|
|
|
Cellbow: a robust customizable cell segmentation program |
Huixia Ren, Mengdi Zhao, Bo Liu, Ruixiao Yao, Qi liu, Zhipeng Ren, Zirui Wu, Zongmao Gao, Xiaojing Yang, Chao Tang( ) |
| Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China |
|
|
|
|
Abstract Background: Time-lapse live cell imaging of a growing cell population is routine in many biological investigations. A major challenge in imaging analysis is accurate segmentation, a process to define the boundaries of cells based on raw image data. Current segmentation methods relying on single boundary features have problems in robustness when dealing with inhomogeneous foci which invariably happens in cell population imaging. Methods: Combined with a multi-layer training set strategy, we developed a neural-network-based algorithm — Cellbow. Results: Cellbow can achieve accurate and robust segmentation of cells in broad and general settings. It can also facilitate long-term tracking of cell growth and division. To facilitate the application of Cellbow, we provide a website on which one can online test the software, as well as an ImageJ plugin for the user to visualize the performance before software installation. Conclusion: Cellbow is customizable and generalizable. It is broadly applicable to segmenting fluorescent images of diverse cell types with no further training needed. For bright-field images, only a small set of sample images of the specific cell type from the user may be needed for training.
|
| Keywords
deep neural network
cell segmentation
fluorescent cell imaging
bright-field cell imaging
lineage tracking
|
|
Corresponding Author(s):
Chao Tang
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Online First Date: 01 September 2020
Issue Date: 25 September 2020
|
|
| 1 |
M. Tantama,, J. Martínez-François,, R. Mongeon, G. Yellen, (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun., 4, 2550
https://doi.org/https://www.nature.com/articles/ncomms3550
|
| 2 |
F. Li, , Z. Yin, , G. Jin, , H. Zhao, and S. T. C. Wong, (2013) Chapter 17: Bioimage informatics for systems pharmacology. PLOS Comput. Biol., 9, e1003043.
https://doi.org/10.1371/journal.pcbi.1003043
pmid: 23633943
|
| 3 |
S. Dimopoulos, , C. E. Mayer, , F. Rudolf, and J. Stelling, (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics, 30, 2644–2651
https://doi.org/10.1093/bioinformatics/btu302
pmid: 24849580
|
| 4 |
D. A. Van Valen, , T. Kudo, , K. M. Lane, , D. N. Macklin, , N. T. Quach, , M. M. DeFelice, , I. Maayan, , Y. Tanouchi, , E. A. Ashley, and M. W. Covert, (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol., 12, e1005177.
https://doi.org/10.1371/journal.pcbi.1005177
pmid: 27814364
|
| 5 |
A. E. Carpenter, , T. R. Jones, , M. R. Lamprecht, , C. Clarke, , I. H. Kang, , O. Friman, , D. A. Guertin, , J. H. Chang, , R. A. Lindquist, , J. Moffat, , et al.et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100.
https://doi.org/10.1186/gb-2006-7-10-r100
pmid: 17076895
|
| 6 |
J. O’Brien, , S. Hoque, , D. Mulvihill, and K. Sirlantzis, (2017) Automated cell segmentation of fission yeast phase images—segmenting cells from light microscopy images. In: Proc.10th Inter. Joint Conf. Biomed. Eng. Syst. Technol., pp. 92–99
|
| 7 |
C. Versari, , S. Stoma, , K. Batmanov, , A. Llamosi, , F. Mroz, , A. Kaczmarek, , M. Deyell, , C. Lhoussaine, , P. Hersen, and G. Batt, (2017) Long-term tracking of budding yeast cells in brightfield microscopy: cellStar and the evaluation platform. J. R. Soc. Interface, 14, 20160705.
https://doi.org/10.1098/rsif.2016.0705
pmid: 28179544
|
| 8 |
E. Meijering, (2012) Cell segmentation: 50 years down the road. IEEE Signal Process. Mag., 29, 140–145
https://doi.org/10.1109/MSP.2012.2204190
|
| 9 |
E. Hodneland, , T. Kögel, , D. M. Frei, , H. H. Gerdes, and A. Lundervold, (2013) CellSegm — a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol. Med., 8, 16.
https://doi.org/10.1186/1751-0473-8-16
pmid: 23938087
|
| 10 |
N. E. Wood, and A. Doncic, (2019) A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking. PLoS One, 14, e0206395.
https://doi.org/10.1371/journal.pone.0206395
pmid: 30917124
|
| 11 |
E. Bakker, , P. S. Swain, and M. M. Crane, (2018) Morphologically constrained and data informed cell segmentation of budding yeast. Bioinformatics, 34, 88–96
https://doi.org/10.1093/bioinformatics/btx550
pmid: 28968663
|
| 12 |
J. Y. Peng, , Y. J. Chen, , M. D. Green, , S. A. Sabatinos, , S. L. Forsburg, and C. N. Hsu, (2013) PombeX: robust cell segmentation for fission yeast transillumination images. PLoS One, 8, e81434.
https://doi.org/10.1371/journal.pone.0081434
pmid: 24353754
|
| 13 |
J. Y. Peng, , Y. J. Chen, , M. D. Green, , S. L. Forsburg, and C. N. Hsu, (2013) Robust cell segmentation for schizosaccharomyces pombe images with focus gradient. In: Proc. Inter. Sympo. on Biomed. Imag.doi:10.1109/ISBI.2013.6556500.
|
| 14 |
R. Bourne, (2010) ImageJ. In: Fundamentals of Digital Imaging in Medicine. London: Springer doi:10.1007/978-1-84882-087-6_9.
|
| 15 |
Y. Zhang, , Z. Qiu, , T. Yao, , D. Liu, and T. Mei, (2018) Fully convolutional adaptation networks for semantic segmentation. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6810–6818
https://doi.org/10.1109/CVPR.2018.00712
|
| 16 |
E. Shelhamer, , J. Long, and T. Darrell, (2017) Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 640–651.
https://doi.org/10.1109/TPAMI.2016.2572683
pmid: 27244717
|
| 17 |
P. Bajcsy, , A. Cardone, , J. Chalfoun, , M. Halter, , D. Juba, , M. Kociolek, , M. Majurski, , A. Peskin, , C. Simon, , M. Simon, , et al.et al. (2015) Survey statistics of automated segmentations applied to optical imaging of mammalian cells. BMC Bioinformatics, 16, 330.
https://doi.org/10.1186/s12859-015-0762-2
pmid: 26472075
|
| 18 |
V. Ljosa, , K. L. Sokolnicki, and A. E. Carpenter, (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637.
https://doi.org/10.1038/nmeth.2083
pmid: 22743765
|
| 19 |
Z. Z. Wang, (2016) A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans. Ind. Informatics, 12, 962–971 doi10.1109/TII.2016.2542043.
|
| 20 |
Z. Wang, (2016) A semi-automatic method for robust and efficient identification of neighboring muscle cells. Pattern Recognit., 53, 300–312
https://doi.org/10.1016/j.patcog.2015.12.009
|
| 21 |
F. Meyer, (1994) Topographic distance and watershed lines. Signal Process., 38, 113–125
https://doi.org/10.1016/0165-1684(94)90060-4
|
| 22 |
M. Abadi,, A. Agarwal, , P. Barham,, Z. Brevdo, Chen,, C. Citro,, G.S. Corrado,, A. Davis,, J. Dean,, M. Devin,, et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 1603.04467v2
|
| 23 |
K. W. Eliceiri, , M. R. Berthold, , I. G. Goldberg, , L. Ibáñez, , B. S. Manjunath, , M. E. Martone, , R. F. Murphy, , H. Peng, , A. L. Plant, , B. Roysam, , et al. (2012) Biological imaging software tools. Nat. Methods, 9, 697–710.
https://doi.org/10.1038/nmeth.2084
pmid: 22743775
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|