Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2017, Vol. 5 Issue (1) : 105-109    https://doi.org/10.1007/s40484-017-0101-x
NEWS AND VIEWS
Whole genome synthesis: from poliovirus to synthetic yeast
Junbiao Dai1(),Yizhi Cai2,Yinjing Yuan3,Huanming Yang4,Jef D. Boeke5
1. Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2. School of Biological Sciences, The King’s Buildings, University of Edinburgh, EH9 3BF, United Kingdom
3. Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
4. BGI-Shenzhen, Shenzhen 518083, China
5. Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
 Download: PDF(1103 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Junbiao Dai   
Issue Date: 22 March 2017
 Cite this article:   
Junbiao Dai,Yizhi Cai,Yinjing Yuan, et al. Whole genome synthesis: from poliovirus to synthetic yeast[J]. Quant. Biol., 2017, 5(1): 105-109.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-017-0101-x
https://academic.hep.com.cn/qb/EN/Y2017/V5/I1/105
Fig.1  Sc2.0: Design and construct an entirely synthetic version of S. cerevisiae genome together.
1 DeLisi, C. (2008) Meetings that changed the world: Santa Fe 1986: Human genome baby-steps. Nature, 455, 876–877
https://doi.org/10.1038/455876a
2 Battelle Technology Partnership Practice, (2011) Economic impact of the Human Genome Project
3 Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
https://doi.org/10.1126/science.1232033
4 Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
https://doi.org/10.1126/science.1231143
5 Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
6 Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355
https://doi.org/10.1038/nbt.2842
7 Sliva, A., Yang, H., Boeke, J. D. and Mathews, D. J. (2015) Freedom and responsibility in synthetic genomics: the synthetic yeast project. Genetics, 200, 1021–1028
https://doi.org/10.1534/genetics.115.176370
8 Service, R. F. (2013) The life force. Science, 342, 1032–1034
https://doi.org/10.1126/science.342.6162.1032
9 Wang, H. H., Kim, H., Cong, L., Jeong, J., Bang, D. and Church, G. M. (2012) Genome-scale promoter engineering by coselection MAGE. Nat. Methods, 9, 591–593
https://doi.org/10.1038/nmeth.1971
10 Isaacs, F. J., Carr, P. A., Wang, H. H., Lajoie, M. J., Sterling, B., Kraal, L., Tolonen, A. C., Gianoulis, T. A., Goodman, D. B., Reppas, N. B., (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333, 348–353
https://doi.org/10.1126/science.1205822
11 Lajoie, M. J., Rovner, A. J., Goodman, D. B., Aerni, H.-R., Haimovich, A. D., Kuznetsov, G., Mercer, J. A., Wang, H. H., Carr, P. A., Mosberg, J. A., (2013) Genomically recoded organisms expand biological functions. Science, 342, 357–360
https://doi.org/10.1126/science.1241459
12 Mandell, D. J., Lajoie, M. J., Mee, M. T., Takeuchi, R., Kuznetsov, G., Norville, J. E., Gregg, C. J., Stoddard, B. L. and Church, G. M. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature, 518, 55–60
https://doi.org/10.1038/nature14121
13 Rovner, A. J., Haimovich, A. D., Katz, S. R., Li, Z., Grome, M. W., Gassaway, B. M., Amiram, M., Patel, J. R., Gallagher, R. R., Rinehart, J., (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature, 518, 89–93
https://doi.org/10.1038/nature14095
14 Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M. G., Moosburner, M., (2016) Design, synthesis, and testing toward a 57-codon genome. Science, 353, 819–822
https://doi.org/10.1126/science.aaf3639
15 Cello, J., Paul, A. V. and Wimmer, E. (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297, 1016–1018
https://doi.org/10.1126/science.1072266
16 Smith, H. O., Hutchison, C. A. 3rd, Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445
https://doi.org/10.1073/pnas.2237126100
17 Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J. C., Hutchison, C. A. III, Slocombe, P. M. and Smith, M. (1978) The nucleotide sequence of bacteriophage phiX174. J. Mol. Biol., 125, 225–246
https://doi.org/10.1016/0022-2836(78)90346-7
18 Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., Stockwell, T. B., Brownley, A., Thomas, D. W., Algire, M. A., (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–1220
https://doi.org/10.1126/science.1151721
19 Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–56
https://doi.org/10.1126/science.1190719
20 Lartigue, C., Vashee, S., Algire, M. A., Chuang, R. -Y., Benders, G. A., Ma, L., Noskov, V. N., Denisova, E. A., Gibson, D. G., Assad-Garcia, N., (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 325, 1693–1696
https://doi.org/10.1126/science.1173759
21 Hutchison, C. A. Ⅲ, Chuang, R. -Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., (2016) Design and synthesis of a minimal bacterial genome. Science, 351, aad6253
https://doi.org/10.1126/science.aad6253
22 Schatz, M. C. and Phillippy, A. M. (2012) The rise of a digital immune system. Gigascience, 1, 4
https://doi.org/10.1186/2047-217X-1-4
23 Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B. and Church, G. M. (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol., 28, 1295–1299
https://doi.org/10.1038/nbt.1716
24 Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., Keller, A., Stähler, C. F., Häberle, P., Gharizadeh, B., (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol., 28, 1291–1294
https://doi.org/10.1038/nbt.1710
25 Kim, H., Kim, J., Kim, E.-G., Heinz, A. J., Kwon, S. and Chun, H. (2010) Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics, 4, 043014
https://doi.org/10.1063/1.3516037
26 Lin, Q., Jia, B., Mitchell, L. A., Luo, J., Yang, K., Zeller, K. I., Zhang, W., Xu, Z., Stracquadanio, G., Bader , J., (2014) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 213–220
27 Gibson, D. G., Smith, H. O., Hutchison, C. A. Ⅲ, Venter, J. C. and Merryman, C. (2010) Chemical synthesis of the mouse mitochondrial genome. Nat. Methods, 7, 901–903
https://doi.org/10.1038/nmeth.1515
28 Engler, C., Kandzia, R. and Marillonnet, S. (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3, e3647
https://doi.org/10.1371/journal.pone.0003647
29 Engler, C., Gruetzner, R., Kandzia, R. and Marillonnet, S. (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 4, e5553
https://doi.org/10.1371/journal.pone.0005553
30 Shao, Z., Zhao, H. and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 37, e16
https://doi.org/10.1093/nar/gkn991
31 Guo, Y., Dong, J., Zhou, T., Auxillos, J., Li, T., Zhang, W., Wang, L., Shen, Y., Luo, Y., Zheng, Y., (2015) YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res., 43, e88
https://doi.org/10.1093/nar/gkv464
32 Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J. W., Dai, J., Lindstrom, D. L., (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477, 471–476
https://doi.org/10.1038/nature10403
33 Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., Xue, Y., Cai, Y., Chen, T., Dymond, J. S., Kang, K., (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res., 26, 36–49
https://doi.org/10.1101/gr.193433.115
34 Annaluru, N., Muller, H., Mitchell, L. A., Ramalingam, S., Stracquadanio, G., Richardson, S. M., Dymond, J. S., Kuang, Z., Scheifele, L. Z., Cooper, E. M., (2014) Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–58
https://doi.org/10.1126/science.1249252
35 Mercy, G., Mozziconacci, J., Scolari, V. F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L. A., Shen, M., Shen, Y., (2017) 3D organization of synthetic and scrambled chromosomes. Science, 355, eaaf4597
https://doi.org/10.1126/science.aaf4597
36 Mitchell, L. A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Yang, K., Richardson, S., Martin, J. A., Zhao, Y., Walker, R., (2017) Synthesis, debugging and consolidation of synthetic chromosomes in yeast: synVI and beyond. Science, 355, eaaf4831
https://doi.org/10.1126/science.aaf4831
37 Richardson, S. M., Mitchell, L. A., Stracquadanio,G., Yang, K., Dymond, J. S., DiCarlo, J. E., Lee, D., Huang,C. L. V., Chandrasegaran, S., Cai, Y., (2017) Design of a synthetic yeast genome. Science, 355, eaaf4557
https://doi.org/10.1126/science.aaf4557
38 Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., Walker, R., Zhao, H., Chen, S., Liu, W., (2017) Deep functional analysis of synII, a 770–kilobase synthetic yeast chromosome. Science, 355, eaaf4791
https://doi.org/10.1126/science.aaf4791
39 Wu, Y., Li, B. Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q. H., Wang, X., Xiao, W. H., Wang, Y., Zhou, X., (2017) Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 355, eaaf4706
https://doi.org/10.1126/science.aaf4706
40 Xie, Z. X., Li,B. Z. , Mitchell, L. A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Zeng, B. X.,, Liu, H. M., (2017) “Perfect” designer chromosome V and behavior of a ring derivative. Science, 355, eaaf4704
https://doi.org/10.1126/science.aaf4704
41 Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., (2017) Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 355, eaaf3981
https://doi.org/10.1126/science.aaf3981
42 Dymond, J. S., Scheifele, L. Z., Richardson, S., Lee, P., Chandrasegaran, S., Bader, J. S. and Boeke, J. D. (2009) Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary build-a-genome course. Genetics, 181, 13–21
https://doi.org/10.1534/genetics.108.096784
43 Mitchell, L. A., Cai, Y., Taylor, M., Noronha, A. M., Chuang, J., Dai, L. and Boeke, J. D. (2013) Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA. ACS Synth. Biol., 2, 473–477
https://doi.org/10.1021/sb300131w
44 Mitchell, L. A. and Boeke, J. D. (2014) Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc. Natl. Acad. Sci. USA, 111, 17003–17010
https://doi.org/10.1073/pnas.1414399111
45 Cai, Y., Agmon, N., Choi, W. J., Ubide, A., Stracquadanio, G., Caravelli, K., Hao, H., Bader, J. S. and Boeke, J. D. (2015) Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc. Natl. Acad. Sci. USA, 112, 1803–1808
https://doi.org/10.1073/pnas.1424704112
46 DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. and Church, G. M. (2015) Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol., 33, 1250–1255
https://doi.org/10.1038/nbt.3412
47 Gallagher, R. R., Patel, J. R., Interiano, A. L., Rovner, A. J. and Isaacs, F. J. (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res., 43, 1945–1954
https://doi.org/10.1093/nar/gku1378
48 Boeke, J. D., Church, G., Hessel, A., Kelley, N. J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V. W., Holt, L., (2016) The Genome Project-Write. Science, 353, 126–127
https://doi.org/10.1126/science.aaf6850
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed