Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2021, Vol. 9 Issue (2) : 107-121    https://doi.org/10.1007/s40484-020-0207-4
REVIEW
Transcriptome-wide association studies: a view from Mendelian randomization
Huanhuan Zhu1, Xiang Zhou1,2()
1. Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
2. Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
 Download: PDF(828 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Genome-wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome-wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant-trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective.

Results: We present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two-sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re-interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development.

Conclusions: We hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.

Keywords transcriptome-wide association studies      genome-wide association studies      expression mapping studies     
Corresponding Author(s): Xiang Zhou   
Just Accepted Date: 13 May 2020   Online First Date: 17 June 2020    Issue Date: 13 July 2021
 Cite this article:   
Huanhuan Zhu,Xiang Zhou. Transcriptome-wide association studies: a view from Mendelian randomization[J]. Quant. Biol., 2021, 9(2): 107-121.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0207-4
https://academic.hep.com.cn/qb/EN/Y2021/V9/I2/107
Data sets RNAseq Sample size Ref.
ABRP Blood (Baboons) 63 [7]
GSE19480 Lymphoblastoid cell lines 69 [8]
Braineac Ten brain regions 134 [5]
NABEC Four brain regions 150 [6]
CommonMind Dorsolateral prefrontal cortex 452 [11]
GEUVADIS Lymphoblastoid cell lines 465 [3]
TCGA Prostate adenocarcinoma 483 [10]
METSIM Adipose 563 [9]
GTEx (v8) 54 tissues 838 [2]
DGN Whole blood 922 [4]
NTR Blood 1247 [12]
YFS Blood 1264 [13]
Tab.1  A summary of commonly used gene expression database with sample size over 50
Fig.1  Importance of TWAS and MR methods.
Fig.2  The Mendelian randomization framework for understanding TWAS.
Methods Design Tissue Data type Pleiotropy Model assumptions URLs
PrediXcan Two-stage Single Individual No Elastic net https://github.com/hakyimlab/PrediXcan
S-PrediXcan Two-stage Single Summary No Elastic net https://github.com/hakyimlab/MetaXcan
TWAS Two-stage Single Individual/Summary No BSLMM https://bogdan.dgsom.ucla.edu/pages/twas/
DPR Two-stage Single Individual No DPR http://www.xzlab.org/software.html
TIGAR Two-stage Single Individual/Summary No DPR https://github.com/yanglab-emory/TIGAR
CoMM Likelihood-based Single Individual No LMM https://github.com/gordonliu810822/CoMM
CoMM-S2 Likelihood-based Single Summary No LMM https://github.com/gordonliu810822/CoMM
PMR Likelihood-based Single Individual/Summary Yes LMM https://github.com/yuanzhongshang/PMR
UTMOST Two-stage Multiple Summary No LASSO & Ridge https://github.com/Joker-Jerome/UTMOST
MultiXcan Two-stage Multiple Individual/Summary No Elastic net https://github.com/hakyimlab/MetaXcan
TisCoMM Likelihood-based Multiple Individual/Summary No LMM https://github.com/XingjieShi/TisCoMM
fQTL Two-stage Multiple Summary No BVSR https://github.com/ypark/fqtl
FOCUS Gene-mapping Multiple genes Summary No https://github.com/bogdanlab/focus
Tab.2  A summary of thirteen TWAS approaches examined in the present review
1 A. Gusev, , A. Ko, , H. Shi, , G. Bhatia, , W. Chung, , B. W. J. H. Penninx, , R. Jansen, , E. J. de Geus, , D. I. Boomsma, , F. A. Wright, , et al. (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252
https://doi.org/10.1038/ng.3506. pmid: 26854917
2 J. Lonsdale, , J. Thomas, , M. Salvatore, , R. Phillips, , E. Lo, , S. Shad, , R. Hasz, , G. Walters, , F. Garcia, , N. Young, , et al. (2013) The genotype-tissue expression (GTEx) project. Nat. Genet., 45, 580–585
https://doi.org/10.1038/ng.2653. pmid: 23715323
3 T. Lappalainen, , M. Sammeth, , M. R. Friedländer, , P. A. ’t Hoen, , J. Monlong, , M. A. Rivas, , M. Gonzàlez-Porta, , N. Kurbatova, , T. Griebel, , P. G. Ferreira, , et al. (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511
https://doi.org/10.1038/nature12531. pmid: 24037378
4 A. Battle, , S. Mostafavi, , X. Zhu, , J. B. Potash, , M. M. Weissman, , C. McCormick, , C. D. Haudenschild, , K. B. Beckman, , J. Shi, , R. Mei, , et al. (2014) Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res., 24, 14–24
https://doi.org/10.1101/gr.155192.113. pmid: 24092820
5 A. Ramasamy, , D. Trabzuni, , S. Guelfi, , V. Varghese, , C. Smith, , R. Walker, , T. De, , L. Coin, , R. de Silva, , M. R. Cookson, , et al. (2014) Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci., 17, 1418–1428
https://doi.org/10.1038/nn.3801. pmid: 25174004
6 J. R. Gibbs, , M. P. van der Brug, , D. G. Hernandez, , B. J. Traynor, , M. A. Nalls, , S.-L. Lai, , S. Arepalli, , A. Dillman, , I. P. Rafferty, , J. Troncoso, , et al. (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet., 6, e1000952
https://doi.org/10.1371/journal.pgen.1000952. pmid: 20485568
7 J. Tung, , X. Zhou, , S. C. Alberts, , M. Stephens, and Y. Gilad, (2015) The genetic architecture of gene expression levels in wild baboons. eLife, 4, e04729
https://doi.org/10.7554/eLife.04729. pmid: 25714927
8 J. K. Pickrell, , J. C. Marioni, , A. A. Pai, , J. F. Degner, , B. E. Engelhardt, , E. Nkadori, , J. B. Veyrieras, , M. Stephens, , Y. Gilad, and J. K. Pritchard, (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
https://doi.org/10.1038/nature08872. pmid: 20220758
9 A. Stancáková, , M. Civelek, , N. K. Saleem, , P. Soininen, , A. J. Kangas, , H. Cederberg, , J. Paananen, , J. Pihlajamäki, , L. L. Bonnycastle, , M. A. Morken, , et al. (2012) Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes, 61, 1895–1902
https://doi.org/10.2337/db11-1378. pmid: 22553379
10 A. Abeshouse, , J. Ahn, , R. Akbani, , A. Ally, , S. Amin, , C. D. Andry, , M. Annala, , A. Aprikian, , J. Armenia, , A. Arora, , et al. (2015) The molecular taxonomy of primary prostate cancer. Cell, 163, 1011–1025
https://doi.org/10.1016/j.cell.2015.10.025. pmid: 26544944
11 M. Fromer, , P. Roussos, , S. K. Sieberts, , J. S. Johnson, , D. H. Kavanagh, , T. M. Perumal, , D. M. Ruderfer, , E. C. Oh, , A. Topol, , H. R. Shah, , et al. (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci., 19, 1442–1453
https://doi.org/10.1038/nn.4399. pmid: 27668389
12 F. A. Wright, , P. F. Sullivan, , A. I. Brooks, , F. Zou, , W. Sun, , K. Xia, , V. Madar, , R. Jansen, , W. Chung, , Y. H. Zhou, , et al. (2014) Heritability and genomics of gene expression in peripheral blood. Nat. Genet., 46, 430–437
https://doi.org/10.1038/ng.2951. pmid: 24728292
13 O. T. Raitakari, , M. Juonala, , T. Rönnemaa, , L. Keltikangas-Järvinen, , L. Räsänen, , M. Pietikäinen, , N. Hutri-Kähönen, , L. Taittonen, , E. Jokinen, , J. Marniemi, , et al. (2008) Cohort profile: the cardiovascular risk in Young Finns Study. Int. J. Epidemiol., 37, 1220–1226
https://doi.org/10.1093/ije/dym225. pmid: 18263651
14 E. R. Gamazon, , H. E. Wheeler, , K. P. Shah, , S. V. Mozaffari, , K. Aquino-Michaels, , R. J. Carroll, , A. E. Eyler, , J. C. Denny, , D. L. Nicolae, , N. J. Cox, , et al. (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 47, 1091–1098
https://doi.org/10.1038/ng.3367. pmid: 26258848
15 H. Zou, and T. Hastie, (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301–320
https://doi.org/10.1111/j.1467-9868.2005.00503.x.
16 X. Zhou, , P. Carbonetto, and M. Stephens, (2013) Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet., 9, e1003264
https://doi.org/10.1371/journal.pgen.1003264. pmid: 23408905
17 P. Zeng, and X. Zhou, (2017) Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. Nat. Commun., 8, 456
https://doi.org/10.1038/s41467-017-00470-2. pmid: 28878256
18 S. Nagpal, , X. Meng, , M. P. Epstein, , L. C. Tsoi, , M. Patrick, , G. Gibson, , P. L. De Jager, , D. A. Bennett, , A. P. Wingo, , T. S. Wingo, , et al. (2019) TIGAR: an improved Bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am. J. Hum. Genet., 105, 258–266
https://doi.org/10.1016/j.ajhg.2019.05.018. pmid: 31230719
19 Z. Zhu, , F. Zhang, , H. Hu, , A. Bakshi, , M. R. Robinson, , J. E. Powell, , G. W. Montgomery, , M. E. Goddard, , N. R. Wray, , P. M. Visscher, , et al. (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet., 48, 481–487
https://doi.org/10.1038/ng.3538. pmid: 27019110
20 Z. Zhu, , Z. Zheng, , F. Zhang, , Y. Wu, , M. Trzaskowski, , R. Maier, , M. R. Robinson, , J. J. McGrath, , P. M. Visscher, , N. R. Wray, , et al. (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun., 9, 224
https://doi.org/10.1038/s41467-017-02317-2. pmid: 29335400
21 Z. Yuan, , H. Zhu, , P. Zeng, , S. Yang, , S. Sun, , C. Yang, , Liu, J., Zhou, X. (2019) Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies. bioRxiv, 691014
22 E. Sanderson, , G. Davey Smith, , F. Windmeijer, and J. Bowden, (2019) An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol., 48, 713–727
https://doi.org/10.1093/ije/dyy262. pmid: 30535378
23 S. Burgess, and S. G. Thompson, (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol., 181, 251–260
https://doi.org/10.1093/aje/kwu283. pmid: 25632051
24 J. M. B. Rees, , C. N. Foley, and S. Burgess, (2019) Factorial Mendelian randomization: using genetic variants to assess interactions. Int. J. Epidemiol., dyz161
https://doi.org/dyz161doi:10.1093/ije/dyz161. pmid: 31369124
25 S. Burgess, , R. M. Daniel, , A. S. Butterworth, and S. G. Thompson, , and the EPIC-InterAct Consortium. (2015) Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol., 44, 484–495
https://doi.org/10.1093/ije/dyu176. pmid: 25150977
26 E. Porcu, , S. Rüeger, , K. Lepik, , the eQTLGen Consortium, the BIOS Consortium, F. A. Santoni, , A. Reymond, and Z. Kutalik, (2019) Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun., 10, 3300
https://doi.org/10.1038/s41467-019-10936-0. pmid: 31341166
27 V. Zuber, , J. M. Colijn, , C. Klaver, and S. Burgess, (2020) Selecting causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat. Commun. 11, 29
28 A. N. Barbeira, , M. Pividori, , J. Zheng, , H. E. Wheeler, , D. L. Nicolae, and H. K. Im, (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet., 15, e1007889
https://doi.org/10.1371/journal.pgen.1007889. pmid: 30668570
29 Y. Hu, , M. Li, , Q. Lu, , H. Weng, , J. Wang, , S. M. Zekavat, , Z. Yu, , B. Li, , J. Gu, , S. Muchnik, , et al. (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 51, 568–576
https://doi.org/10.1038/s41588-019-0345-7. pmid: 30804563
30 N. Mancuso, , S. Gayther, , A. Gusev, , W. Zheng, , K. L. Penney, , Z. Kote-Jarai, , R. Eeles, , M. Freedman, , C. Haiman, B. Pasaniuc, , et al. (2018) Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun., 9, 4079
https://doi.org/10.1038/s41467-018-06302-1. pmid: 30287866
31 Y. Park, , A. K. Sarkar, , K. Bhutani, and M. Kellis, (2017) Multi-tissue polygenic models for transcriptome-wide association studies. bioRxiv, 107623
32 X. Shi, , X. Chai, , Y. Yang, , Q. Cheng, , Y. Jiao, , J. Huang, , C. Yang, and J. Liu, (2019) A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. bioRxiv, 789396
33 N. Mancuso, , M. K. Freund, , R. Johnson, , H. Shi, , G. Kichaev, , A. Gusev, and B. Pasaniuc, (2019) Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet., 51, 675–682
https://doi.org/10.1038/s41588-019-0367-1. pmid: 30926970
34 M. Wainberg, , N. Sinnott-Armstrong, , N. Mancuso, , A. N. Barbeira, , D. A. Knowles, , D. Golan, , R. Ermel, , A. Ruusalepp, , T. Quertermous, , K. Hao, , et al. (2019) Opportunities and challenges for transcriptome-wide association studies. Nat. Genet., 51, 592–599
https://doi.org/10.1038/s41588-019-0385-z. pmid: 30926968
35 A. N. Barbeira, , S. P. Dickinson, , R. Bonazzola, , J. Zheng, , H. E. Wheeler, , J. M. Torres, , E. S. Torstenson, , K. P. Shah, , T. Garcia, , T. L. Edwards, , et al. (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun., 9, 1825
https://doi.org/10.1038/s41467-018-03621-1. pmid: 29739930
36 B. A. Ference, , J. G. Robinson, , R. D. Brook, , A. L. Catapano, , M. J. Chapman, , D. R. Neff, , S. Voros, , R. P. Giugliano, , G. Davey Smith, , S. Fazio, , et al. (2016) Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 375, 2144–2153
https://doi.org/10.1056/NEJMoa1604304. pmid: 27959767
37 A. Helgadottir, , S. Gretarsdottir, , G. Thorleifsson, , E. Hjartarson, , A. Sigurdsson, , A. Magnusdottir, , A. Jonasdottir, , H. Kristjansson, , P. Sulem, , A. Oddsson, , et al. (2016) Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet., 48, 634–639
https://doi.org/10.1038/ng.3561. pmid: 27135400
38 J.-B. Pingault, , P. F. O’Reilly, , T. Schoeler, , G. B. Ploubidis, , F. Rijsdijk, and F. Dudbridge, (2018) Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet., 19, 566–580
https://doi.org/10.1038/s41576-018-0020-3. pmid: 29872216
39 J. Zheng, , D. Baird, , M.-C. Borges, , J. Bowden, , G. Hemani, , P. Haycock, , D. M. Evans, and G. D. Smith, (2017) Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep., 4, 330–345
https://doi.org/10.1007/s40471-017-0128-6. pmid: 29226067
40 P. C. Haycock, , S. Burgess, , K. H. Wade, , J. Bowden, , C. Relton, and G. Davey Smith, (2016) Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr., 103, 965–978
https://doi.org/10.3945/ajcn.115.118216. pmid: 26961927
41 D. A. Lawlor, (2016) Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int. J. Epidemiol., 45, 908–915
https://doi.org/10.1093/ije/dyw127. pmid: 27427429
42 J. Bowden, , G. Davey Smith, and S. Burgess, (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol., 44, 512–525
https://doi.org/10.1093/ije/dyv080. pmid: 26050253
43 J. Bowden, , G. Davey Smith, , P. C. Haycock, and S. Burgess, (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol., 40, 304–314
https://doi.org/10.1002/gepi.21965. pmid: 27061298
44 G. D. Smith, and S. Ebrahim, (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 32, 1–22
https://doi.org/10.1093/ije/dyg070. pmid: 12689998
45 S. Burgess, , D. S. Small, and S. G. Thompson, (2017) A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res., 26, 2333–2355
https://doi.org/10.1177/0962280215597579. pmid: 26282889
46 S. Burgess, , A. Butterworth, and S. G. Thompson, (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol., 37, 658–665
https://doi.org/10.1002/gepi.21758. pmid: 24114802
47 S. Burgess, , F. Dudbridge, and S. G. Thompson, (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med., 35, 1880–1906
https://doi.org/10.1002/sim.6835. pmid: 26661904
48 S. Burgess, and S. G. Thompson, (2011) Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat. Med., 30, 1312–1323
https://doi.org/10.1002/sim.4197. pmid: 21432888
49 R. Tibshirani, (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267–288
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
50 A. E. Hoerl, and R. W. Kennard, (2000) Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 42, 80–86
https://doi.org/10.1080/00401706.2000.10485983.
51 Y. Guan, and M. Stephens, (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat., 5, 1780–1815
https://doi.org/10.1214/11-AOAS455.
52 E. A. Boyle, , Y. I. Li, and J. K. Pritchard, (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell, 169, 1177–1186
https://doi.org/10.1016/j.cell.2017.05.038. pmid: 28622505
53 C. Yang, , X. Wan, , X. Lin, , M. Chen, , X. Zhou, and J. Liu, (2019) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics, 35, 1644–1652
https://doi.org/10.1093/bioinformatics/bty865. pmid: 30295737
54 Y. Yang, , X. Shi, , Y. Jiao, , J. Huang, , M. Chen, , X. Zhou, , L. Sun,, X. Lin,, C. Yang,, J. Liu, (2020) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36, 2009–2016
55 G. Hemani, , J. Bowden, and G. Davey Smith, (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet., 27, R195–R208
https://doi.org/10.1093/hmg/ddy163. pmid: 29771313
56 M. Verbanck, , C.-Y. Chen, , B. Neale, and R. Do, (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet., 50, 693–698
https://doi.org/10.1038/s41588-018-0099-7. pmid: 29686387
57 Y. Park, , A. K. Sarkar, , L. He, , J. Davila-Velderrain, , P. L. De Jager, and M. Kellis, (2017) A Bayesian approach to mediation analysis predicts 206 causal target genes in Alzheimer’s disease. bioRxiv, 219428
58 S. Burgess, and S. G. Thompson, (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol., 32, 377–389
https://doi.org/10.1007/s10654-017-0255-x. pmid: 28527048
59 J. Y. Dai, , U. Peters, , X. Wang, , J. Kocarnik, , J. Chang-Claude, , M. L. Slattery, , A. Chan, , M. Lemire, , S. I. Berndt, , G. Casey, , et al. (2018) Diagnostics for pleiotropy in Mendelian randomization studies: global and individual tests for direct effects. Am. J. Epidemiol., 187, 2672–2680
https://doi.org/10.1093/aje/kwy177. pmid: 30188971
60 G. Qi, and N. Chatterjee, (2019) Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat. Commun., 10, 1941
https://doi.org/10.1038/s41467-019-09432-2. pmid: 31028273
61 C Berzuini, H Guo, S Burgess, L. Bernardinelli (2020) A Bayesian approach to Mendelian randomization with multiple pleiotropic variants. 2018. Biostatistics, 21, 86–101
62 S. Li, (2017) Mendelian randomization when many instruments are invalid: hierarchical empirical Bayes estimation. ArXiv, 170601389
63 R. Barfield, , H. Feng, , A. Gusev, , L. Wu, , W. Zheng, , B. Pasaniuc, and P. Kraft, (2018) Transcriptome-wide association studies accounting for colocalization using Egger regression. Genet. Epidemiol., 42, 418–433
https://doi.org/10.1002/gepi.22131. pmid: 29808603
64 M. C. Wu, , S. Lee, , T. Cai, , Y. Li, , M. Boehnke, and X. Lin, (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
https://doi.org/10.1016/j.ajhg.2011.05.029. pmid: 21737059
65 B. Li, and S. M. Leal, (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
https://doi.org/10.1016/j.ajhg.2008.06.024. pmid: 18691683
66 B. E. Madsen, and S. R. Browning, (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet., 5, e1000384
https://doi.org/10.1371/journal.pgen.1000384. pmid: 19214210
67 A. L. Price, , G. V. Kryukov, , P. I. de Bakker, , S. M. Purcell, , J. Staples, , L.-J. Wei, and S. R. Sunyaev, (2010) Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet., 86, 832–838
https://doi.org/10.1016/j.ajhg.2010.04.005. pmid: 20471002
68 X. Zhou, (2017) A unified framework for variance component estimation with summary statistics in genome-wide association studies. Ann. Appl. Stat., 11, 2027–2051
https://doi.org/10.1214/17-AOAS1052. pmid: 29515717
69 N. J. Schork, , S. S. Murray, , K. A. Frazer, and E. J. Topol, (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219
https://doi.org/10.1016/j.gde.2009.04.010. pmid: 19481926
70 E. E. Eichler, , J. Flint, , G. Gibson, , A. Kong, , S. M. Leal, , J. H. Moore, and J. H. Nadeau, (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet., 11, 446–450
https://doi.org/10.1038/nrg2809. pmid: 20479774
71 A. L. Price, , A. Helgason, , G. Thorleifsson, , S. A. McCarroll, , A. Kong, and K. Stefansson, (2011) Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet., 7, e1001317
https://doi.org/10.1371/journal.pgen.1001317. pmid: 21383966
[1] Xu Liao, Xiaoran Chai, Xingjie Shi, Lin S. Chen, Jin Liu. The statistical practice of the GTEx Project: from single to multiple tissues[J]. Quant. Biol., 2021, 9(2): 151-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed