Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (3) : 207-216    https://doi.org/10.1007/s40484-016-0077-y
REVIEW
Revisiting the false positive rate in detecting recent positive selection
Jinggong Xiang-Yu1,Zongfeng Yang1,2,Kun Tang1,Haipeng Li1()
1. CAS Key Laboratory of Computational Biology, CAS-MPG Parter Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(307 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There is increasing interest in studying the molecular mechanisms of recent adaptations caused by positive selection in the genomics era. Such endeavors to detect recent positive selection, however, have been severely handicapped by false positives due to the confounding impact of demography and the population structure. To reduce false positives, it is critical to conduct a functional analysis to identify the true candidate genes/mutations from those that are filtered through neutrality tests. However, the extremely high cost of such functional analysis may restrict studies within a small number of model species. In particular, when the false positive rate of neutrality tests is high, the efficiency of the functional analysis will also be very low. Therefore, although the recent improvements have been made in the (joint) inference of demography and selection, our ultimate goal, which is to understand the mechanism of adaptation generally in a wide variety of natural populations, may not be achieved using the currently available approaches. More attention should thus be spent on the development of more reliable tests that could not only free themselves from the confounding impact of demography and the population structure but also have reasonable power to detect selection.

Author Summary   

Natural selection is the differential reproductive success of individuals due to variation in traits. Positive selection increases the frequency of beneficial alleles and negative selection decreases the frequency of harmful alleles. Natural selection is one of the most important mechanisms for us to understand evolution. A lot of methods have been developed to detect positive selection. However, relatively less attention has been paid to false positives of candidates, mainly due to the confounding effects of demography. By reviewing the advantages and disadvantages of different methods, we suggest that new methods robust with demography should be developed in the future.

Keywords recent positive selection      selective sweep      demography      population structure      false positive     
PACS:     
Fund: 
Corresponding Author(s): Haipeng Li   
Just Accepted Date: 28 June 2016   Online First Date: 10 August 2016    Issue Date: 07 September 2016
 Cite this article:   
Jinggong Xiang-Yu,Zongfeng Yang,Kun Tang, et al. Revisiting the false positive rate in detecting recent positive selection[J]. Quant. Biol., 2016, 4(3): 207-216.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0077-y
https://academic.hep.com.cn/qb/EN/Y2016/V4/I3/207
Fig.1  The increasing interest in detecting recent positive selection.

Times cited are from the year of the publication of three key methodological papers until the end of 2014. Data were collated from ISI Web of Knowledge.

Fig.2  Illustration of how haplotype profile changes under neutrality.

Under neutrality, the change of allele frequency of the new mutation (blue) takes a long time, so that by the time it reaches a high level, the original haplotype associated with it (the yellow bars) has already decayed substantially. Under positive selection, the integrality of the ancestral haplotype remains at a high level because the allele frequency increases very rapidly.

1 Pulvers, J. N., Journiac, N., Arai, Y., and Nardelli, J (2015) MCPH1: a window into brain development and evolution. Front. Cell. Neurosci., 10.3389/fncel.2015.00092
2 Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., Monaco, A. P. and Pääbo, S. (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872
https://doi.org/10.1038/nature01025 pmid: 12192408
3 Swallow, D. M. (2003) Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet., 37, 197–219
https://doi.org/10.1146/annurev.genet.37.110801.143820 pmid: 14616060
4 Poulter, M., Hollox, E., Harvey, C. B., Mulcare, C., Peuhkuri, K., Kajander, K., Sarner, M., Korpela, R. and Swallow, D. M. (2003) The causal element for the lactase persistence/non-persistence polymorphism is located in a 1 Mb region of linkage disequilibrium in Europeans. Ann. Hum. Genet., 67, 298–311
https://doi.org/10.1046/j.1469-1809.2003.00048.x pmid: 12914565
5 Bersaglieri, T., Sabeti, P. C., Patterson, N., Vanderploeg, T., Schaffner, S. F., Drake, J. A., Rhodes, M., Reich, D. E. and Hirschhorn, J. N. (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet., 74, 1111–1120
https://doi.org/10.1086/421051 pmid: 15114531
6 Nielsen, R. (2009) Adaptionism-30 years after Gould and Lewontin. Evolution, 63, 2487–2490
https://doi.org/10.1111/j.1558-5646.2009.00799.x pmid: 19744124
7 Hurst, L. D. (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat. Rev. Genet., 10, 83–93
https://doi.org/10.1038/nrg2506 pmid: 19119264
8 Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595
pmid: 2513255
9 Fu, Y.-X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925
pmid: 9335623
10 Fay, J. C. and Wu, C.-I. (2000) Hitchhiking under positive Darwinian selection. Genetics, 155, 1405–1413
pmid: 10880498
11 Smith, J. M. and Haigh, J. (1974) The hitch-hiking effect of a favourable gene. Genet. Res., 23, 23–35
https://doi.org/10.1017/S0016672300014634 pmid: 4407212
12 Galtier, N., Depaulis, F. and Barton, N. H. (2000) Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics, 155, 981–987
pmid: 10835415
13 Kim, Y. and Stephan, W. (2002) Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics, 160, 765–777
pmid: 11861577
14 Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G. and Bustamante, C. (2005) Genomic scans for selective sweeps using SNP data. Genome Res., 15, 1566–1575
https://doi.org/10.1101/gr.4252305 pmid: 16251466
15 Li, H. and Stephan, W. (2005) Maximum-likelihood methods for detecting recent positive selection and localizing the selected site in the genome. Genetics, 171, 377–384
https://doi.org/10.1534/genetics.105.041368 pmid: 15972464
16 Fu, Y.-X. and Li, W.-H. (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693–709
pmid: 8454210
17 Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J., (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837
https://doi.org/10.1038/nature01140 pmid: 12397357
18 Zeng, K., Fu, Y.-X., Shi, S. and Wu, C.-I. (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics, 174, 1431–1439
https://doi.org/10.1534/genetics.106.061432 pmid: 16951063
19 MacCallum, C. and Hill, E. (2006) Being positive about selection. PLoS Biol., 4, e87
https://doi.org/10.1371/journal.pbio.0040087 pmid: 16524343
20 Bamshad, M. and Wooding, S. P. (2003) Signatures of natural selection in the human genome. Nat. Rev. Genet., 4, 99–111
https://doi.org/10.1038/nrg999 pmid: 12560807
21 Kauer, M. O., Dieringer, D. and Schlötterer, C. (2003) A microsatellite variability screen for positive selection associated with the “out of Africa” habitat expansion of Drosophila melanogaster. Genetics, 165, 1137–1148
pmid: 14668371
22 Sabeti, P. C., Schaffner, S. F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, O., Palma, A., Mikkelsen, T. S., Altshuler, D. and Lander, E. S. (2006) Positive natural selection in the human lineage. Science, 312, 1614–1620
https://doi.org/10.1126/science.1124309 pmid: 16778047
23 Pavlidis, P., Hutter, S. and Stephan, W. (2008) A population genomic approach to map recent positive selection in model species. Mol. Ecol., 17, 3585–3598
pmid: 18627454
24 Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. and Clark, A. G. (2007) Recent and ongoing selection in the human genome. Nat. Rev. Genet., 8, 857–868
https://doi.org/10.1038/nrg2187 pmid: 17943193
25 Vitti, J. J., Grossman, S. R. and Sabeti, P. C. (2013) Detecting natural selection in genomic data. Annu. Rev. Genet., 47, 97–120
https://doi.org/10.1146/annurev-genet-111212-133526
26 Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. and Jensen, J. D. (2014) Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet., 30, 540–546
https://doi.org/10.1016/j.tig.2014.09.010 pmid: 25438719
27 Pool, J. E., Hellmann, I., Jensen, J. D. and Nielsen, R. (2010) Population genetic inference from genomic sequence variation. Genome Res., 20, 291–300
https://doi.org/10.1101/gr.079509.108 pmid: 20067940
28 Chen, H., Patterson, N. and Reich, D. (2010) Population differentiation as a test for selective sweeps. Genome Res., 20, 393–402
https://doi.org/10.1101/gr.100545.109 pmid: 20086244
29 Karlsson, E. K., Kwiatkowski, D. P. and Sabeti, P. C. (2014) Natural selection and infectious disease in human populations. Nat. Rev. Genet., 15, 379–393
https://doi.org/10.1038/nrg3734 pmid: 24776769
30 Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499–503
https://doi.org/10.1038/nature16152 pmid: 26595274
31 Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597–601
pmid: 2599369
32 Jensen, J. D., Kim, Y., DuMont, V. B., Aquadro, C. F. and Bustamante, C. D. (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics, 170, 1401–1410
https://doi.org/10.1534/genetics.104.038224 pmid: 15911584
33 Przeworski, M. (2002) The signature of positive selection at randomly chosen loci. Genetics, 160, 1179–1189
pmid: 11901132
34 Hudson, R. R. (1990) Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology. Vol. 7, D. Futuyma and J. Antonovics, Editors. 1–44 New York: Oxford University Press
35 Hudson, R. R. (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337–338
https://doi.org/10.1093/bioinformatics/18.2.337 pmid: 11847089
36 Achaz, G. (2009) Frequency spectrum neutrality tests: one for all and all for one. Genetics, 183, 249–258
https://doi.org/10.1534/genetics.109.104042 pmid: 19546320
37 Li, H. (2011) A new test for detecting recent positive selection that is free from the confounding impacts of demography. Mol. Biol. Evol., 28, 365–375
https://doi.org/10.1093/molbev/msq211 pmid: 20709734
38 Cornuet, J. M. and Luikart, G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014
pmid: 8978083
39 Schlötterer, C., Kauer, M. and Dieringer, D. (2004) Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proc. Biol. Sci., 271, 869–874
https://doi.org/10.1098/rspb.2003.2662 pmid: 15255107
40 Li, H. and Wiehe, T. (2013) Coalescent tree imbalance and a simple test for selective sweeps based on microsatellite variation. PLoS Comput. Biol., 9, e1003060
https://doi.org/10.1371/journal.pcbi.1003060 pmid: 23696722
41 Thornton, K. R. and Jensen, J. D. (2007) Controlling the false-positive rate in multilocus genome scans for selection. Genetics, 175, 737–750
https://doi.org/10.1534/genetics.106.064642 pmid: 17110489
42 Li, H. and Stephan, W. (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet., 2, e166
https://doi.org/10.1371/journal.pgen.0020166 pmid: 17040129
43 Parsch, J., Meiklejohn, C. D. and Hartl, D. L. (2001) Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics, 159, 647–657
pmid: 11606541
44 Stephan, W., Song, Y. S. and Langley, C. H. (2006) The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics, 172, 2647–2663
https://doi.org/10.1534/genetics.105.050179 pmid: 16452153
45 McVean, G. (2007) The structure of linkage disequilibrium around a selective sweep. Genetics, 175, 1395–1406
https://doi.org/10.1534/genetics.106.062828 pmid: 17194788
46 Kim, Y. and Nielsen, R. (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics, 167, 1513–1524
https://doi.org/10.1534/genetics.103.025387 pmid: 15280259
47 Jensen, J. D., Thornton, K. R., Bustamante, C. D. and Aquadro, C. F. (2007) On the utility of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium populations. Genetics, 176, 2371–2379
https://doi.org/10.1534/genetics.106.069450 pmid: 17565955
48 Akey, J. M., Zhang, G., Zhang, K., Jin, L. and Shriver, M. D. (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res., 12, 1805–1814
https://doi.org/10.1101/gr.631202 pmid: 12466284
49 Pickrell, J. K., Coop, G., Novembre, J., Kudaravalli, S., Li, J. Z., Absher, D., Srinivasan, B. S., Barsh, G. S., Myers, R. M., Feldman, M. W., (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res., 19, 826–837
https://doi.org/10.1101/gr.087577.108 pmid: 19307593
50 Kayser, M., Brauer, S. and Stoneking, M. (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Mol. Biol. Evol., 20, 893–900
https://doi.org/10.1093/molbev/msg092 pmid: 12717000
51 Storz, J. F., Payseur, B. A. and Nachman, M. W. (2004) Genome scans of DNA variability in humans reveal evidence for selective sweeps outside of Africa. Mol. Biol. Evol., 21, 1800–1811
https://doi.org/10.1093/molbev/msh192 pmid: 15201398
52 Carlson, C. S., Thomas, D. J., Eberle, M. A., Swanson, J. E., Livingston, R. J., Rieder, M. J. and Nickerson, D. A. (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res., 15, 1553–1565
https://doi.org/10.1101/gr.4326505 pmid: 16251465
53 Voight, B. F., Kudaravalli, S., Wen, X. and Pritchard, J. K. (2006) A map of recent positive selection in the human genome. PLoS Biol., 4, e72
https://doi.org/10.1371/journal.pbio.0040072 pmid: 16494531
54 Tang, K., Thornton, K. R. and Stoneking, M. (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol., 5, e171
https://doi.org/10.1371/journal.pbio.0050171 pmid: 17579516
55 Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E. H., McCarroll, S. A., Gaudet, R., , (2007) Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913–918
https://doi.org/10.1038/nature06250 pmid: 17943131
56 Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., Cann, H. M., Barsh, G. S., Feldman, M., Cavalli-Sforza, L. L., (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100–1104
https://doi.org/10.1126/science.1153717 pmid: 18292342
57 Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y., (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722
https://doi.org/10.1126/science.1188021 pmid: 20448178
58 Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060
https://doi.org/10.1038/nature09710 pmid: 21179161
59 Akey, J. M. (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res., 19, 711–722
https://doi.org/10.1101/gr.086652.108 pmid: 19411596
60 Fu, W. Q. and Akey, J. M. (2013) Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. G.,14,467-489
https://doi.org/10.1146/annurev-genom-091212-153509
61 Huerta-Sánchez, E., Jin, X., Asan, , Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., SomelM., (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197
https://doi.org/10.1038/nature13408 pmid: 25043035
62 Teschke, M., Mukabayire, O., Wiehe, T. and Tautz, D. (2008) Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics, 180, 1537–1545
https://doi.org/10.1534/genetics.108.090811 pmid: 18791245
63 Glinka, S., Ometto, L., Mousset, S., Stephan, W. and De Lorenzo, D. (2003) Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. Genetics, 165, 1269–1278
pmid: 14668381
64 Ometto, L., Glinka, S., De Lorenzo, D. and Stephan, W. (2005) Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol. Biol. Evol., 22, 2119–2130
https://doi.org/10.1093/molbev/msi207 pmid: 15987874
65 Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O. and Long, M. (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science, 320, 1629–1631
https://doi.org/10.1126/science.1158078 pmid: 18535209
66 Pavlidis, P., Jensen, J. D., Stephan, W. and Stamatakis, A. (2012) A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol. Biol. Evol., 29, 3237–3248
https://doi.org/10.1093/molbev/mss136 pmid: 22617950
67 Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weisshaar, B. and Mitchell-Olds, T. (2005) A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics, 169, 1601–1615
https://doi.org/10.1534/genetics.104.033795 pmid: 15654111
68 Borevitz, J. O., Hazen, S. P., Michael, T. P., Morris, G. P., Baxter, I. R., Hu, T. T., Chen, H., Werner, J. D., Nordborg, M., Salt, D. E., (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 104, 12057–12062
https://doi.org/10.1073/pnas.0705323104 pmid: 17626786
69 Stajich, J. E. and Hahn, M. W. (2005) Disentangling the effects of demography and selection in human history. Mol. Biol. Evol., 22, 63–73
https://doi.org/10.1093/molbev/msh252 pmid: 15356276
70 Wang, E. T., Kodama, G., Baldi, P. and Moyzis, R. K. (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA, 103, 135–140
https://doi.org/10.1073/pnas.0509691102 pmid: 16371466
71 Kuehl, P., Zhang, J., Lin, Y., Lamba, J., Assem, M., Schuetz, J., Watkins, P. B., Daly, A., Wrighton, S. A., Hall, S. D., (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 27, 383–391
https://doi.org/10.1038/86882 pmid: 11279519
72 Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., Jurynec, M. J., Mao, X., Humphreville, V. R., Humbert, J. E., (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310, 1782–1786
https://doi.org/10.1126/science.1116238 pmid: 16357253
73 Lewontin, R. C. and Krakauer, J. (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175–195
pmid: 4711903
74 Beaumont, M. and Nichols, R. A. (1996) Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B Biol. Sci., 263, 1619–1626
https://doi.org/10.1098/rspb.1996.0237
75 Beaumont, M. A. and Balding, D. J. (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol., 13, 969–980
https://doi.org/10.1111/j.1365-294X.2004.02125.x pmid: 15012769
76 Nei, M. and Maruyama, T. (1975) Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics, 80, 395
77 Charlesworth, B., Nordborg, M. and Charlesworth, D. (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res., 70, 155–174
https://doi.org/10.1017/S0016672397002954 pmid: 9449192
78 Stephan, W., Xing, L., Kirby, D. A. and Braverman, J. M. (1998) A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc. Natl. Acad. Sci. USA, 95, 5649–5654
https://doi.org/10.1073/pnas.95.10.5649 pmid: 9576938
79 Weir, B. S., Cardon, L. R., Anderson, A. D., Nielsen, D. M. and Hill, W. G. (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res., 15, 1468–1476
https://doi.org/10.1101/gr.4398405 pmid: 16251456
80 Di Rienzo, A., Donnelly, P., Toomajian, C., Sisk, B., Hill, A., Petzl-Erler, M. L., Haines, G. K. and Barch, D. H. (1998) Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics, 148, 1269–1284
pmid: 9539441
81 Harr, B., Zangerl, B., Brem, G. and Schlötterer, C. (1998) Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Mol. Biol. Evol., 15, 176–184
https://doi.org/10.1093/oxfordjournals.molbev.a025913 pmid: 9491614
82 Schlötterer, C. (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753–763
pmid: 11861576
83 Wiehe, T., Nolte, V., Zivkovic, D. and Schlötterer, C. (2007) Identification of selective sweeps using a dynamically adjusted number of linked microsatellites. Genetics, 175, 207–218
https://doi.org/10.1534/genetics.106.063677 pmid: 17057237
84 Grossman, S. R., Shlyakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., Hostetter, E., Angelino, E., Garber, M., Zuk, O., (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science, 327, 883–886
https://doi.org/10.1126/science.1183863 pmid: 20056855
85 Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., Park, D. J., Griesemer, D., Karlsson, E. K., Wong, S. H., (2013) Identifying recent adaptations in large-scale genomic data. Cell, 152, 703–713
https://doi.org/10.1016/j.cell.2013.01.035 pmid: 23415221
86 Lin, K., Li, H., Schlötterer, C. and Futschik, A. (2011) Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics, 187, 229–244
https://doi.org/10.1534/genetics.110.122614 pmid: 21041556
87 Pybus, M., Luisi, P., Dall'Olio, G., Uzkudun, M., Laayouni, H., Bertranpetit, J. and Engelken, J. (2015) Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics, 31, 3946–3952.
https://doi.org/10.1093/bioinformatics/btv493
88 Markovtsova, L., Marjoram, P. and Tavaré, S. (2000) The effects of rate variation on ancestral inference in the coalescent. Genetics, 156, 1427–1436
pmid: 11063714
89 Aris-Brosou, S. and Excoffier, L. (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol., 13, 494–504
https://doi.org/10.1093/oxfordjournals.molbev.a025610 pmid: 8742638
90 Huber, C. D., DeGiorgio, M., Hellmann, I. and Nielsen, R. (2016) Detecting recent selective sweeps while controlling for mutation rate and background selection. Mol. Ecol., 25, 142–156
https://doi.org/10.1111/mec.13351 pmid: 26290347
91 O’Reilly, P. F., Birney, E. and Balding, D. J. (2008) Confounding between recombination and selection, and the Ped/Pop method for detecting selection. Genome Res., 18, 1304–1313
https://doi.org/10.1101/gr.067181.107 pmid: 18617692
92 Reed, F. A. and Tishkoff, S. A. (2006) Positive selection can create false hotspots of recombination. Genetics, 172, 2011–2014
https://doi.org/10.1534/genetics.105.052183 pmid: 16387873
93 Li, J., Li, H., Jakobsson, M., Li, S., Sjödin, P. and Lascoux, M. (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol. Ecol., 21, 28–44
https://doi.org/10.1111/j.1365-294X.2011.05308.x pmid: 21999307
94 Stephan, W. (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol. Ecol., 25, 79–88
https://doi.org/10.1111/mec.13288 pmid: 26108992
95 Kelley, J. L. and Swanson, W. J. (2008) Positive selection in the human genome: from genome scans to biological significance. Annu. Rev. Genomics Hum. Genet., 9, 143–160
https://doi.org/10.1146/annurev.genom.9.081307.164411 pmid: 18505377
96 Zhai, W., Nielsen, R. and Slatkin, M. (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol. Biol. Evol., 26, 273–283
https://doi.org/10.1093/molbev/msn231 pmid: 18922762
97 Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. and Bustamante, C. D. (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet., 5, e1000695
https://doi.org/10.1371/journal.pgen.1000695 pmid: 19851460
98 Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. and Foll, M. (2013) Robust demographic inference from genomic and SNP data. PLoS Genet., 9, e1003905
https://doi.org/10.1371/journal.pgen.1003905 pmid: 24204310
99 Nielsen, R., Hubisz, M. J., Hellmann, I., Torgerson, D., Andrés, A. M., Albrechtsen, A., Gutenkunst, R., Adams, M. D., Cargill, M., Boyko, A., (2009) Darwinian and demographic forces affecting human protein coding genes. Genome Res., 19, 838–849
https://doi.org/10.1101/gr.088336.108 pmid: 19279335
100 Fijarczyk, A. and Babik, W. (2015) Detecting balancing selection in genomes: limits and prospects. Mol. Ecol., 24, 3529–3545
https://doi.org/10.1111/mec.13226 pmid: 25943689
[1] Kai Yuan, Ying Zhou, Xumin Ni, Yuchen Wang, Chang Liu, Shuhua Xu. Models, methods and tools for ancestry inference and admixture analysis[J]. Quant. Biol., 2017, 5(3): 236-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed