Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2017, Vol. 5 Issue (1) : 3-24    https://doi.org/10.1007/s40484-017-0093-6
REVIEW
Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions
Krishna Choudhary,Fei Deng,Sharon Aviran()
Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
 Download: PDF(1984 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data.

Results: We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy.

Conclusions: To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.

Author Summary  RNAs are known to play essential roles in diverse cellular functions, extending well-beyond transfer of information from genes to proteins. RNA function is closely linked to its ability to fold into and convert between specific complex structures. Determining RNA structure has thus become a crucial step in understanding its function. Structure profiling experiments provide single nucleotide information on RNA structure. Recent advances in chemistry combined with application of new high-throughput sequencing techniques have enabled RNA structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. In this paper, we review current practices in analysis of structure profiling data, with emphasis on comparative and integrative analysis, as well as highlight emerging questions.
Keywords RNA structure profiling      high-throughput sequencing      RNA secondary structure prediction      chemical structure probing      SHAPE-Seq     
PACS:     
Fund: 
Corresponding Author(s): Sharon Aviran   
Online First Date: 24 January 2017    Issue Date: 22 March 2017
 Cite this article:   
Krishna Choudhary,Fei Deng,Sharon Aviran. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions[J]. Quant. Biol., 2017, 5(1): 3-24.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-017-0093-6
https://academic.hep.com.cn/qb/EN/Y2017/V5/I1/3
Fig.1  Overview of structure-profiling experiments.

RNA sample of interest (at the top) is probed with a structure-sensitive reagent, which introduces a modification (red pins) preferentially at unpaired nucleotides. Degree of modification is read via reverse transcription and sequencing. Next, the readouts are mapped to reference sequences and normalized reactivities are calculated from counts summary of mapped reads. Reactivity profiles of probed RNAs are used in diverse downstream applications, some of which are listed.

Fig.2  Quality screening with SEQualyzer.

Bars represent per-nucleotide SNR and black lines represent rolling mean of per-nucleotide SNR for windows of 20 nt. SEQualyzer estimates SNR via bootstrap as described by Choudhary et al. [59]. Examination of quality profiles reveals that signal quality is good for entire RNA except a short region from nucleotides 35?53 where it is poor in all replicates. For illustration purpose, we used data for P4?–?P6 domain of Tetrahymena group I intron ribozyme from Loughrey et al. [33].

Fig.3  Comparison between MFE secondary structure and one of the suboptimal secondary structures for tRNA (asp), yeast.

(A) Reference (accepted) structure. (B) MFE structure. (C) Suboptimal structure. (D) Circular plot comparing the MFE structure in B to the reference structure in A. (E) Circular plot comparing the suboptimal structure in (C) to the reference structure in (A). Structures are predicted using the Fold program in RNAstructure package [125] with default parameters. Plots (A), (B) and (C) are prepared with VARNA [134]. Circular plots (D) and (E) are prepared with the CircleCompare program in RNAstructure. In (D) and (E), base pairs are indicated by lines. Pairs present in both the predicted and reference structures are in green; pairs which are present only in the predicted structure are in red; and pairs which are present only in the reference structure are in black.

Fig.4  Information content of SHAPE data.

Two data-directed structure prediction methods, Deigan et al.’s approach [82] and RNAprob [135], are tested on a set of 23 RNAs, as used in [135]. For RNAprob, the variant with two structure contexts and empirical decoder is used. Bars represent SLW-average MCC values of quintiles with perfect information. Upper dashed lines represent the performance with the entire struture profile set to perfect information. Solid lines indicate the performance with the original struture profile data and the bottom dashed line corresponds to the no-SHAPE control.

1 Sharp, P. A. (2009) The centrality of RNA. Cell, 136, 577–580
https://doi.org/10.1016/j.cell.2009.02.007 pmid: 19239877
2 Mortimer, S. A., Kidwell, M. A. and Doudna, J. A. (2014) Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet., 15, 469–479
https://doi.org/10.1038/nrg3681 pmid: 24821474
3 He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531
https://doi.org/10.1038/nrg1379 pmid: 15211354
4 Mercer, T. R., Dinger, M. E. and Mattick, J. S. (2009) Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 10, 155–159
https://doi.org/10.1038/nrg2521 pmid: 19188922
5 Strobel, E. J., Watters, K. E., Loughrey, D. and Lucks, J. B. (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol., 39, 182–191
https://doi.org/10.1016/j.copbio.2016.03.019 pmid: 27132125
6 Al-Hashimi, H. M. (2009) Structural biology: aerial view of the HIV genome. Nature, 460, 696–698
https://doi.org/10.1038/460696a pmid: 19661906
7 Gutell, R. R., Lee, J. C. and Cannone, J. J. (2002) The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol., 12, 301–310
https://doi.org/10.1016/S0959-440X(02)00339-1 pmid: 12127448
8 Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125, 167–188
9 Mathews, D. H., Moss, W. N. and Turner, D. H. (2010) Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol., 2, a003665
https://doi.org/10.1101/cshperspect.a003665 pmid: 20685845
10 Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.-P. and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res., 15, 9109–9128
https://doi.org/10.1093/nar/15.22.9109 pmid: 2446263
11 Weeks, K. M. (2010) Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol., 20, 295–304
https://doi.org/10.1016/j.sbi.2010.04.001 pmid: 20447823
12 Tijerina, P., Mohr, S. and Russell, R. (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc., 2, 2608–2623
https://doi.org/10.1038/nprot.2007.380 pmid: 17948004
151 Knudsen, B. and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res., 31, 3423–3428
https://doi.org/10.1093/nar/gkg614 pmid: 12824339
152 Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C. and Haussler, D. (1994) Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res., 22, 5112–5120
https://doi.org/10.1093/nar/22.23.5112 pmid: 7800507
153 Knudsen, B. and Hein, J. (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics, 15, 446–454
https://doi.org/10.1093/bioinformatics/15.6.446 pmid: 10383470
154 Sankoff, D. (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math., 45, 810–825
https://doi.org/10.1137/0145048
155 Havgaard, J. H., Lyngsø, R. B., Stormo, G. D. and Gorodkin, J. (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21, 1815–1824
https://doi.org/10.1093/bioinformatics/bti279 pmid: 15657094
156 Mathews, D. H. and Turner, D. H. (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol., 317, 191–203
https://doi.org/10.1006/jmbi.2001.5351 pmid: 11902836
157 Harmanci, A. O., Sharma, G. and Mathews, D. H. (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics, 8, 130
https://doi.org/10.1186/1471-2105-8-130 pmid: 17445273
158 Gorodkin, J., Heyer, L. J. and Stormo, G. D. (1997) Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res., 25, 3724–3732
https://doi.org/10.1093/nar/25.18.3724 pmid: 9278497
159 Perriquet, O., Touzet, H. and Dauchet, M. (2003) Finding the common structure shared by two homologous RNAs. Bioinformatics, 19, 108–116
https://doi.org/10.1093/bioinformatics/19.1.108 pmid: 12499300
160 Hofacker, I. L., Bernhart, S. H. and Stadler, P. F. (2004) Alignment of RNA base pairing probability matrices. Bioinformatics, 20, 2222–2227
https://doi.org/10.1093/bioinformatics/bth229 pmid: 15073017
161 Hochsmann, M., Toller, T., Giegerich, R. and Kurtz, S. (2003) Local similarity in RNA secondary structures. In Proceedings of the IEEE Bioinformatics Conference, 2003, pages 159–168
162 Siebert, S. and Backofen, R. (2003) MARNA: a server for multiple alignment of RNAs. In Proceedings of the German Conference on Bioinformatics, pages 135–140
163 Hajdin, C. E., Bellaousov, S., Huggins, W., Leonard, C. W., Mathews, D. H. and Weeks, K. M. (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. USA, 110, 5498–5503
https://doi.org/10.1073/pnas.1219988110 pmid: 23503844
164 Tang, Y., Bouvier, E., Kwok, C. K., Ding, Y., Nekrutenko, A., Bevilacqua, P. C. and Assmann, S. M. (2015) StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics, 31, 2668–2675
https://doi.org/10.1093/bioinformatics/btv213 pmid: 25886980
165 Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W.Jr, Swanstrom, R., Burch, C. L. and Weeks, K. M. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460, 711–716
https://doi.org/10.1038/nature08237 pmid: 19661910
166 Montaseri, S., Ganjtabesh, M. and Zare-Mirakabad, F. (2016) Evolutionary algorithm for RNA secondary structure prediction based on simulated SHAPE data. PLoS One, 11, e0166965
https://doi.org/10.1371/journal.pone.0166965 pmid: 27893832
167 Lavender, C. A., Lorenz, R., Zhang, G., Tamayo, R., Hofacker, I. L. and Weeks, K. M. (2015) Model-free RNA sequence and structure alignment informed by SHAPE probing reveals a conserved alternate secondary structure for 16S rRNA. PLoS Comput. Biol., 11, e1004126
https://doi.org/10.1371/journal.pcbi.1004126 pmid: 25992778
168 Novikova, I. V., Dharap, A., Hennelly, S. P. and Sanbonmatsu, K. Y. (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods, 63, 170–177
https://doi.org/10.1016/j.ymeth.2013.07.030 pmid: 23927838
169 Lorenz, R., Wolfinger, M. T., Tanzer, A. and Hofacker, I. L. (2016) Predicting RNA secondary structures from sequence and probing data. Methods, 103, 86–98
https://doi.org/10.1016/j.ymeth.2016.04.004 pmid: 27064083
170 Zarringhalam, K., Meyer, M. M., Dotu, I., Chuang, J. H. and Clote, P. (2012) Integrating chemical footprinting data into RNA secondary structure prediction. PLoS One, 7, e45160
https://doi.org/10.1371/journal.pone.0045160 pmid: 23091593
171 Washietl, S., Hofacker, I. L., Stadler, P. F. and Kellis, M. (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res., 40, 4261–4272
https://doi.org/10.1093/nar/gks009 pmid: 22287623
172 Ouyang, Z., Snyder, M. P. and Chang, H. Y. (2013) SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res., 23, 377–387
https://doi.org/10.1101/gr.138545.112 pmid: 23064747
173 Sükösd, Z., Knudsen, B., Kjems, J. and Pedersen, C. N. (2012) PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics, 28, 2691–2692
https://doi.org/10.1093/bioinformatics/bts488 pmid: 22877864
174 Sahoo, S., Świtnicki, M. P. and Pedersen, J. S. (2016) ProbFold: a probabilistic method for integration of probing data in RNA secondary structure prediction. Bioinformatics, 32, 2626–2635
https://doi.org/10.1093/bioinformatics/btw175 pmid: 27153612
175 Kladwang, W., VanLang, C. C., Cordero, P. and Das, R. (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem., 3, 954–962
https://doi.org/10.1038/nchem.1176 pmid: 22109276
176 Sükösd, Z., Swenson, M. S., Kjems, J. and Heitsch, C. E. (2013) Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res., 41, 2807–2816
https://doi.org/10.1093/nar/gks1283 pmid: 23325843
177 Berkowitz, N. D., Silverman, I. M., Childress, D. M., Kazan, H., Wang, L.-S. and Gregory, B. D. (2016) A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer). BMC Bioinformatics, 17, 215
https://doi.org/10.1186/s12859-016-1071-0 pmid: 27188311
178 Wu, Y., Qu, R., Huang, Y., Shi, B., Liu, M., Li, Y. and Lu, Z. J. (2016) RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res., 44, W294–W301
https://doi.org/10.1093/nar/gkw362 pmid: 27137891
179 Norris, M., Cheema, J., Kwok, C. K., Hartley, M., Morris, R. J., Aviran, S., and Ding, Y. (2016) FoldAtlas: a repository for genome-wide RNA structure probing data. Bioinformatics. DOI: 10.1093/bioinformatics/btw611
https://doi.org/10.1093/bioinformatics/btw611. pmid: 27663500
180 Li, F., Zheng, Q., Vandivier, L. E., Willmann, M. R., Chen, Y. and Gregory, B. D. (2012) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell, 24, 4346–4359
https://doi.org/10.1105/tpc.112.104232 pmid: 23150631
181 Mortimer, S. A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J. B. (2012) SHAPE-Seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol, 4, 275–297
pmid: 23788555
182 Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2015) RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from highthroughput structure probing data. Bioinformatics, 32, 459–461
pmid: 26487736
183 Goecks, J., Nekrutenko, A., Taylor, J. and The Galaxy Team. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol., 11, R86
https://doi.org/10.1186/gb-2010-11-8-r86 pmid: 20738864
184 König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
https://doi.org/10.1038/nsmb.1838 pmid: 20601959
185 Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
https://doi.org/10.1038/nmeth.3810 pmid: 27018577
186 Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M. and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 40, 5023–5033
https://doi.org/10.1093/nar/gks144 pmid: 22344696
187 Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206
https://doi.org/10.1038/nature11112 pmid: 22575960
188 Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646
https://doi.org/10.1016/j.cell.2012.05.003 pmid: 22608085
189 Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet., 9, e1003602
https://doi.org/10.1371/journal.pgen.1003602 pmid: 23825970
190 Batista, P. J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D. M., Lujan, E., Haddad, B., Daneshvar, K., (2014) m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15, 707–719
https://doi.org/10.1016/j.stem.2014.09.019 pmid: 25456834
191 T. M. Carlile, M. F. Rojas-Duran, B. Zinshteyn, H. Shin, K. M. Bartoli, and W. V. Gilbert . (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515, 43–146
https://doi.org/10.1038/nature13802
192 Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G. and Oliviero, S. (2016) High-throughput single-base resolution mapping of RNA 2′-O-methylated residues. Nucleic Acids Res., doi: 10.1093/nar/gkw810
https://doi.org/10.1093/nar/gkw810 pmid: 27614074
193 Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. and Tollervey, D. (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA, 108, 10010–10015
https://doi.org/10.1073/pnas.1017386108 pmid: 21610164
194 Ramani, V., Qiu, R. and Shendure, J. (2015) High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol., 33, 980–984
https://doi.org/10.1038/nbt.3289 pmid: 26237516
195 Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N. M. and Ule, J. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519, 491–494
https://doi.org/10.1038/nature14280 pmid: 25799984
196 Sharma, E., Sterne-Weiler, T., O’Hanlon, D. and Blencowe, B. J. (2016) Global mapping of human RNA-RNA interactions. Mol. Cell, 62, 618–626
https://doi.org/10.1016/j.molcel.2016.04.030 pmid: 27184080
197 Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., Robinson, J. T., Davidovich, C., Gooding, A. R., Goodrich, K. J., Mattick, J. S., (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell, 165, 1267–1279
https://doi.org/10.1016/j.cell.2016.04.028 pmid: 27180905
198 Aw, J. G. A., Shen, Y., Wilm, A., Sun, M., Lim, X. N., Boon, K.-L., Tapsin, S., Chan, Y.-S., Tan, C.-P., Sim, A. Y., (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell, 62, 603–617
https://doi.org/10.1016/j.molcel.2016.04.028 pmid: 27184079
13 Brow, D. A. and Noller, H. F. (1983) Protection of ribosomal RNA from kethoxal in polyribosomes: implication of specific sites in ribosome function. J. Mol. Biol., 163, 27–46
https://doi.org/10.1016/0022-2836(83)90028-1 pmid: 6834429
14 Tullius, T. D. and Greenbaum, J. A. (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol., 9, 127–134
https://doi.org/10.1016/j.cbpa.2005.02.009 pmid: 15811796
15 Singer, B. (1976) All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature, 264, 333–339
https://doi.org/10.1038/264333a0 pmid: 1004554
16 Fritz, J. J., Lewin, A., Hauswirth, W., Agarwal, A., Grant, M. and Shaw, L. (2002) Development of hammerhead ribozymes to modulate endogenous gene expression for functional studies. Methods, 28, 276–285
https://doi.org/10.1016/S1046-2023(02)00233-5 pmid: 12413427
17 Lindell, M., Romby, P. and Wagner, E. G. H. (2002) Lead(II) as a probe for investigating RNA structure in vivo. RNA, 8, 534–541
https://doi.org/10.1017/S1355838201020416 pmid: 11991646
18 Lindell, M., Brännvall, M., Wagner, E. G. H. and Kirsebom, L. A. (2005) Lead(II) cleavage analysis of RNase P RNA in vivo. RNA, 11, 1348–1354
https://doi.org/10.1261/rna.2590605 pmid: 16043496
19 Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol., 180, 192–212
https://doi.org/10.1016/0076-6879(89)80102-8 pmid: 2482414
20 Wilkinson, K. A., Merino, E. J. and Weeks, K. M. (2006) Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc., 1, 1610–1616
https://doi.org/10.1038/nprot.2006.249 pmid: 17406453
21 Zubradt, M., Gupta, P., Persad, S., Lambowitz, A. M., Weissman, J. S. and Rouskin, S. (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods,14, 75–82
https://doi.org/10.1038/nmeth.4057 pmid: 27819661
22 Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. and Weeks, K. M. (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc., 10, 1643–1669
https://doi.org/10.1038/nprot.2015.103 pmid: 26426499
23 Watters, K. E., Yu, A. M., Strobel, E. J., Settle, A. H. and Lucks, J. B. (2016) Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods, 103, 34–48
https://doi.org/10.1016/j.ymeth.2016.04.002 pmid: 27064082
24 Poulsen, L. D., Kielpinski, L. J., Salama, S. R., Krogh, A. and Vinther, J. (2015) SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA, 21, 1042–1052
https://doi.org/10.1261/rna.047068.114 pmid: 25805860
25 Hector, R. D., Burlacu, E., Aitken, S., Le Bihan, T., Tuijtel, M., Zaplatina, A., Cook, A. G. and Granneman, S. (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res., 42, 12138–12154
https://doi.org/10.1093/nar/gku815 pmid: 25200078
26 Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505, 701–705
https://doi.org/10.1038/nature12894 pmid: 24336214
27 Kwok, C. K., Ding, Y., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2013) Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun., 4, 2971
https://doi.org/10.1038/ncomms3971 pmid: 24336128
28 Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2013) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700
https://doi.org/10.1038/nature12756 pmid: 24270811
29 Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C. and Assmann, S. M. (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat. Protoc., 10, 1050–1066
https://doi.org/10.1038/nprot.2015.064 pmid: 26086407
30 Kertesz, M., Wan, Y., Mazor, E., Rinn, J. L., Nutter, R. C., Chang, H. Y. and Segal, E. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 103–107
https://doi.org/10.1038/nature09322 pmid: 20811459
31 Underwood, J. G., Uzilov, A. V., Katzman, S., Onodera, C. S., Mainzer, J. E., Mathews, D. H., Lowe, T. M., Salama, S. R.and Haussler, D. (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods, 7, 995–1001
https://doi.org/10.1038/nmeth.1529 pmid: 21057495
32 Lucks, J. B., Mortimer, S. A., Trapnell, C., Luo, S., Aviran, S., Schroth, G. P., Pachter, L., Doudna, J. A. and Arkin, A. P. (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA, 108, 11063–11068
https://doi.org/10.1073/pnas.1106501108 pmid: 21642531
33 Loughrey, D., Watters, K. E., Settle, A. H. and Lucks, J. B. (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res, 42, 000
https://doi.org/10.1093/nar/gku909
34 Wan, Y., Qu, K., Ouyang, Z. and Chang, H. Y. (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc., 8, 849–869
https://doi.org/10.1038/nprot.2013.045 pmid: 23558785
35 Talkish, J., May, G., Lin, Y., Woolford, J. L. Jr and McManus, C. J. (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA, 20, 713–720
https://doi.org/10.1261/rna.042218.113 pmid: 24664469
36 Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol., 15, 491
https://doi.org/10.1186/s13059-014-0491-2 pmid: 25323333
37 Kielpinski, L. J. and Vinther, J. (2014) Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res., 42, e70
https://doi.org/10.1093/nar/gku167 pmid: 24569351
38 Seetin, M. G., Kladwang, W., Bida, J. P. and Das, R. (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. In RNA Folding: Methods and Protocols, 95–117. New York: Humana Press
39 Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. and Weeks, K. M. (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods, 11, 959–965
https://doi.org/10.1038/nmeth.3029 pmid: 25028896
40 Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., Kuchelmeister, H. Y., Batista, P. J., Torre, E. A., Kool, E. T., (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature. 519, 486–490
https://doi.org/10.1038/nature14263
41 Kwok, C. K., Sahakyan, A. B. and Balasubramanian, S. (2016) Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew. Chem. Int. Ed. Engl., 55, 8958–8961
https://doi.org/10.1002/anie.201603562 pmid: 27355429
42 Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. and Balasubramanian, S. (2016) rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods, 13, 841–844
https://doi.org/10.1038/nmeth.3965 pmid: 27571552
43 Kwok, C. K., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci., 40, 221–232
https://doi.org/10.1016/j.tibs.2015.02.005 pmid: 25797096
44 Lu, Z. and Chang, H. Y. (2016) Decoding the RNA structurome. Curr. Opin. Struct. Biol., 36, 142–148
https://doi.org/10.1016/j.sbi.2016.01.007 pmid: 26923056
45 Kwok, C. K. (2016) Dawn of the in vivo RNA structurome and interactome. Biochem. Soc. Trans., 44, 1395–1410
https://doi.org/10.1042/BST20160075 pmid: 27911722
46 Kubota, M., Chan, D. and Spitale, R. C. (2015) RNA structure: merging chemistry and genomics for a holistic perspective. BioEssays, 37, 1129–1138
https://doi.org/10.1002/bies.201300146 pmid: 26288173
47 Low, J. T. and Weeks, K. M. (2010) SHAPE-directed RNA secondary structure prediction. Methods, 52, 150–158
https://doi.org/10.1016/j.ymeth.2010.06.007 pmid: 20554050
48 Lorenz, R., Luntzer, D., Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T. (2015) SHAPE directed RNA folding. Bioinformatics, 32, 145–147
https://doi.org/10.1093/bioinformatics/btv523 pmid: 26353838
49 Merino, E. J., Wilkinson, K. A., Coughlan, J. L. and Weeks, K. M. (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc., 127, 4223–4231
https://doi.org/10.1021/ja043822v pmid: 15783204
50 Lavery, R. and Pullman, A. (1984) A new theoretical index of biochemical reactivity combining steric and electrostatic factors: an application to yeast tRNAPhe. Biophys. Chem., 19, 171–181
https://doi.org/10.1016/0301-4622(84)85017-6 pmid: 6372881
51 McGinnis, J. L., Dunkle, J. A., Cate, J. H. and Weeks, K. M. (2012) The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc., 134, 6617–6624
https://doi.org/10.1021/ja2104075 pmid: 22475022
52 Eddy, S. R. (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys., 43, 433–456
https://doi.org/10.1146/annurev-biophys-051013-022950 pmid: 24895857
53 Kutchko, K. M. and Laederach, A. (2016) Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WIREs RNA, 8, e1374
https://doi.org/10.1002/wrna.1374 pmid: 27396578
54 Aviran, S. and Pachter, L. (2014) Rational experiment design for sequencing-based RNA structure mapping. RNA, 20, 1864–1877
https://doi.org/10.1261/rna.043844.113 pmid: 25332375
55 Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R. C., Snyder, M. P., Segal, E., (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 505, 706–709
https://doi.org/10.1038/nature12946 pmid: 24476892
56 Ritz, J., Martin, J. S. and Laederach, A. (2012) Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics, 13, S6
https://doi.org/10.1186/1471-2164-13-S4-S6 pmid: 22759654
57 Watters, K. E., Abbott, T. R. and Lucks, J. B. (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res., 44, e12
https://doi.org/10.1093/nar/gkv879 pmid: 26350218
58 Bai, Y., Tambe, A., Zhou, K. and Doudna, J. A. (2014) RNA-guided assembly of Rev-RRE nuclear export complexes. eLife, 3, e03656
https://doi.org/10.7554/eLife.03656 pmid: 25163983
59 Choudhary, K., Shih, N. P., Deng, F., Ledda, M., Li, B. and Aviran, S. (2016) Metrics for rapid quality control in RNA structure probing experiments. Bioinformatics, 32, 3575–3583
pmid: 27497441
60 Aviran, S., Lucks, J. B. and Pachter, L. (2011) RNA structure characterization from chemical mapping experiments. In the 49th Annual Allerton Conference on Communication, Control, and Computing, pages 1743–1750
61 Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. and Chang, H. Y. (2011) Understanding the transcriptome through RNA structure. Nat. Rev. Genet., 12, 641–655
https://doi.org/10.1038/nrg3049 pmid: 21850044
62 McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119
https://doi.org/10.1002/bip.360290621 pmid: 1695107
63 Ding, Y. and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res., 31, 7280–7301
https://doi.org/10.1093/nar/gkg938 pmid: 14654704
64 Rogers, E. and Heitsch, C. (2016) New insights from cluster analysis methods for RNA secondary structure prediction. Wiley Interdiscip. Rev. RNA, 7, 278–294
https://doi.org/10.1002/wrna.1334 pmid: 26971529
65 Quarrier, S., Martin, J. S., Davis-Neulander, L., Beauregard, A. and Laederach, A. (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA, 16, 1108–1117
https://doi.org/10.1261/rna.1988510 pmid: 20413617
66 Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
https://doi.org/10.1186/1471-2105-11-94 pmid: 20167110
67 Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
https://doi.org/10.1101/gr.079558.108 pmid: 18550803
68 Guo, J. U. and Bartel, D. P. (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 353, aaf5371
https://doi.org/10.1126/science.aaf5371 pmid: 27708011
69 Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
https://doi.org/10.1093/bioinformatics/btp616 pmid: 19910308
70 Anders, S., and Huber, W. (2012) Differential expression of RNA-Seq data at the gene level-the DESeq package. Heidelberg: European Molecular Biology Laboratory
71 Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29
https://doi.org/10.1186/gb-2014-15-2-r29 pmid: 24485249
72 Leamy, K. A., Assmann, S. M., Mathews, D. H. and Bevilacqua, P. C. (2016) Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys., 49, e10
https://doi.org/10.1017/S003358351600007X pmid: 27658939
73 Hu, X., Wu, Y., Lu, Z. J. and Yip, K. Y. (2015) Analysis of sequencing data for probing RNA secondary structures and protein- RNA binding in studying posttranscriptional regulations. Brief. Bioinform., 17,1032–1043
https://doi.org/10.1093/bib/bbv106 pmid: 26655457
74 Cordero, P., Kladwang, W.,VanLang, C.C. and Das,R. (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry, 51, 7037–7039
https://doi.org/10.1021/bi3008802 pmid: 22913637
75 Lee, B., Flynn, R. A., Kadina, A., Guo, J. K., Kool, E. T. and Chang, H. Y. (2016) Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA, rna.058784.116
https://doi.org/10.1261/rna.058784.116 pmid: 27879433
76 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621–628
https://doi.org/10.1038/nmeth.1226 pmid: 18516045
77 Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V. and Dalmay, T. (2012) Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3, 4
https://doi.org/10.1186/1758-907X-3-4 pmid: 22647250
78 Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol., 12, R22
https://doi.org/10.1186/gb-2011-12-3-r22 pmid: 21410973
79 Li, B., Tambe, A., Aviran, S. and Pachter, L. (2016) Prober: a general toolkit for analyzing sequencing-based ‘toeprinting’ assays. bioRxiv, 063107
80 Aviran, S., Trapnell, C., Lucks, J. B., Mortimer, S. A., Luo, S., Schroth, G. P., Doudna, J. A., Arkin, A. P. and Pachter, L. (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Acad. Sci. USA, 108, 11069–11074
https://doi.org/10.1073/pnas.1106541108 pmid: 21642536
81 Selega, A., Sirocchi, C., Iosub, I., Granneman, S. and Sanguinetti, G.(2017) Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods, 14, 83–89
https://doi.org/10.1038/nmeth.4068 pmid: 27819660
82 Deigan, K. E., Li, T. W., Mathews, D. H. and Weeks, K. M. (2009) Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA, 106, 97–102
https://doi.org/10.1073/pnas.0806929106 pmid: 19109441
83 Sloma, M. F. and Mathews, D. H. (2015) Improving RNA secondary structure prediction with structure mapping data. Methods Enzymol., 553, 91–114
https://doi.org/10.1016/bs.mie.2014.10.053 pmid: 25726462
84 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
https://doi.org/10.1038/nbt.1621 pmid: 20436464
85 Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
https://doi.org/10.1186/1471-2105-12-323 pmid: 21816040
86 Smola, M. J., Calabrese, J. M. and Weeks, K. M. (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry, 54, 6867–6875
https://doi.org/10.1021/acs.biochem.5b00977 pmid: 26544910
87 Smola, M. J., Christy, T. W., Inoue, K., Nicholson, C. O., Friedersdorf, M., Keene, J. D., Lee, D. M., Calabrese, J. M. and Weeks, K. M. (2016) SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA, 113, 10322–10327
88 Solem, A. C., Halvorsen, M., Ramos, S. B. and Laederach, A. (2015) The potential of the riboSNitch in personalized medicine. Wiley Interdiscip. Rev. RNA, 6, 517–532
https://doi.org/10.1002/wrna.1291 pmid: 26115028
89 Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., Makino, D. L., Nutter, R. C., Segal, E. and Chang, H. Y. (2012) Genome-wide measurement of RNA folding energies. Mol. Cell, 48, 169–181
https://doi.org/10.1016/j.molcel.2012.08.008 pmid: 22981864
90 Righetti, F., Nuss, A. M., Twittenhoff, C., Beele, S., Urban, K., Will, S., Bernhart, S. H., Stadler, P. F., Dersch, P. and Narberhaus, F. (2016) Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA, 113, 7237–7242
https://doi.org/10.1073/pnas.1523004113 pmid: 27298343
91 Corley, M., Solem, A., Qu, K., Chang, H. Y.and Laederach, A. (2015) Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res., 43,1859–1868
https://doi.org/10.1093/nar/gkv010 pmid: 25618847
92 Abdullah, M. B. (1990) On a robust correlation coefficient. Statistician, 39, 455–460
https://doi.org/10.2307/2349088
93 Goodwin, L. D. and Leech, N. L. (2006) Understanding correlation: factors that affect the size of r. J. Exp. Educ., 74, 249–266
https://doi.org/10.3200/JEXE.74.3.249-266
94 Müller, R. and Büttner, P. (1994) A critical discussion of intraclass correlation coefficients. Stat. Med., 13, 2465–2476
https://doi.org/10.1002/sim.4780132310 pmid: 7701147
95 Gastwirth, J. L. (1972) The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat., 54, 306–316
https://doi.org/10.2307/1937992
96 Eddy, S. R. and Durbin, R. (1994) RNA sequence analysis using covariance models. Nucleic Acids Res., 22, 2079–2088
https://doi.org/10.1093/nar/22.11.2079 pmid: 8029015
97 Zhang, J. -H., Chung, T. D. and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen., 4, 67–73
https://doi.org/10.1177/108705719900400206 pmid: 10838414
98 Pollom, E., Dang, K. K., Potter, E. L., Gorelick, R. J., Burch, C. L., Weeks, K. M. and Swanstrom, R. (2013) Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog., 9, e1003294
https://doi.org/10.1371/journal.ppat.1003294 pmid: 23593004
99 Cowell, F. A. and Victoria-Feser, M.-P. (1996) Robustness properties of inequality measures. Econometrica, 64, 77–101
https://doi.org/10.2307/2171925
100 Liang, R., Kierzek, E., Kierzek, R. and Turner, D. H. (2010) Comparisons between chemical mapping and binding to isoenergetic oligonucleotide microarrays reveal unexpected patterns of binding to the Bacillus subtilis RNase P RNA specificity domain. Biochemistry, 49, 8155–8168
https://doi.org/10.1021/bi100286n pmid: 20557101
101 Hawkes, E. J., Hennelly, S. P., Novikova, I. V., Irwin, J. A., Dean, C. and Sanbonmatsu, K. Y. (2016) COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Reports, 16, 3087–3096
https://doi.org/10.1016/j.celrep.2016.08.045 pmid: 27653675
102 Xue, Z., Hennelly, S., Doyle, B., Gulati, A. A., Novikova, I. V., Sanbonmatsu, K. Y. and Boyer, L. A. (2016) A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell, 64, 37–50
https://doi.org/10.1016/j.molcel.2016.08.010 pmid: 27618485
103 Rice, G. M., Leonard, C. W. and Weeks, K. M. (2014) RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA, 20, 846–854
https://doi.org/10.1261/rna.043323.113 pmid: 24742934
104 Wu, Y., Shi, B., Ding, X., Liu, T., Hu, X., Yip, K. Y., Yang, Z. R., Mathews, D. H., and Lu., Z. J. (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic acids res., 43, 7247–7259
https://doi.org/10.1093/nar/gks799
105 Choudhary, K., Ruan, L., Deng, F., Shih, N. and Aviran, S. (2016) SEQualyzer: interactive tool for quality control and exploratory analysis of high-throughput RNA structural profiling data. Bioinformatics, btw627
https://doi.org/10.1093/bioinformatics/btw627 pmid: 27694194
106 Rother, K., Rother, M., Skiba, P. and Bujnicki, J. M. (2014) Automated modeling of RNA 3D structure. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 395–415. New York: Humana Press
107 Tabaska, J. E., Cary, R. B., Gabow, H. N. and Stormo, G. D. (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14, 691–699
https://doi.org/10.1093/bioinformatics/14.8.691 pmid: 9789095
108 Rivas, E. and Eddy, S. R. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol., 285, 2053–2068
https://doi.org/10.1006/jmbi.1998.2436 pmid: 9925784
109 Lyngsø, R. B. and Pedersen, C. N. (2000) RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7, 409–427
https://doi.org/10.1089/106652700750050862 pmid: 11108471
110 Ruan, J., Stormo, G. D. and Zhang, W. (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics, 20, 58–66
https://doi.org/10.1093/bioinformatics/btg373 pmid: 14693809
111 Reeder, J. and Giegerich, R. (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5, 104
https://doi.org/10.1186/1471-2105-5-104 pmid: 15294028
112 Ren, J., Rastegari, B., Condon, A. and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA, 11, 1494–1504
https://doi.org/10.1261/rna.7284905 pmid: 16199760
113 Cao, S. and Chen, S. -J. (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res., 34, 2634–2652
https://doi.org/10.1093/nar/gkl346 pmid: 16709732
114 Reeder, J., Steffen, P. and Giegerich, R. (2007) pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res., 35, W320–W324
https://doi.org/10.1093/nar/gkm258 pmid: 17478505
115 Sato, K., Kato, Y., Hamada, M., Akutsu, T. and Asai, K. (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics, 27, i85–i93
https://doi.org/10.1093/bioinformatics/btr215 pmid: 21685106
116 Andronescu, M., Condon, A., Turner, D. H. and Mathews, D. H. (2014) The determination of RNA folding nearest neighbor parameters. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 45–70. New York: Humana Press
117 Xia, T., SantaLucia, J. Jr., Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., and Turner, D. H. (1998) Thermodynamic parameters for an expanded Nearest-Neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry,14719–14735
https://doi.org/10.1021/bi9809425
118 Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol., 288, 911–940
https://doi.org/10.1006/jmbi.1999.2700 pmid: 10329189
119 Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978) Algorithms for loop matchings. SIAM J. Appl. Math., 35, 68–82
https://doi.org/10.1137/0135006
120 Waterman, M. S. and Smith, T. F. (1978) RNA secondary structure: a complete mathematical analysis. Math. Biosci., 42, 257–266
https://doi.org/10.1016/0025-5564(78)90099-8
121 Nussinov, R. and Jacobson, A. B. (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA, 77, 6309–6313
https://doi.org/10.1073/pnas.77.11.6309 pmid: 6161375
122 Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res., 9, 133–148
https://doi.org/10.1093/nar/9.1.133 pmid: 6163133
123 Zuker, M. and Sankoff, D. (1984) RNA secondary structures and their prediction. Bull. Math. Biol., 46, 591–621
https://doi.org/10.1007/BF02459506
124 Markham, N. R. and Zuker, M. (2008) UNAFold. In Bioinformatics: Structure, Function and Applications, 3–31. New York: Humana Press
125 Reuter, J. S. and Mathews, D. H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129
https://doi.org/10.1186/1471-2105-11-129 pmid: 20230624
126 Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F. and Hofacker, I. L. (2011) ViennaRNA package 2.0. Algorithms Mol. Biol., 6, 26
https://doi.org/10.1186/1748-7188-6-26 pmid: 22115189
127 Eddy, S. R. (2004) How do RNA folding algorithms work? Nat. Biotechnol., 22, 1457–1458
https://doi.org/10.1038/nbt1104-1457 pmid: 15529172
128 Mathews, D. H. and Turner, D. H. (2006) Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol., 16, 270–278
https://doi.org/10.1016/j.sbi.2006.05.010 pmid: 16713706
129 Shapiro, B. A., Yingling, Y. G., Kasprzak, W. and Bindewald, E. (2007) Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol., 17, 157–165
https://doi.org/10.1016/j.sbi.2007.03.001 pmid: 17383172
130 Bai, Y., Dai, X., Harrison, A., Johnston, C. and Chen, M. (2016) Toward a next-generation atlas of RNA secondary structure. Brief. Bioinform., 17, 63–77
https://doi.org/10.1093/bib/bbv026 pmid: 25922372
131 Ge, P. and Zhang, S. (2015) Computational analysis of RNA structures with chemical probing data. Methods, 79-80, 60–66
https://doi.org/10.1016/j.ymeth.2015.02.003 pmid: 25687190
132 Doshi, K. J., Cannone, J. J., Cobaugh, C. W. and Gutell, R. R. (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics, 5, 105
https://doi.org/10.1186/1471-2105-5-105 pmid: 15296519
133 Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule. Science, 244, 48–52
https://doi.org/10.1126/science.2468181 pmid: 2468181
134 Darty, K., Denise, A. and Ponty, Y. (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974–1975
https://doi.org/10.1093/bioinformatics/btp250 pmid: 19398448
135 Deng, F., Ledda, M., Vaziri, S. and Aviran, S. (2016) Data-directed RNA secondary structure prediction using probabilistic modeling. RNA, 22, 1109–1119
https://doi.org/10.1261/rna.055756.115 pmid: 27251549
136 McGinnis, J. L., Liu, Q., Lavender, C. A., Devaraj, A., McClory, S. P., Fredrick, K. and Weeks, K. M. (2015) In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl. Acad. Sci. USA, 112, 2425–2430
https://doi.org/10.1073/pnas.1411514112 pmid: 25675474
137 Mathews, D. H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 10, 1178–1190
https://doi.org/10.1261/rna.7650904 pmid: 15272118
138 Bernhart, S. H., Hofacker, I. L. and Stadler, P. F. (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics, 22, 614–615
https://doi.org/10.1093/bioinformatics/btk014 pmid: 16368769
139 Ding, Y., Chan, C. Y. and Lawrence, C. E. (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 11, 1157–1166
https://doi.org/10.1261/rna.2500605 pmid: 16043502
140 Do, C. B., Woods, D. A. and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22, e90–e98
https://doi.org/10.1093/bioinformatics/btl246 pmid: 16873527
141 Lu, Z. J., Gloor, J. W. and Mathews, D. H. (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA, 15, 1805–1813
https://doi.org/10.1261/rna.1643609 pmid: 19703939
142 Hamada, M., Sato, K. and Asai, K. (2010) Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics, 11, 586
https://doi.org/10.1186/1471-2105-11-586 pmid: 21118522
143 Cordero, P. and Das, R. (2015) Rich RNA structure landscapes revealed by mutate-and-map analysis. PLoS Comput. Biol., 11, e1004473
https://doi.org/10.1371/journal.pcbi.1004473 pmid: 26566145
144 Breaker, R. R. (2012) Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol., 4, a003566
https://doi.org/10.1101/cshperspect.a003566 pmid: 21106649
145 Parsch, J., Braverman, J. M. and Stephan, W. (2000) Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics, 154, 909–921
pmid: 10655240
146 Gardner, P. P. and Giegerich, R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics, 5, 140
https://doi.org/10.1186/1471-2105-5-140 pmid: 15458580
147 Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Müller, K. M., (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3, 2
https://doi.org/10.1186/1471-2105-3-2 pmid: 11869452
148 Rupert, L., Stefan, G. and Gerhard, S. (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res., 27, 4208–4217
https://doi.org/10.1093/nar/27.21.4208 pmid: 10518612
149 Hofacker, I. L., Fekete, M. and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol., 319, 1059–1066
https://doi.org/10.1016/S0022-2836(02)00308-X pmid: 12079347
150 Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R. and Stadler, P. F. (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics, 9, 474
https://doi.org/10.1186/1471-2105-9-474 pmid: 19014431
[1] Yongchang Zheng,Masood ur Rehman Kayani,Ting F. Zhu. Rapid identification of multi-strain HBV infection in patient by high-throughput DNA sequencing[J]. Quant. Biol., 2015, 3(2): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed