. and Bustamante, C. (2005) Genomic scans for selective sweeps using SNP data. Genome Res., 15, 1566–1575
https://doi.org/10.1101/gr.4252305
pmid: 16251466
|
| 15 |
Li, H. and Stephan, W. (2005) Maximum-likelihood methods for detecting recent positive selection and localizing the selected site in the genome. Genetics, 171, 377–384
https://doi.org/10.1534/genetics.105.041368
pmid: 15972464
|
| 16 |
Fu, Y.-X. and Li, W.-H. (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693–709
pmid: 8454210
|
| 17 |
Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J., (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837
https://doi.org/10.1038/nature01140
pmid: 12397357
|
| 18 |
Zeng, K., Fu, Y.-X., Shi, S. and Wu, C.-I. (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics, 174, 1431–1439
https://doi.org/10.1534/genetics.106.061432
pmid: 16951063
|
| 19 |
MacCallum, C. and Hill, E. (2006) Being positive about selection. PLoS Biol., 4, e87
https://doi.org/10.1371/journal.pbio.0040087
pmid: 16524343
|
| 20 |
Bamshad, M. and Wooding, S. P. (2003) Signatures of natural selection in the human genome. Nat. Rev. Genet., 4, 99–111
https://doi.org/10.1038/nrg999
pmid: 12560807
|
| 21 |
Kauer, M. O., Dieringer, D. and Schlötterer, C. (2003) A microsatellite variability screen for positive selection associated with the “out of Africa” habitat expansion of Drosophila melanogaster. Genetics, 165, 1137–1148
pmid: 14668371
|
| 22 |
Sabeti, P. C., Schaffner, S. F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, O., Palma, A., Mikkelsen, T. S., Altshuler, D. and Lander, E. S. (2006) Positive natural selection in the human lineage. Science, 312, 1614–1620
https://doi.org/10.1126/science.1124309
pmid: 16778047
|
| 23 |
Pavlidis, P., Hutter, S. and Stephan, W. (2008) A population genomic approach to map recent positive selection in model species. Mol. Ecol., 17, 3585–3598
pmid: 18627454
|
| 24 |
Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. and Clark, A. G. (2007) Recent and ongoing selection in the human genome. Nat. Rev. Genet., 8, 857–868
https://doi.org/10.1038/nrg2187
pmid: 17943193
|
| 25 |
Vitti, J. J., Grossman, S. R. and Sabeti, P. C. (2013) Detecting natural selection in genomic data. Annu. Rev. Genet., 47, 97–120
https://doi.org/10.1146/annurev-genet-111212-133526
|
| 26 |
Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. and Jensen, J. D. (2014) Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet., 30, 540–546
https://doi.org/10.1016/j.tig.2014.09.010
pmid: 25438719
|
| 27 |
Pool, J. E., Hellmann, I., Jensen, J. D. and Nielsen, R. (2010) Population genetic inference from genomic sequence variation. Genome Res., 20, 291–300
https://doi.org/10.1101/gr.079509.108
pmid: 20067940
|
| 28 |
Chen, H., Patterson, N. and Reich, D. (2010) Population differentiation as a test for selective sweeps. Genome Res., 20, 393–402
https://doi.org/10.1101/gr.100545.109
pmid: 20086244
|
| 29 |
Karlsson, E. K., Kwiatkowski, D. P. and Sabeti, P. C. (2014) Natural selection and infectious disease in human populations. Nat. Rev. Genet., 15, 379–393
https://doi.org/10.1038/nrg3734
pmid: 24776769
|
| 30 |
Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499–503
https://doi.org/10.1038/nature16152
pmid: 26595274
|
| 31 |
Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597–601
pmid: 2599369
|
| 32 |
Jensen, J. D., Kim, Y., DuMont, V. B., Aquadro, C. F. and Bustamante, C. D. (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics, 170, 1401–1410
https://doi.org/10.1534/genetics.104.038224
pmid: 15911584
|
| 33 |
Przeworski, M. (2002) The signature of positive selection at randomly chosen loci. Genetics, 160, 1179–1189
pmid: 11901132
|
| 34 |
Hudson, R. R. (1990) Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology. Vol. 7, D. Futuyma and J. Antonovics, Editors. 1–44 New York: Oxford University Press
|
| 35 |
Hudson, R. R. (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337–338
https://doi.org/10.1093/bioinformatics/18.2.337
pmid: 11847089
|
| 36 |
Achaz, G. (2009) Frequency spectrum neutrality tests: one for all and all for one. Genetics, 183, 249–258
https://doi.org/10.1534/genetics.109.104042
pmid: 19546320
|
| 37 |
Li, H. (2011) A new test for detecting recent positive selection that is free from the confounding impacts of demography. Mol. Biol. Evol., 28, 365–375
https://doi.org/10.1093/molbev/msq211
pmid: 20709734
|
| 38 |
Cornuet, J. M. and Luikart, G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014
pmid: 8978083
|
| 39 |
Schlötterer, C., Kauer, M. and Dieringer, D. (2004) Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proc. Biol. Sci., 271, 869–874
https://doi.org/10.1098/rspb.2003.2662
pmid: 15255107
|
| 40 |
Li, H. and Wiehe, T. (2013) Coalescent tree imbalance and a simple test for selective sweeps based on microsatellite variation. PLoS Comput. Biol., 9, e1003060
https://doi.org/10.1371/journal.pcbi.1003060
pmid: 23696722
|
| 41 |
Thornton, K. R. and Jensen, J. D. (2007) Controlling the false-positive rate in multilocus genome scans for selection. Genetics, 175, 737–750
https://doi.org/10.1534/genetics.106.064642
pmid: 17110489
|
| 42 |
Li, H. and Stephan, W. (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet., 2, e166
https://doi.org/10.1371/journal.pgen.0020166
pmid: 17040129
|
| 43 |
Parsch, J., Meiklejohn, C. D. and Hartl, D. L. (2001) Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics, 159, 647–657
pmid: 11606541
|
| 44 |
Stephan, W., Song, Y. S. and Langley, C. H. (2006) The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics, 172, 2647–2663
https://doi.org/10.1534/genetics.105.050179
pmid: 16452153
|
| 45 |
McVean, G. (2007) The structure of linkage disequilibrium around a selective sweep. Genetics, 175, 1395–1406
https://doi.org/10.1534/genetics.106.062828
pmid: 17194788
|
| 46 |
Kim, Y. and Nielsen, R. (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics, 167, 1513–1524
https://doi.org/10.1534/genetics.103.025387
pmid: 15280259
|
| 47 |
Jensen, J. D., Thornton, K. R., Bustamante, C. D. and Aquadro, C. F. (2007) On the utility of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium populations. Genetics, 176, 2371–2379
https://doi.org/10.1534/genetics.106.069450
pmid: 17565955
|
| 48 |
Akey, J. M., Zhang, G., Zhang, K., Jin, L. and Shriver, M. D. (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res., 12, 1805–1814
https://doi.org/10.1101/gr.631202
pmid: 12466284
|
| 49 |
Pickrell, J. K., Coop, G., Novembre, J., Kudaravalli, S., Li, J. Z., Absher, D., Srinivasan, B. S., Barsh, G. S., Myers, R. M., Feldman, M. W., (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res., 19, 826–837
https://doi.org/10.1101/gr.087577.108
pmid: 19307593
|
| 50 |
Kayser, M., Brauer, S. and Stoneking, M. (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Mol. Biol. Evol., 20, 893–900
https://doi.org/10.1093/molbev/msg092
pmid: 12717000
|
| 51 |
Storz, J. F., Payseur, B. A. and Nachman, M. W. (2004) Genome scans of DNA variability in humans reveal evidence for selective sweeps outside of Africa. Mol. Biol. Evol., 21, 1800–1811
https://doi.org/10.1093/molbev/msh192
pmid: 15201398
|
| 52 |
Carlson, C. S., Thomas, D. J., Eberle, M. A., Swanson, J. E., Livingston, R. J., Rieder, M. J. and Nickerson, D. A. (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res., 15, 1553–1565
https://doi.org/10.1101/gr.4326505
pmid: 16251465
|
| 53 |
Voight, B. F., Kudaravalli, S., Wen, X. and Pritchard, J. K. (2006) A map of recent positive selection in the human genome. PLoS Biol., 4, e72
https://doi.org/10.1371/journal.pbio.0040072
pmid: 16494531
|
| 54 |
Tang, K., Thornton, K. R. and Stoneking, M. (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol., 5, e171
https://doi.org/10.1371/journal.pbio.0050171
pmid: 17579516
|
| 55 |
Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E. H., McCarroll, S. A., Gaudet, R., , (2007) Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913–918
https://doi.org/10.1038/nature06250
pmid: 17943131
|
| 56 |
Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., Cann, H. M., Barsh, G. S., Feldman, M., Cavalli-Sforza, L. L., (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100–1104
https://doi.org/10.1126/science.1153717
pmid: 18292342
|
| 57 |
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y., (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722
https://doi.org/10.1126/science.1188021
pmid: 20448178
|
| 58 |
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060
https://doi.org/10.1038/nature09710
pmid: 21179161
|
| 59 |
Akey, J. M. (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res., 19, 711–722
https://doi.org/10.1101/gr.086652.108
pmid: 19411596
|
| 60 |
Fu, W. Q. and Akey, J. M. (2013) Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. G.,14,467-489
https://doi.org/10.1146/annurev-genom-091212-153509
|
| 61 |
Huerta-Sánchez, E., Jin, X., Asan, , Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., SomelM., (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197
https://doi.org/10.1038/nature13408
pmid: 25043035
|
| 62 |
Teschke, M., Mukabayire, O., Wiehe, T. and Tautz, D. (2008) Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics, 180, 1537–1545
https://doi.org/10.1534/genetics.108.090811
pmid: 18791245
|
| 63 |
Glinka, S., Ometto, L., Mousset, S., Stephan, W. and De Lorenzo, D. (2003) Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. Genetics, 165, 1269–1278
pmid: 14668381
|
| 64 |
Ometto, L., Glinka, S., De Lorenzo, D. and Stephan, W. (2005) Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol. Biol. Evol., 22, 2119–2130
https://doi.org/10.1093/molbev/msi207
pmid: 15987874
|
| 65 |
Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O. and Long, M. (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science, 320, 1629–1631
https://doi.org/10.1126/science.1158078
pmid: 18535209
|
| 66 |
Pavlidis, P., Jensen, J. D., Stephan, W. and Stamatakis, A. (2012) A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol. Biol. Evol., 29, 3237–3248
https://doi.org/10.1093/molbev/mss136
pmid: 22617950
|
| 67 |
Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weisshaar, B. and Mitchell-Olds, T. (2005) A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics, 169, 1601–1615
https://doi.org/10.1534/genetics.104.033795
pmid: 15654111
|
| 68 |
Borevitz, J. O., Hazen, S. P., Michael, T. P., Morris, G. P., Baxter, I. R., Hu, T. T., Chen, H., Werner, J. D., Nordborg, M., Salt, D. E., (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 104, 12057–12062
https://doi.org/10.1073/pnas.0705323104
pmid: 17626786
|
| 69 |
Stajich, J. E. and Hahn, M. W. (2005) Disentangling the effects of demography and selection in human history. Mol. Biol. Evol., 22, 63–73
https://doi.org/10.1093/molbev/msh252
pmid: 15356276
|
| 70 |
Wang, E. T., Kodama, G., Baldi, P. and Moyzis, R. K. (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA, 103, 135–140
https://doi.org/10.1073/pnas.0509691102
pmid: 16371466
|
| 71 |
Kuehl, P., Zhang, J., Lin, Y., Lamba, J., Assem, M., Schuetz, J., Watkins, P. B., Daly, A., Wrighton, S. A., Hall, S. D., (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 27, 383–391
https://doi.org/10.1038/86882
pmid: 11279519
|
| 72 |
Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., Jurynec, M. J., Mao, X., Humphreville, V. R., Humbert, J. E., (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310, 1782–1786
https://doi.org/10.1126/science.1116238
pmid: 16357253
|
| 73 |
Lewontin, R. C. and Krakauer, J. (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175–195
pmid: 4711903
|
| 74 |
Beaumont, M. and Nichols, R. A. (1996) Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B Biol. Sci., 263, 1619–1626
https://doi.org/10.1098/rspb.1996.0237
|
| 75 |
Beaumont, M. A. and Balding, D. J. (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol., 13, 969–980
https://doi.org/10.1111/j.1365-294X.2004.02125.x
pmid: 15012769
|
| 76 |
Nei, M. and Maruyama, T. (1975) Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics, 80, 395
|
| 77 |
Charlesworth, B., Nordborg, M. and Charlesworth, D. (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res., 70, 155–174
https://doi.org/10.1017/S0016672397002954
pmid: 9449192
|
| 78 |
Stephan, W., Xing, L., Kirby, D. A. and Braverman, J. M. (1998) A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc. Natl. Acad. Sci. USA, 95, 5649–5654
https://doi.org/10.1073/pnas.95.10.5649
pmid: 9576938
|
| 79 |
Weir, B. S., Cardon, L. R., Anderson, A. D., Nielsen, D. M. and Hill, W. G. (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res., 15, 1468–1476
https://doi.org/10.1101/gr.4398405
pmid: 16251456
|
| 80 |
Di Rienzo, A., Donnelly, P., Toomajian, C., Sisk, B., Hill, A., Petzl-Erler, M. L., Haines, G. K. and Barch, D. H. (1998) Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics, 148, 1269–1284
pmid: 9539441
|
| 81 |
Harr, B., Zangerl, B., Brem, G. and Schlötterer, C. (1998) Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Mol. Biol. Evol., 15, 176–184
https://doi.org/10.1093/oxfordjournals.molbev.a025913
pmid: 9491614
|
| 82 |
Schlötterer, C. (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753–763
pmid: 11861576
|
| 83 |
Wiehe, T., Nolte, V., Zivkovic, D. and Schlötterer, C. (2007) Identification of selective sweeps using a dynamically adjusted number of linked microsatellites. Genetics, 175, 207–218
https://doi.org/10.1534/genetics.106.063677
pmid: 17057237
|
| 84 |
Grossman, S. R., Shlyakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., Hostetter, E., Angelino, E., Garber, M., Zuk, O., (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science, 327, 883–886
https://doi.org/10.1126/science.1183863
pmid: 20056855
|
| 85 |
Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., Park, D. J., Griesemer, D., Karlsson, E. K., Wong, S. H., (2013) Identifying recent adaptations in large-scale genomic data. Cell, 152, 703–713
https://doi.org/10.1016/j.cell.2013.01.035
pmid: 23415221
|
| 86 |
Lin, K., Li, H., Schlötterer, C. and Futschik, A. (2011) Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics, 187, 229–244
https://doi.org/10.1534/genetics.110.122614
pmid: 21041556
|
| 87 |
Pybus, M., Luisi, P., Dall'Olio, G., Uzkudun, M., Laayouni, H., Bertranpetit, J. and Engelken, J. (2015) Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics, 31, 3946–3952.
https://doi.org/10.1093/bioinformatics/btv493
|
| 88 |
Markovtsova, L., Marjoram, P. and Tavaré, S. (2000) The effects of rate variation on ancestral inference in the coalescent. Genetics, 156, 1427–1436
pmid: 11063714
|
| 89 |
Aris-Brosou, S. and Excoffier, L. (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol., 13, 494–504
https://doi.org/10.1093/oxfordjournals.molbev.a025610
pmid: 8742638
|
| 90 |
Huber, C. D., DeGiorgio, M., Hellmann, I. and Nielsen, R. (2016) Detecting recent selective sweeps while controlling for mutation rate and background selection. Mol. Ecol., 25, 142–156
https://doi.org/10.1111/mec.13351
pmid: 26290347
|
| 91 |
O’Reilly, P. F., Birney, E. and Balding, D. J. (2008) Confounding between recombination and selection, and the Ped/Pop method for detecting selection. Genome Res., 18, 1304–1313
https://doi.org/10.1101/gr.067181.107
pmid: 18617692
|
| 92 |
Reed, F. A. and Tishkoff, S. A. (2006) Positive selection can create false hotspots of recombination. Genetics, 172, 2011–2014
https://doi.org/10.1534/genetics.105.052183
pmid: 16387873
|
| 93 |
Li, J., Li, H., Jakobsson, M., Li, S., Sjödin, P. and Lascoux, M. (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol. Ecol., 21, 28–44
https://doi.org/10.1111/j.1365-294X.2011.05308.x
pmid: 21999307
|
| 94 |
Stephan, W. (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol. Ecol., 25, 79–88
https://doi.org/10.1111/mec.13288
pmid: 26108992
|
| 95 |
Kelley, J. L. and Swanson, W. J. (2008) Positive selection in the human genome: from genome scans to biological significance. Annu. Rev. Genomics Hum. Genet., 9, 143–160
https://doi.org/10.1146/annurev.genom.9.081307.164411
pmid: 18505377
|
| 96 |
Zhai, W., Nielsen, R. and Slatkin, M. (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol. Biol. Evol., 26, 273–283
https://doi.org/10.1093/molbev/msn231
pmid: 18922762
|
| 97 |
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. and Bustamante, C. D. (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet., 5, e1000695
https://doi.org/10.1371/journal.pgen.1000695
pmid: 19851460
|
| 98 |
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. and Foll, M. (2013) Robust demographic inference from genomic and SNP data. PLoS Genet., 9, e1003905
https://doi.org/10.1371/journal.pgen.1003905
pmid: 24204310
|
| 99 |
Nielsen, R., Hubisz, M. J., Hellmann, I., Torgerson, D., Andrés, A. M., Albrechtsen, A., Gutenkunst, R., Adams, M. D., Cargill, M., Boyko, A., (2009) Darwinian and demographic forces affecting human protein coding genes. Genome Res., 19, 838–849
https://doi.org/10.1101/gr.088336.108
pmid: 19279335
|
| 100 |
Fijarczyk, A. and Babik, W. (2015) Detecting balancing selection in genomes: limits and prospects. Mol. Ecol., 24, 3529–3545
https://doi.org/10.1111/mec.13226
pmid: 25943689
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|