|
|
|
Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level |
Jingwen Guan1,2,3,Xu Shi1,2,Roberto Burgos1,Lanying Zeng1,2,3( ) |
1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
2. Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
3. Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA |
|
|
|
|
Abstract Background: The CRISPR-Cas system is a widespread prokaryotic defense system which targets and cleaves invasive nucleic acids, such as plasmids or viruses. So far, a great number of studies have focused on the components and mechanisms of this system, however, a direct visualization of CRISPR-Cas degrading invading DNA in real-time has not yet been studied at the single-cell level.
Methods: In this study, we fluorescently label phage lambda DNA in vivo, and track the labeled DNA over time to characterize DNA degradation at the single-cell level.
Results: At the bulk level, the lysogenization frequency of cells harboring CRISPR plasmids decreases significantly compared to cells with a non-CRISPR control. At the single-cell level, host cells with CRISPR activity are unperturbed by phage infection, maintaining normal growth like uninfected cells, where the efficiency of our anti-lambda CRISPR system is around 26%. During the course of time-lapse movies, the average fluorescence of invasive phage DNA in cells with CRISPR activity, decays more rapidly compared to cells without, and phage DNA is fully degraded by around 44 minutes on average. Moreover, the degradation appears to be independent of cell size or the phage DNA ejection site suggesting that Cas proteins are dispersed in sufficient quantities throughout the cell.
Conclusions: With the CRISPR-Cas visualization system we developed, we are able to examine and characterize how a CRISPR system degrades invading phage DNA at the single-cell level. This work provides direct evidence and improves the current understanding on how CRISPR breaks down invading DNA.
|
| Author Summary The CRISPR-Cas system is a widespread evolutionary adaptation in prokaryotes including archaea and bacteria, defending against invasive nucleic acids, such as plasmids or viruses. We aim to visualize and characterize how a CRISPR system acts within E. coli cells to destroy a phage invader at the single-cell level. By fluorescently labeling and tracking phage lambda DNA after infection using microscopy, we find that CRISPR rapidly degrades phage DNA to allow the cell to live on, and discover some parameters accounting for the cell-to-cell variability of the CRISPR functions, providing insights on how CRISPR systems protect bacteria. |
| Keywords
bacteriophage lambda
CRISPR-Cas
fluorescence microscopy
single-cell analysis
type I CRISPR
|
|
|
| Fund: |
|
Corresponding Author(s):
Lanying Zeng
|
|
Issue Date: 22 March 2017
|
|
| 1 |
Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V. and van der Oost, J. (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353, aad5147
https://doi.org/10.1126/science.aad5147.
|
| 2 |
Deveau, H., Garneau, J. E. and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 64, 475–493
https://doi.org/10.1146/annurev.micro.112408.134123.
|
| 3 |
van Erp, P. B., Jackson, R. N., Carter, J., Golden, S. M., Bailey, S. and Wiedenheft, B. (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res., 43, 8381–8391
https://doi.org/10.1093/nar/gkv793.
|
| 4 |
Bhaya, D., Davison, M. and Barrangou, R. (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet., 45, 273–297
https://doi.org/10.1146/annurev-genet-110410-132430.
|
| 5 |
Sternberg, S. H., Richter, H., Charpentier, E. and Qimron, U. (2016) Adaptation in CRISPR-Cas systems. Mol. Cell, 61, 797–808
https://doi.org/10.1016/j.molcel.2016.01.030.
|
| 6 |
van der Oost, J., Westra, E. R., Jackson, R. N. and Wiedenheft, B. (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol., 12, 479–492
https://doi.org/10.1038/nrmicro3279.
|
| 7 |
Huo, Y., Nam, K. H., Ding, F., Lee, H., Wu, L., Xiao, Y., Farchione, M. D. Jr, Zhou, S., Rajashankar, K., Kurinov, I., (2014) Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol., 21, 771– 777
https://doi.org/10.1038/nsmb.2875.
|
| 8 |
Hatoum-Aslan, A., Maniv, I. and Marraffini, L. A. (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. USA, 108, 21218–21222
https://doi.org/10.1073/pnas.1112832108.
|
| 9 |
Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. and Siksnys, V. (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J., 30, 1335–1342
https://doi.org/10.1038/emboj.2011.41.
|
| 10 |
Barrangou, R. (2015) Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol., 16, 247
https://doi.org/10.1186/s13059-015-0816-9.
|
| 11 |
Mulepati, S. and Bailey, S. (2013) In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem., 288, 22184–22192
https://doi.org/10.1074/jbc.M113.472233.
|
| 12 |
Amitai, G. and Sorek, R. (2016) CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol., 14, 67–76
https://doi.org/10.1038/nrmicro.2015.14.
|
| 13 |
Künne, T., Kieper, S. N., Bannenberg, J. W., Vogel, A. I., Miellet, W. R., Klein, M., Depken, M., Suarez-Diez, M. and Brouns, S. J. (2016) Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol. Cell, 63, 852–864
https://doi.org/10.1016/j.molcel.2016.07.011.
|
| 14 |
McGinn, J. and Marraffini, L. A. (2016) CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration. Mol. Cell, 64, 616–623
https://doi.org/10.1016/j.molcel.2016.08.038.
|
| 15 |
Jackson, R. N., Golden, S. M., van Erp, P. B., Carter, J., Westra, E. R., Brouns, S. J., van der Oost, J., Terwilliger, T. C., Read, R. J. and Wiedenheft, B. (2014) Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science, 345, 1473–1479
https://doi.org/10.1126/science.1256328.
|
| 16 |
Hochstrasser, M. L., Taylor, D. W., Bhat, P., Guegler, C. K., Sternberg, S. H., Nogales, E.and Doudna, J. A. (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Natl. Acad. Sci. USA, 111, 6618–6623
https://doi.org/10.1073/pnas.1405079111.
|
| 17 |
Westra, E. R., van Erp, P. B., Kunne, T., Wong, S. P., Staals, R. H., Seegers, C. L., Bollen, S., Jore, M. M., Semenova, E., Severinov, K., (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell, 46, 595–605
https://doi.org/10.1016/j.molcel.2012.03.018.
|
| 18 |
Mulepati, S., Heroux, A. and Bailey, S. (2014) Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science, 345, 1479–1484
https://doi.org/10.1126/science.1256996.
|
| 19 |
Redding, S., Sternberg, S. H., Marshall, M., Gibb, B., Bhat, P., Guegler, C. K., Wiedenheft, B., Doudna, J. A. and Greene, E. C. (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell, 163, 854–865
https://doi.org/10.1016/j.cell.2015.10.003.
|
| 20 |
Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V. and van der Oost, J. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960–964
https://doi.org/10.1126/science.1159689.
|
| 21 |
Edgar, R. and Qimron, U. (2010) The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J. Bacteriol., 192, 6291–6294
https://doi.org/10.1128/JB.00644-10.
|
| 22 |
Babic, A., Lindner, A. B., Vulic, M., Stewart, E. J. and Radman, M. (2008) Direct visualization of horizontal gene transfer. Science, 319, 1533–1536
https://doi.org/10.1126/science.1153498.
|
| 23 |
Shao, Q., Hawkins, A. and Zeng, L. (2015) Phage DNA dynamics in cells with different fates. Biophys. J., 108, 2048–2060
https://doi.org/10.1016/j.bpj.2015.03.027.
|
| 24 |
Pul, U., Wurm, R., Arslan, Z., Geissen, R., Hofmann, N. and Wagner, R. (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol. Microbiol., 75, 1495–1512
https://doi.org/10.1111/j.1365-2958.2010.07073.x.
|
| 25 |
Lu, M., Campbell, J. L., Boye, E. and Kleckner, N. (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell, 77, 413–426
https://doi.org/10.1016/0092-8674(94)90156-2.
|
| 26 |
Slater, S., Wold, S., Lu, M., Boye, E., Skarstad, K. and Kleckner, N. (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell, 82, 927–936
https://doi.org/10.1016/0092-8674(95)90272-4.
|
| 27 |
Pougach, K., Semenova, E., Bogdanova, E., Datsenko, K. A., Djordjevic, M., Wanner, B. L. and Severinov, K. (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol., 77, 1367–1379
https://doi.org/10.1111/j.1365-2958.2010.07265.x.
|
| 28 |
Shao, Q., Trinh, J. T., McIntosh, C. S., Christenson, B., Balazsi, G. and Zeng, L. (2017) Lysis-lysogeny coexistence: prophage integration during lytic development. MicrobiologyOpen 6
https://doi.org/10.1002/mbo3.395.
|
| 29 |
Van Valen, D., Wu, D., Chen, Y. J., Tuson, H., Wiggins, P. and Phillips, R. (2012) A single-molecule Hershey-Chase experiment. Curr. Biol., 22, 1339–1343
https://doi.org/10.1016/j.cub.2012.05.023.
|
| 30 |
Edgar, R., Rokney, A., Feeney, M., Semsey, S., Kessel, M., Goldberg, M. B., Adhya, S. and Oppenheim, A. B. (2008) Bacteriophage infection is targeted to cellular poles. Mol. Microbiol., 68, 1107–1116
https://doi.org/10.1111/j.1365-2958.2008.06205.x.
|
| 31 |
Rothenberg, E., Sepulveda, L. A., Skinner, S. O., Zeng, L., Selvin, P. R. and Golding, I. (2011) Single-virus tracking reveals a spatial receptor-dependent search mechanism. Biophys. J., 100, 2875–2882
https://doi.org/10.1016/j.bpj.2011.05.014.
|
| 32 |
Zeng, L., Skinner, S. O., Zong, C., Sippy, J., Feiss, M. and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell, 141, 682–691
https://doi.org/10.1016/j.cell.2010.03.034.
|
| 33 |
Zeng, L. and Golding, I. (2011) Following cell-fate in E. coli after infection by phage lambda. J. Vis. Exp., 56, e3363,
https://doi.org/10.3791/3363.
|
| 34 |
Sliusarenko, O., Heinritz, J., Emonet, T. and Jacobs-Wagner, C. (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol., 80, 612–627
https://doi.org/10.1111/j.1365-2958.2011.07579.x.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|