|
|
|
Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions |
Krishna Choudhary,Fei Deng,Sharon Aviran( ) |
| Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA |
|
|
|
|
Abstract Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data.
Results: We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy.
Conclusions: To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
|
| Author Summary RNAs are known to play essential roles in diverse cellular functions, extending well-beyond transfer of information from genes to proteins. RNA function is closely linked to its ability to fold into and convert between specific complex structures. Determining RNA structure has thus become a crucial step in understanding its function. Structure profiling experiments provide single nucleotide information on RNA structure. Recent advances in chemistry combined with application of new high-throughput sequencing techniques have enabled RNA structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. In this paper, we review current practices in analysis of structure profiling data, with emphasis on comparative and integrative analysis, as well as highlight emerging questions. |
| Keywords
RNA structure profiling
high-throughput sequencing
RNA secondary structure prediction
chemical structure probing
SHAPE-Seq
|
|
|
| Fund: |
|
Corresponding Author(s):
Sharon Aviran
|
|
Online First Date: 24 January 2017
Issue Date: 22 March 2017
|
|
| 1 |
Sharp, P. A. (2009) The centrality of RNA. Cell, 136, 577–580
https://doi.org/10.1016/j.cell.2009.02.007
pmid: 19239877
|
| 2 |
Mortimer, S. A., Kidwell, M. A. and Doudna, J. A. (2014) Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet., 15, 469–479
https://doi.org/10.1038/nrg3681
pmid: 24821474
|
| 3 |
He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531
https://doi.org/10.1038/nrg1379
pmid: 15211354
|
| 4 |
Mercer, T. R., Dinger, M. E. and Mattick, J. S. (2009) Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 10, 155–159
https://doi.org/10.1038/nrg2521
pmid: 19188922
|
| 5 |
Strobel, E. J., Watters, K. E., Loughrey, D. and Lucks, J. B. (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol., 39, 182–191
https://doi.org/10.1016/j.copbio.2016.03.019
pmid: 27132125
|
| 6 |
Al-Hashimi, H. M. (2009) Structural biology: aerial view of the HIV genome. Nature, 460, 696–698
https://doi.org/10.1038/460696a
pmid: 19661906
|
| 7 |
Gutell, R. R., Lee, J. C. and Cannone, J. J. (2002) The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol., 12, 301–310
https://doi.org/10.1016/S0959-440X(02)00339-1
pmid: 12127448
|
| 8 |
Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125, 167–188
|
| 9 |
Mathews, D. H., Moss, W. N. and Turner, D. H. (2010) Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol., 2, a003665
https://doi.org/10.1101/cshperspect.a003665
pmid: 20685845
|
| 10 |
Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.-P. and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res., 15, 9109–9128
https://doi.org/10.1093/nar/15.22.9109
pmid: 2446263
|
| 11 |
Weeks, K. M. (2010) Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol., 20, 295–304
https://doi.org/10.1016/j.sbi.2010.04.001
pmid: 20447823
|
| 12 |
Tijerina, P., Mohr, S. and Russell, R. (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc., 2, 2608–2623
https://doi.org/10.1038/nprot.2007.380
pmid: 17948004
|
| 151 |
Knudsen, B. and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res., 31, 3423–3428
https://doi.org/10.1093/nar/gkg614
pmid: 12824339
|
| 152 |
Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C. and Haussler, D. (1994) Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res., 22, 5112–5120
https://doi.org/10.1093/nar/22.23.5112
pmid: 7800507
|
| 153 |
Knudsen, B. and Hein, J. (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics, 15, 446–454
https://doi.org/10.1093/bioinformatics/15.6.446
pmid: 10383470
|
| 154 |
Sankoff, D. (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math., 45, 810–825
https://doi.org/10.1137/0145048
|
| 155 |
Havgaard, J. H., Lyngsø, R. B., Stormo, G. D. and Gorodkin, J. (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21, 1815–1824
https://doi.org/10.1093/bioinformatics/bti279
pmid: 15657094
|
| 156 |
Mathews, D. H. and Turner, D. H. (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol., 317, 191–203
https://doi.org/10.1006/jmbi.2001.5351
pmid: 11902836
|
| 157 |
Harmanci, A. O., Sharma, G. and Mathews, D. H. (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics, 8, 130
https://doi.org/10.1186/1471-2105-8-130
pmid: 17445273
|
| 158 |
Gorodkin, J., Heyer, L. J. and Stormo, G. D. (1997) Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res., 25, 3724–3732
https://doi.org/10.1093/nar/25.18.3724
pmid: 9278497
|
| 159 |
Perriquet, O., Touzet, H. and Dauchet, M. (2003) Finding the common structure shared by two homologous RNAs. Bioinformatics, 19, 108–116
https://doi.org/10.1093/bioinformatics/19.1.108
pmid: 12499300
|
| 160 |
Hofacker, I. L., Bernhart, S. H. and Stadler, P. F. (2004) Alignment of RNA base pairing probability matrices. Bioinformatics, 20, 2222–2227
https://doi.org/10.1093/bioinformatics/bth229
pmid: 15073017
|
| 161 |
Hochsmann, M., Toller, T., Giegerich, R. and Kurtz, S. (2003) Local similarity in RNA secondary structures. In Proceedings of the IEEE Bioinformatics Conference, 2003, pages 159–168
|
| 162 |
Siebert, S. and Backofen, R. (2003) MARNA: a server for multiple alignment of RNAs. In Proceedings of the German Conference on Bioinformatics, pages 135–140
|
| 163 |
Hajdin, C. E., Bellaousov, S., Huggins, W., Leonard, C. W., Mathews, D. H. and Weeks, K. M. (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. USA, 110, 5498–5503
https://doi.org/10.1073/pnas.1219988110
pmid: 23503844
|
| 164 |
Tang, Y., Bouvier, E., Kwok, C. K., Ding, Y., Nekrutenko, A., Bevilacqua, P. C. and Assmann, S. M. (2015) StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics, 31, 2668–2675
https://doi.org/10.1093/bioinformatics/btv213
pmid: 25886980
|
| 165 |
Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W.Jr, Swanstrom, R., Burch, C. L. and Weeks, K. M. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460, 711–716
https://doi.org/10.1038/nature08237
pmid: 19661910
|
| 166 |
Montaseri, S., Ganjtabesh, M. and Zare-Mirakabad, F. (2016) Evolutionary algorithm for RNA secondary structure prediction based on simulated SHAPE data. PLoS One, 11, e0166965
https://doi.org/10.1371/journal.pone.0166965
pmid: 27893832
|
| 167 |
Lavender, C. A., Lorenz, R., Zhang, G., Tamayo, R., Hofacker, I. L. and Weeks, K. M. (2015) Model-free RNA sequence and structure alignment informed by SHAPE probing reveals a conserved alternate secondary structure for 16S rRNA. PLoS Comput. Biol., 11, e1004126
https://doi.org/10.1371/journal.pcbi.1004126
pmid: 25992778
|
| 168 |
Novikova, I. V., Dharap, A., Hennelly, S. P. and Sanbonmatsu, K. Y. (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods, 63, 170–177
https://doi.org/10.1016/j.ymeth.2013.07.030
pmid: 23927838
|
| 169 |
Lorenz, R., Wolfinger, M. T., Tanzer, A. and Hofacker, I. L. (2016) Predicting RNA secondary structures from sequence and probing data. Methods, 103, 86–98
https://doi.org/10.1016/j.ymeth.2016.04.004
pmid: 27064083
|
| 170 |
Zarringhalam, K., Meyer, M. M., Dotu, I., Chuang, J. H. and Clote, P. (2012) Integrating chemical footprinting data into RNA secondary structure prediction. PLoS One, 7, e45160
https://doi.org/10.1371/journal.pone.0045160
pmid: 23091593
|
| 171 |
Washietl, S., Hofacker, I. L., Stadler, P. F. and Kellis, M. (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res., 40, 4261–4272
https://doi.org/10.1093/nar/gks009
pmid: 22287623
|
| 172 |
Ouyang, Z., Snyder, M. P. and Chang, H. Y. (2013) SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res., 23, 377–387
https://doi.org/10.1101/gr.138545.112
pmid: 23064747
|
| 173 |
Sükösd, Z., Knudsen, B., Kjems, J. and Pedersen, C. N. (2012) PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics, 28, 2691–2692
https://doi.org/10.1093/bioinformatics/bts488
pmid: 22877864
|
| 174 |
Sahoo, S., Świtnicki, M. P. and Pedersen, J. S. (2016) ProbFold: a probabilistic method for integration of probing data in RNA secondary structure prediction. Bioinformatics, 32, 2626–2635
https://doi.org/10.1093/bioinformatics/btw175
pmid: 27153612
|
| 175 |
Kladwang, W., VanLang, C. C., Cordero, P. and Das, R. (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem., 3, 954–962
https://doi.org/10.1038/nchem.1176
pmid: 22109276
|
| 176 |
Sükösd, Z., Swenson, M. S., Kjems, J. and Heitsch, C. E. (2013) Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res., 41, 2807–2816
https://doi.org/10.1093/nar/gks1283
pmid: 23325843
|
| 177 |
Berkowitz, N. D., Silverman, I. M., Childress, D. M., Kazan, H., Wang, L.-S. and Gregory, B. D. (2016) A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer). BMC Bioinformatics, 17, 215
https://doi.org/10.1186/s12859-016-1071-0
pmid: 27188311
|
| 178 |
Wu, Y., Qu, R., Huang, Y., Shi, B., Liu, M., Li, Y. and Lu, Z. J. (2016) RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res., 44, W294–W301
https://doi.org/10.1093/nar/gkw362
pmid: 27137891
|
| 179 |
Norris, M., Cheema, J., Kwok, C. K., Hartley, M., Morris, R. J., Aviran, S., and Ding, Y. (2016) FoldAtlas: a repository for genome-wide RNA structure probing data. Bioinformatics. DOI: 10.1093/bioinformatics/btw611
https://doi.org/10.1093/bioinformatics/btw611.
pmid: 27663500
|
| 180 |
Li, F., Zheng, Q., Vandivier, L. E., Willmann, M. R., Chen, Y. and Gregory, B. D. (2012) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell, 24, 4346–4359
https://doi.org/10.1105/tpc.112.104232
pmid: 23150631
|
| 181 |
Mortimer, S. A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J. B. (2012) SHAPE-Seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol, 4, 275–297
pmid: 23788555
|
| 182 |
Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2015) RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from highthroughput structure probing data. Bioinformatics, 32, 459–461
pmid: 26487736
|
| 183 |
Goecks, J., Nekrutenko, A., Taylor, J. and The Galaxy Team. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol., 11, R86
https://doi.org/10.1186/gb-2010-11-8-r86
pmid: 20738864
|
| 184 |
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
https://doi.org/10.1038/nsmb.1838
pmid: 20601959
|
| 185 |
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
https://doi.org/10.1038/nmeth.3810
pmid: 27018577
|
| 186 |
Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M. and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 40, 5023–5033
https://doi.org/10.1093/nar/gks144
pmid: 22344696
|
| 187 |
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206
https://doi.org/10.1038/nature11112
pmid: 22575960
|
| 188 |
Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646
https://doi.org/10.1016/j.cell.2012.05.003
pmid: 22608085
|
| 189 |
Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet., 9, e1003602
https://doi.org/10.1371/journal.pgen.1003602
pmid: 23825970
|
| 190 |
Batista, P. J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D. M., Lujan, E., Haddad, B., Daneshvar, K., (2014) m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15, 707–719
https://doi.org/10.1016/j.stem.2014.09.019
pmid: 25456834
|
| 191 |
T. M. Carlile, M. F. Rojas-Duran, B. Zinshteyn, H. Shin, K. M. Bartoli, and W. V. Gilbert . (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515, 43–146
https://doi.org/10.1038/nature13802
|
| 192 |
Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G. and Oliviero, S. (2016) High-throughput single-base resolution mapping of RNA 2′-O-methylated residues. Nucleic Acids Res., doi: 10.1093/nar/gkw810
https://doi.org/10.1093/nar/gkw810
pmid: 27614074
|
| 193 |
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. and Tollervey, D. (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA, 108, 10010–10015
https://doi.org/10.1073/pnas.1017386108
pmid: 21610164
|
| 194 |
Ramani, V., Qiu, R. and Shendure, J. (2015) High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol., 33, 980–984
https://doi.org/10.1038/nbt.3289
pmid: 26237516
|
| 195 |
Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N. M. and Ule, J. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519, 491–494
https://doi.org/10.1038/nature14280
pmid: 25799984
|
| 196 |
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. and Blencowe, B. J. (2016) Global mapping of human RNA-RNA interactions. Mol. Cell, 62, 618–626
https://doi.org/10.1016/j.molcel.2016.04.030
pmid: 27184080
|
| 197 |
Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., Robinson, J. T., Davidovich, C., Gooding, A. R., Goodrich, K. J., Mattick, J. S., (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell, 165, 1267–1279
https://doi.org/10.1016/j.cell.2016.04.028
pmid: 27180905
|
| 198 |
Aw, J. G. A., Shen, Y., Wilm, A., Sun, M., Lim, X. N., Boon, K.-L., Tapsin, S., Chan, Y.-S., Tan, C.-P., Sim, A. Y., (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell, 62, 603–617
https://doi.org/10.1016/j.molcel.2016.04.028
pmid: 27184079
|
| 13 |
Brow, D. A. and Noller, H. F. (1983) Protection of ribosomal RNA from kethoxal in polyribosomes: implication of specific sites in ribosome function. J. Mol. Biol., 163, 27–46
https://doi.org/10.1016/0022-2836(83)90028-1
pmid: 6834429
|
| 14 |
Tullius, T. D. and Greenbaum, J. A. (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol., 9, 127–134
https://doi.org/10.1016/j.cbpa.2005.02.009
pmid: 15811796
|
| 15 |
Singer, B. (1976) All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature, 264, 333–339
https://doi.org/10.1038/264333a0
pmid: 1004554
|
| 16 |
Fritz, J. J., Lewin, A., Hauswirth, W., Agarwal, A., Grant, M. and Shaw, L. (2002) Development of hammerhead ribozymes to modulate endogenous gene expression for functional studies. Methods, 28, 276–285
https://doi.org/10.1016/S1046-2023(02)00233-5
pmid: 12413427
|
| 17 |
Lindell, M., Romby, P. and Wagner, E. G. H. (2002) Lead(II) as a probe for investigating RNA structure in vivo. RNA, 8, 534–541
https://doi.org/10.1017/S1355838201020416
pmid: 11991646
|
| 18 |
Lindell, M., Brännvall, M., Wagner, E. G. H. and Kirsebom, L. A. (2005) Lead(II) cleavage analysis of RNase P RNA in vivo. RNA, 11, 1348–1354
https://doi.org/10.1261/rna.2590605
pmid: 16043496
|
| 19 |
Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol., 180, 192–212
https://doi.org/10.1016/0076-6879(89)80102-8
pmid: 2482414
|
| 20 |
Wilkinson, K. A., Merino, E. J. and Weeks, K. M. (2006) Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc., 1, 1610–1616
https://doi.org/10.1038/nprot.2006.249
pmid: 17406453
|
| 21 |
Zubradt, M., Gupta, P., Persad, S., Lambowitz, A. M., Weissman, J. S. and Rouskin, S. (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods,14, 75–82
https://doi.org/10.1038/nmeth.4057
pmid: 27819661
|
| 22 |
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. and Weeks, K. M. (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc., 10, 1643–1669
https://doi.org/10.1038/nprot.2015.103
pmid: 26426499
|
| 23 |
Watters, K. E., Yu, A. M., Strobel, E. J., Settle, A. H. and Lucks, J. B. (2016) Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods, 103, 34–48
https://doi.org/10.1016/j.ymeth.2016.04.002
pmid: 27064082
|
| 24 |
Poulsen, L. D., Kielpinski, L. J., Salama, S. R., Krogh, A. and Vinther, J. (2015) SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA, 21, 1042–1052
https://doi.org/10.1261/rna.047068.114
pmid: 25805860
|
| 25 |
Hector, R. D., Burlacu, E., Aitken, S., Le Bihan, T., Tuijtel, M., Zaplatina, A., Cook, A. G. and Granneman, S. (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res., 42, 12138–12154
https://doi.org/10.1093/nar/gku815
pmid: 25200078
|
| 26 |
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505, 701–705
https://doi.org/10.1038/nature12894
pmid: 24336214
|
| 27 |
Kwok, C. K., Ding, Y., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2013) Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun., 4, 2971
https://doi.org/10.1038/ncomms3971
pmid: 24336128
|
| 28 |
Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2013) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700
https://doi.org/10.1038/nature12756
pmid: 24270811
|
| 29 |
Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C. and Assmann, S. M. (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc., 10, 1050–1066
https://doi.org/10.1038/nprot.2015.064
pmid: 26086407
|
| 30 |
Kertesz, M., Wan, Y., Mazor, E., Rinn, J. L., Nutter, R. C., Chang, H. Y. and Segal, E. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 103–107
https://doi.org/10.1038/nature09322
pmid: 20811459
|
| 31 |
Underwood, J. G., Uzilov, A. V., Katzman, S., Onodera, C. S., Mainzer, J. E., Mathews, D. H., Lowe, T. M., Salama, S. R.and Haussler, D. (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods, 7, 995–1001
https://doi.org/10.1038/nmeth.1529
pmid: 21057495
|
| 32 |
Lucks, J. B., Mortimer, S. A., Trapnell, C., Luo, S., Aviran, S., Schroth, G. P., Pachter, L., Doudna, J. A. and Arkin, A. P. (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA, 108, 11063–11068
https://doi.org/10.1073/pnas.1106501108
pmid: 21642531
|
| 33 |
Loughrey, D., Watters, K. E., Settle, A. H. and Lucks, J. B. (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res, 42, 000
https://doi.org/10.1093/nar/gku909
|
| 34 |
Wan, Y., Qu, K., Ouyang, Z. and Chang, H. Y. (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc., 8, 849–869
https://doi.org/10.1038/nprot.2013.045
pmid: 23558785
|
| 35 |
Talkish, J., May, G., Lin, Y., Woolford, J. L. Jr and McManus, C. J. (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA, 20, 713–720
https://doi.org/10.1261/rna.042218.113
pmid: 24664469
|
| 36 |
Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol., 15, 491
https://doi.org/10.1186/s13059-014-0491-2
pmid: 25323333
|
| 37 |
Kielpinski, L. J. and Vinther, J. (2014) Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res., 42, e70
https://doi.org/10.1093/nar/gku167
pmid: 24569351
|
| 38 |
Seetin, M. G., Kladwang, W., Bida, J. P. and Das, R. (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. In RNA Folding: Methods and Protocols, 95–117. New York: Humana Press
|
| 39 |
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. and Weeks, K. M. (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods, 11, 959–965
https://doi.org/10.1038/nmeth.3029
pmid: 25028896
|
| 40 |
Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., Kuchelmeister, H. Y., Batista, P. J., Torre, E. A., Kool, E. T., (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature. 519, 486–490
https://doi.org/10.1038/nature14263
|
| 41 |
Kwok, C. K., Sahakyan, A. B. and Balasubramanian, S. (2016) Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew. Chem. Int. Ed. Engl., 55, 8958–8961
https://doi.org/10.1002/anie.201603562
pmid: 27355429
|
| 42 |
Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. and Balasubramanian, S. (2016) rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods, 13, 841–844
https://doi.org/10.1038/nmeth.3965
pmid: 27571552
|
| 43 |
Kwok, C. K., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci., 40, 221–232
https://doi.org/10.1016/j.tibs.2015.02.005
pmid: 25797096
|
| 44 |
Lu, Z. and Chang, H. Y. (2016) Decoding the RNA structurome. Curr. Opin. Struct. Biol., 36, 142–148
https://doi.org/10.1016/j.sbi.2016.01.007
pmid: 26923056
|
| 45 |
Kwok, C. K. (2016) Dawn of the in vivo RNA structurome and interactome. Biochem. Soc. Trans., 44, 1395–1410
https://doi.org/10.1042/BST20160075
pmid: 27911722
|
| 46 |
Kubota, M., Chan, D. and Spitale, R. C. (2015) RNA structure: merging chemistry and genomics for a holistic perspective. BioEssays, 37, 1129–1138
https://doi.org/10.1002/bies.201300146
pmid: 26288173
|
| 47 |
Low, J. T. and Weeks, K. M. (2010) SHAPE-directed RNA secondary structure prediction. Methods, 52, 150–158
https://doi.org/10.1016/j.ymeth.2010.06.007
pmid: 20554050
|
| 48 |
Lorenz, R., Luntzer, D., Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T. (2015) SHAPE directed RNA folding. Bioinformatics, 32, 145–147
https://doi.org/10.1093/bioinformatics/btv523
pmid: 26353838
|
| 49 |
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. and Weeks, K. M. (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc., 127, 4223–4231
https://doi.org/10.1021/ja043822v
pmid: 15783204
|
| 50 |
Lavery, R. and Pullman, A. (1984) A new theoretical index of biochemical reactivity combining steric and electrostatic factors: an application to yeast tRNAPhe. Biophys. Chem., 19, 171–181
https://doi.org/10.1016/0301-4622(84)85017-6
pmid: 6372881
|
| 51 |
McGinnis, J. L., Dunkle, J. A., Cate, J. H. and Weeks, K. M. (2012) The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc., 134, 6617–6624
https://doi.org/10.1021/ja2104075
pmid: 22475022
|
| 52 |
Eddy, S. R. (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys., 43, 433–456
https://doi.org/10.1146/annurev-biophys-051013-022950
pmid: 24895857
|
| 53 |
Kutchko, K. M. and Laederach, A. (2016) Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WIREs RNA, 8, e1374
https://doi.org/10.1002/wrna.1374
pmid: 27396578
|
| 54 |
Aviran, S. and Pachter, L. (2014) Rational experiment design for sequencing-based RNA structure mapping. RNA, 20, 1864–1877
https://doi.org/10.1261/rna.043844.113
pmid: 25332375
|
| 55 |
Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R. C., Snyder, M. P., Segal, E., (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 505, 706–709
https://doi.org/10.1038/nature12946
pmid: 24476892
|
| 56 |
Ritz, J., Martin, J. S. and Laederach, A. (2012) Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics, 13, S6
https://doi.org/10.1186/1471-2164-13-S4-S6
pmid: 22759654
|
| 57 |
Watters, K. E., Abbott, T. R. and Lucks, J. B. (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res., 44, e12
https://doi.org/10.1093/nar/gkv879
pmid: 26350218
|
| 58 |
Bai, Y., Tambe, A., Zhou, K. and Doudna, J. A. (2014) RNA-guided assembly of Rev-RRE nuclear export complexes. eLife, 3, e03656
https://doi.org/10.7554/eLife.03656
pmid: 25163983
|
| 59 |
Choudhary, K., Shih, N. P., Deng, F., Ledda, M., Li, B. and Aviran, S. (2016) Metrics for rapid quality control in RNA structure probing experiments. Bioinformatics, 32, 3575–3583
pmid: 27497441
|
| 60 |
Aviran, S., Lucks, J. B. and Pachter, L. (2011) RNA structure characterization from chemical mapping experiments. In the 49th Annual Allerton Conference on Communication, Control, and Computing, pages 1743–1750
|
| 61 |
Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. and Chang, H. Y. (2011) Understanding the transcriptome through RNA structure. Nat. Rev. Genet., 12, 641–655
https://doi.org/10.1038/nrg3049
pmid: 21850044
|
| 62 |
McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119
https://doi.org/10.1002/bip.360290621
pmid: 1695107
|
| 63 |
Ding, Y. and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res., 31, 7280–7301
https://doi.org/10.1093/nar/gkg938
pmid: 14654704
|
| 64 |
Rogers, E. and Heitsch, C. (2016) New insights from cluster analysis methods for RNA secondary structure prediction. Wiley Interdiscip. Rev. RNA, 7, 278–294
https://doi.org/10.1002/wrna.1334
pmid: 26971529
|
| 65 |
Quarrier, S., Martin, J. S., Davis-Neulander, L., Beauregard, A. and Laederach, A. (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA, 16, 1108–1117
https://doi.org/10.1261/rna.1988510
pmid: 20413617
|
| 66 |
Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
https://doi.org/10.1186/1471-2105-11-94
pmid: 20167110
|
| 67 |
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
https://doi.org/10.1101/gr.079558.108
pmid: 18550803
|
| 68 |
Guo, J. U. and Bartel, D. P. (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 353, aaf5371
https://doi.org/10.1126/science.aaf5371
pmid: 27708011
|
| 69 |
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
https://doi.org/10.1093/bioinformatics/btp616
pmid: 19910308
|
| 70 |
Anders, S., and Huber, W. (2012) Differential expression of RNA-Seq data at the gene level-the DESeq package. Heidelberg: European Molecular Biology Laboratory
|
| 71 |
Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29
https://doi.org/10.1186/gb-2014-15-2-r29
pmid: 24485249
|
| 72 |
Leamy, K. A., Assmann, S. M., Mathews, D. H. and Bevilacqua, P. C. (2016) Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys., 49, e10
https://doi.org/10.1017/S003358351600007X
pmid: 27658939
|
| 73 |
Hu, X., Wu, Y., Lu, Z. J. and Yip, K. Y. (2015) Analysis of sequencing data for probing RNA secondary structures and protein- RNA binding in studying posttranscriptional regulations. Brief. Bioinform., 17,1032–1043
https://doi.org/10.1093/bib/bbv106
pmid: 26655457
|
| 74 |
Cordero, P., Kladwang, W.,VanLang, C.C. and Das,R. (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry, 51, 7037–7039
https://doi.org/10.1021/bi3008802
pmid: 22913637
|
| 75 |
Lee, B., Flynn, R. A., Kadina, A., Guo, J. K., Kool, E. T. and Chang, H. Y. (2016) Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA, rna.058784.116
https://doi.org/10.1261/rna.058784.116
pmid: 27879433
|
| 76 |
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621–628
https://doi.org/10.1038/nmeth.1226
pmid: 18516045
|
| 77 |
Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V. and Dalmay, T. (2012) Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3, 4
https://doi.org/10.1186/1758-907X-3-4
pmid: 22647250
|
| 78 |
Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol., 12, R22
https://doi.org/10.1186/gb-2011-12-3-r22
pmid: 21410973
|
| 79 |
Li, B., Tambe, A., Aviran, S. and Pachter, L. (2016) Prober: a general toolkit for analyzing sequencing-based ‘toeprinting’ assays. bioRxiv, 063107
|
| 80 |
Aviran, S., Trapnell, C., Lucks, J. B., Mortimer, S. A., Luo, S., Schroth, G. P., Doudna, J. A., Arkin, A. P. and Pachter, L. (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Acad. Sci. USA, 108, 11069–11074
https://doi.org/10.1073/pnas.1106541108
pmid: 21642536
|
| 81 |
Selega, A., Sirocchi, C., Iosub, I., Granneman, S. and Sanguinetti, G.(2017) Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods, 14, 83–89
https://doi.org/10.1038/nmeth.4068
pmid: 27819660
|
| 82 |
Deigan, K. E., Li, T. W., Mathews, D. H. and Weeks, K. M. (2009) Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA, 106, 97–102
https://doi.org/10.1073/pnas.0806929106
pmid: 19109441
|
| 83 |
Sloma, M. F. and Mathews, D. H. (2015) Improving RNA secondary structure prediction with structure mapping data. Methods Enzymol., 553, 91–114
https://doi.org/10.1016/bs.mie.2014.10.053
pmid: 25726462
|
| 84 |
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
https://doi.org/10.1038/nbt.1621
pmid: 20436464
|
| 85 |
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
https://doi.org/10.1186/1471-2105-12-323
pmid: 21816040
|
| 86 |
Smola, M. J., Calabrese, J. M. and Weeks, K. M. (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry, 54, 6867–6875
https://doi.org/10.1021/acs.biochem.5b00977
pmid: 26544910
|
| 87 |
Smola, M. J., Christy, T. W., Inoue, K., Nicholson, C. O., Friedersdorf, M., Keene, J. D., Lee, D. M., Calabrese, J. M. and Weeks, K. M. (2016) SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA, 113, 10322–10327
|
| 88 |
Solem, A. C., Halvorsen, M., Ramos, S. B. and Laederach, A. (2015) The potential of the riboSNitch in personalized medicine. Wiley Interdiscip. Rev. RNA, 6, 517–532
https://doi.org/10.1002/wrna.1291
pmid: 26115028
|
| 89 |
Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., Makino, D. L., Nutter, R. C., Segal, E. and Chang, H. Y. (2012) Genome-wide measurement of RNA folding energies. Mol. Cell, 48, 169–181
https://doi.org/10.1016/j.molcel.2012.08.008
pmid: 22981864
|
| 90 |
Righetti, F., Nuss, A. M., Twittenhoff, C., Beele, S., Urban, K., Will, S., Bernhart, S. H., Stadler, P. F., Dersch, P. and Narberhaus, F. (2016) Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA, 113, 7237–7242
https://doi.org/10.1073/pnas.1523004113
pmid: 27298343
|
| 91 |
Corley, M., Solem, A., Qu, K., Chang, H. Y.and Laederach, A. (2015) Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res., 43,1859–1868
https://doi.org/10.1093/nar/gkv010
pmid: 25618847
|
| 92 |
Abdullah, M. B. (1990) On a robust correlation coefficient. Statistician, 39, 455–460
https://doi.org/10.2307/2349088
|
| 93 |
Goodwin, L. D. and Leech, N. L. (2006) Understanding correlation: factors that affect the size of r. J. Exp. Educ., 74, 249–266
https://doi.org/10.3200/JEXE.74.3.249-266
|
| 94 |
Müller, R. and Büttner, P. (1994) A critical discussion of intraclass correlation coefficients. Stat. Med., 13, 2465–2476
https://doi.org/10.1002/sim.4780132310
pmid: 7701147
|
| 95 |
Gastwirth, J. L. (1972) The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat., 54, 306–316
https://doi.org/10.2307/1937992
|
| 96 |
Eddy, S. R. and Durbin, R. (1994) RNA sequence analysis using covariance models. Nucleic Acids Res., 22, 2079–2088
https://doi.org/10.1093/nar/22.11.2079
pmid: 8029015
|
| 97 |
Zhang, J. -H., Chung, T. D. and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen., 4, 67–73
https://doi.org/10.1177/108705719900400206
pmid: 10838414
|
| 98 |
Pollom, E., Dang, K. K., Potter, E. L., Gorelick, R. J., Burch, C. L., Weeks, K. M. and Swanstrom, R. (2013) Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog., 9, e1003294
https://doi.org/10.1371/journal.ppat.1003294
pmid: 23593004
|
| 99 |
Cowell, F. A. and Victoria-Feser, M.-P. (1996) Robustness properties of inequality measures. Econometrica, 64, 77–101
https://doi.org/10.2307/2171925
|
| 100 |
Liang, R., Kierzek, E., Kierzek, R. and Turner, D. H. (2010) Comparisons between chemical mapping and binding to isoenergetic oligonucleotide microarrays reveal unexpected patterns of binding to the Bacillus subtilis RNase P RNA specificity domain. Biochemistry, 49, 8155–8168
https://doi.org/10.1021/bi100286n
pmid: 20557101
|
| 101 |
Hawkes, E. J., Hennelly, S. P., Novikova, I. V., Irwin, J. A., Dean, C. and Sanbonmatsu, K. Y. (2016) COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Reports, 16, 3087–3096
https://doi.org/10.1016/j.celrep.2016.08.045
pmid: 27653675
|
| 102 |
Xue, Z., Hennelly, S., Doyle, B., Gulati, A. A., Novikova, I. V., Sanbonmatsu, K. Y. and Boyer, L. A. (2016) A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell, 64, 37–50
https://doi.org/10.1016/j.molcel.2016.08.010
pmid: 27618485
|
| 103 |
Rice, G. M., Leonard, C. W. and Weeks, K. M. (2014) RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA, 20, 846–854
https://doi.org/10.1261/rna.043323.113
pmid: 24742934
|
| 104 |
Wu, Y., Shi, B., Ding, X., Liu, T., Hu, X., Yip, K. Y., Yang, Z. R., Mathews, D. H., and Lu., Z. J. (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic acids res., 43, 7247–7259
https://doi.org/10.1093/nar/gks799
|
| 105 |
Choudhary, K., Ruan, L., Deng, F., Shih, N. and Aviran, S. (2016) SEQualyzer: interactive tool for quality control and exploratory analysis of high-throughput RNA structural profiling data. Bioinformatics, btw627
https://doi.org/10.1093/bioinformatics/btw627
pmid: 27694194
|
| 106 |
Rother, K., Rother, M., Skiba, P. and Bujnicki, J. M. (2014) Automated modeling of RNA 3D structure. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 395–415. New York: Humana Press
|
| 107 |
Tabaska, J. E., Cary, R. B., Gabow, H. N. and Stormo, G. D. (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14, 691–699
https://doi.org/10.1093/bioinformatics/14.8.691
pmid: 9789095
|
| 108 |
Rivas, E. and Eddy, S. R. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol., 285, 2053–2068
https://doi.org/10.1006/jmbi.1998.2436
pmid: 9925784
|
| 109 |
Lyngsø, R. B. and Pedersen, C. N. (2000) RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7, 409–427
https://doi.org/10.1089/106652700750050862
pmid: 11108471
|
| 110 |
Ruan, J., Stormo, G. D. and Zhang, W. (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics, 20, 58–66
https://doi.org/10.1093/bioinformatics/btg373
pmid: 14693809
|
| 111 |
Reeder, J. and Giegerich, R. (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5, 104
https://doi.org/10.1186/1471-2105-5-104
pmid: 15294028
|
| 112 |
Ren, J., Rastegari, B., Condon, A. and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA, 11, 1494–1504
https://doi.org/10.1261/rna.7284905
pmid: 16199760
|
| 113 |
Cao, S. and Chen, S. -J. (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res., 34, 2634–2652
https://doi.org/10.1093/nar/gkl346
pmid: 16709732
|
| 114 |
Reeder, J., Steffen, P. and Giegerich, R. (2007) pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res., 35, W320–W324
https://doi.org/10.1093/nar/gkm258
pmid: 17478505
|
| 115 |
Sato, K., Kato, Y., Hamada, M., Akutsu, T. and Asai, K. (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics, 27, i85–i93
https://doi.org/10.1093/bioinformatics/btr215
pmid: 21685106
|
| 116 |
Andronescu, M., Condon, A., Turner, D. H. and Mathews, D. H. (2014) The determination of RNA folding nearest neighbor parameters. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 45–70. New York: Humana Press
|
| 117 |
Xia, T., SantaLucia, J. Jr., Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., and Turner, D. H. (1998) Thermodynamic parameters for an expanded Nearest-Neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry,14719–14735
https://doi.org/10.1021/bi9809425
|
| 118 |
Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol., 288, 911–940
https://doi.org/10.1006/jmbi.1999.2700
pmid: 10329189
|
| 119 |
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978) Algorithms for loop matchings. SIAM J. Appl. Math., 35, 68–82
https://doi.org/10.1137/0135006
|
| 120 |
Waterman, M. S. and Smith, T. F. (1978) RNA secondary structure: a complete mathematical analysis. Math. Biosci., 42, 257–266
https://doi.org/10.1016/0025-5564(78)90099-8
|
| 121 |
Nussinov, R. and Jacobson, A. B. (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA, 77, 6309–6313
https://doi.org/10.1073/pnas.77.11.6309
pmid: 6161375
|
| 122 |
Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res., 9, 133–148
https://doi.org/10.1093/nar/9.1.133
pmid: 6163133
|
| 123 |
Zuker, M. and Sankoff, D. (1984) RNA secondary structures and their prediction. Bull. Math. Biol., 46, 591–621
https://doi.org/10.1007/BF02459506
|
| 124 |
Markham, N. R. and Zuker, M. (2008) UNAFold. In Bioinformatics: Structure, Function and Applications, 3–31. New York: Humana Press
|
| 125 |
Reuter, J. S. and Mathews, D. H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129
https://doi.org/10.1186/1471-2105-11-129
pmid: 20230624
|
| 126 |
Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F. and Hofacker, I. L. (2011) ViennaRNA package 2.0. Algorithms Mol. Biol., 6, 26
https://doi.org/10.1186/1748-7188-6-26
pmid: 22115189
|
| 127 |
Eddy, S. R. (2004) How do RNA folding algorithms work? Nat. Biotechnol., 22, 1457–1458
https://doi.org/10.1038/nbt1104-1457
pmid: 15529172
|
| 128 |
Mathews, D. H. and Turner, D. H. (2006) Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol., 16, 270–278
https://doi.org/10.1016/j.sbi.2006.05.010
pmid: 16713706
|
| 129 |
Shapiro, B. A., Yingling, Y. G., Kasprzak, W. and Bindewald, E. (2007) Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol., 17, 157–165
https://doi.org/10.1016/j.sbi.2007.03.001
pmid: 17383172
|
| 130 |
Bai, Y., Dai, X., Harrison, A., Johnston, C. and Chen, M. (2016) Toward a next-generation atlas of RNA secondary structure. Brief. Bioinform., 17, 63–77
https://doi.org/10.1093/bib/bbv026
pmid: 25922372
|
| 131 |
Ge, P. and Zhang, S. (2015) Computational analysis of RNA structures with chemical probing data. Methods, 79-80, 60–66
https://doi.org/10.1016/j.ymeth.2015.02.003
pmid: 25687190
|
| 132 |
Doshi, K. J., Cannone, J. J., Cobaugh, C. W. and Gutell, R. R. (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics, 5, 105
https://doi.org/10.1186/1471-2105-5-105
pmid: 15296519
|
| 133 |
Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule. Science, 244, 48–52
https://doi.org/10.1126/science.2468181
pmid: 2468181
|
| 134 |
Darty, K., Denise, A. and Ponty, Y. (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974–1975
https://doi.org/10.1093/bioinformatics/btp250
pmid: 19398448
|
| 135 |
Deng, F., Ledda, M., Vaziri, S. and Aviran, S. (2016) Data-directed RNA secondary structure prediction using probabilistic modeling. RNA, 22, 1109–1119
https://doi.org/10.1261/rna.055756.115
pmid: 27251549
|
| 136 |
McGinnis, J. L., Liu, Q., Lavender, C. A., Devaraj, A., McClory, S. P., Fredrick, K. and Weeks, K. M. (2015) In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl. Acad. Sci. USA, 112, 2425–2430
https://doi.org/10.1073/pnas.1411514112
pmid: 25675474
|
| 137 |
Mathews, D. H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 10, 1178–1190
https://doi.org/10.1261/rna.7650904
pmid: 15272118
|
| 138 |
Bernhart, S. H., Hofacker, I. L. and Stadler, P. F. (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics, 22, 614–615
https://doi.org/10.1093/bioinformatics/btk014
pmid: 16368769
|
| 139 |
Ding, Y., Chan, C. Y. and Lawrence, C. E. (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 11, 1157–1166
https://doi.org/10.1261/rna.2500605
pmid: 16043502
|
| 140 |
Do, C. B., Woods, D. A. and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22, e90–e98
https://doi.org/10.1093/bioinformatics/btl246
pmid: 16873527
|
| 141 |
Lu, Z. J., Gloor, J. W. and Mathews, D. H. (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA, 15, 1805–1813
https://doi.org/10.1261/rna.1643609
pmid: 19703939
|
| 142 |
Hamada, M., Sato, K. and Asai, K. (2010) Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics, 11, 586
https://doi.org/10.1186/1471-2105-11-586
pmid: 21118522
|
| 143 |
Cordero, P. and Das, R. (2015) Rich RNA structure landscapes revealed by mutate-and-map analysis. PLoS Comput. Biol., 11, e1004473
https://doi.org/10.1371/journal.pcbi.1004473
pmid: 26566145
|
| 144 |
Breaker, R. R. (2012) Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol., 4, a003566
https://doi.org/10.1101/cshperspect.a003566
pmid: 21106649
|
| 145 |
Parsch, J., Braverman, J. M. and Stephan, W. (2000) Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics, 154, 909–921
pmid: 10655240
|
| 146 |
Gardner, P. P. and Giegerich, R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics, 5, 140
https://doi.org/10.1186/1471-2105-5-140
pmid: 15458580
|
| 147 |
Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Müller, K. M., (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3, 2
https://doi.org/10.1186/1471-2105-3-2
pmid: 11869452
|
| 148 |
Rupert, L., Stefan, G. and Gerhard, S. (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res., 27, 4208–4217
https://doi.org/10.1093/nar/27.21.4208
pmid: 10518612
|
| 149 |
Hofacker, I. L., Fekete, M. and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol., 319, 1059–1066
https://doi.org/10.1016/S0022-2836(02)00308-X
pmid: 12079347
|
| 150 |
Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R. and Stadler, P. F. (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics, 9, 474
https://doi.org/10.1186/1471-2105-9-474
pmid: 19014431
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|