Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (3) : 245-255    https://doi.org/10.1007/s40484-020-0213-6
METHOD
Cellbow: a robust customizable cell segmentation program
Huixia Ren, Mengdi Zhao, Bo Liu, Ruixiao Yao, Qi liu, Zhipeng Ren, Zirui Wu, Zongmao Gao, Xiaojing Yang, Chao Tang()
Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
 Download: PDF(3675 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Time-lapse live cell imaging of a growing cell population is routine in many biological investigations. A major challenge in imaging analysis is accurate segmentation, a process to define the boundaries of cells based on raw image data. Current segmentation methods relying on single boundary features have problems in robustness when dealing with inhomogeneous foci which invariably happens in cell population imaging.

Methods: Combined with a multi-layer training set strategy, we developed a neural-network-based algorithm — Cellbow.

Results: Cellbow can achieve accurate and robust segmentation of cells in broad and general settings. It can also facilitate long-term tracking of cell growth and division. To facilitate the application of Cellbow, we provide a website on which one can online test the software, as well as an ImageJ plugin for the user to visualize the performance before software installation.

Conclusion: Cellbow is customizable and generalizable. It is broadly applicable to segmenting fluorescent images of diverse cell types with no further training needed. For bright-field images, only a small set of sample images of the specific cell type from the user may be needed for training.

Keywords deep neural network      cell segmentation      fluorescent cell imaging      bright-field cell imaging      lineage tracking     
Corresponding Author(s): Chao Tang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 01 September 2020    Issue Date: 25 September 2020
 Cite this article:   
Huixia Ren,Mengdi Zhao,Bo Liu, et al. Cellbow: a robust customizable cell segmentation program[J]. Quant. Biol., 2020, 8(3): 245-255.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0213-6
https://academic.hep.com.cn/qb/EN/Y2020/V8/I3/245
Fig.1  Most encountered problems in fluorescent and bright-field images.
Fig.2  Multi-layer training dataset strategy solves the inhomogeneous focus problem.
Fig.3  Cellbow can recognize multiple cell shapes in bright-field images.
Fig.4  Fluorescent images of cells of various shapes can be segmented by Cellbow.
Fission yeast ?Synthetic cells(BBC005) Human U2OS cells (BBBC006)
Cellbow CSGF CellProfiler
(Human cell pipeline)
Cellbow CSGF CellProfiler
(Human cell pipeline)
Cellbow CSGF CellProfiler
(Human cell pipeline)
F1 0.88 0.57 0.79 0.94 0.90 0.86 0.95 0.93 0.90
DI 0.88 0.57 0.79 0.94 0.89 0.86 0.93 0.91 0.89
JI 0.78 0.41 0.65 0.88 0.81 0.75 0.89 0.85 0.82
Tab.1  Comparison of segmentation performance among different datasets and algorithms
Fig.5  Cellbow enables long-term tracking of cells.
Fig.6  Website and ImageJ plugin of Cellbow.
1 M. Tantama,, J. Martínez-François,, R. Mongeon, G. Yellen, (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun., 4, 2550
https://doi.org/https://www.nature.com/articles/ncomms3550
2 F. Li, , Z. Yin, , G. Jin, , H. Zhao, and S. T. C. Wong, (2013) Chapter 17: Bioimage informatics for systems pharmacology. PLOS Comput. Biol., 9, e1003043.
https://doi.org/10.1371/journal.pcbi.1003043 pmid: 23633943
3 S. Dimopoulos, , C. E. Mayer, , F. Rudolf, and J. Stelling, (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics, 30, 2644–2651
https://doi.org/10.1093/bioinformatics/btu302 pmid: 24849580
4 D. A. Van Valen, , T. Kudo, , K. M. Lane, , D. N. Macklin, , N. T. Quach, , M. M. DeFelice, , I. Maayan, , Y. Tanouchi, , E. A. Ashley, and M. W. Covert, (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol., 12, e1005177.
https://doi.org/10.1371/journal.pcbi.1005177 pmid: 27814364
5 A. E. Carpenter, , T. R. Jones, , M. R. Lamprecht, , C. Clarke, , I. H. Kang, , O. Friman, , D. A. Guertin, , J. H. Chang, , R. A. Lindquist, , J. Moffat, , et al.et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100.
https://doi.org/10.1186/gb-2006-7-10-r100 pmid: 17076895
6 J. O’Brien, , S. Hoque, , D. Mulvihill, and K. Sirlantzis, (2017) Automated cell segmentation of fission yeast phase images—segmenting cells from light microscopy images. In: Proc.10th Inter. Joint Conf. Biomed. Eng. Syst. Technol., pp. 92–99
7 C. Versari, , S. Stoma, , K. Batmanov, , A. Llamosi, , F. Mroz, , A. Kaczmarek, , M. Deyell, , C. Lhoussaine, , P. Hersen, and G. Batt, (2017) Long-term tracking of budding yeast cells in brightfield microscopy: cellStar and the evaluation platform. J. R. Soc. Interface, 14, 20160705.
https://doi.org/10.1098/rsif.2016.0705 pmid: 28179544
8 E. Meijering, (2012) Cell segmentation: 50 years down the road. IEEE Signal Process. Mag., 29, 140–145
https://doi.org/10.1109/MSP.2012.2204190
9 E. Hodneland, , T. Kögel, , D. M. Frei, , H. H. Gerdes, and A. Lundervold, (2013) CellSegm — a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol. Med., 8, 16.
https://doi.org/10.1186/1751-0473-8-16 pmid: 23938087
10 N. E. Wood, and A. Doncic, (2019) A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking. PLoS One, 14, e0206395.
https://doi.org/10.1371/journal.pone.0206395 pmid: 30917124
11 E. Bakker, , P. S. Swain, and M. M. Crane, (2018) Morphologically constrained and data informed cell segmentation of budding yeast. Bioinformatics, 34, 88–96
https://doi.org/10.1093/bioinformatics/btx550 pmid: 28968663
12 J. Y. Peng, , Y. J. Chen, , M. D. Green, , S. A. Sabatinos, , S. L. Forsburg, and C. N. Hsu, (2013) PombeX: robust cell segmentation for fission yeast transillumination images. PLoS One, 8, e81434.
https://doi.org/10.1371/journal.pone.0081434 pmid: 24353754
13 J. Y. Peng, , Y. J. Chen, , M. D. Green, , S. L. Forsburg, and C. N. Hsu, (2013) Robust cell segmentation for schizosaccharomyces pombe images with focus gradient. In: Proc. Inter. Sympo. on Biomed. Imag.doi:10.1109/ISBI.2013.6556500.
14 R. Bourne, (2010) ImageJ. In: Fundamentals of Digital Imaging in Medicine. London: Springer doi:10.1007/978-1-84882-087-6_9.
15 Y. Zhang, , Z. Qiu, , T. Yao, , D. Liu, and T. Mei, (2018) Fully convolutional adaptation networks for semantic segmentation. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6810–6818
https://doi.org/10.1109/CVPR.2018.00712
16 E. Shelhamer, , J. Long, and T. Darrell, (2017) Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 640–651.
https://doi.org/10.1109/TPAMI.2016.2572683 pmid: 27244717
17 P. Bajcsy, , A. Cardone, , J. Chalfoun, , M. Halter, , D. Juba, , M. Kociolek, , M. Majurski, , A. Peskin, , C. Simon, , M. Simon, , et al.et al. (2015) Survey statistics of automated segmentations applied to optical imaging of mammalian cells. BMC Bioinformatics, 16, 330.
https://doi.org/10.1186/s12859-015-0762-2 pmid: 26472075
18 V. Ljosa, , K. L. Sokolnicki, and A. E. Carpenter, (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637.
https://doi.org/10.1038/nmeth.2083 pmid: 22743765
19 Z. Z. Wang, (2016) A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans. Ind. Informatics, 12, 962–971 doi10.1109/TII.2016.2542043.
20 Z. Wang, (2016) A semi-automatic method for robust and efficient identification of neighboring muscle cells. Pattern Recognit., 53, 300–312
https://doi.org/10.1016/j.patcog.2015.12.009
21 F. Meyer, (1994) Topographic distance and watershed lines. Signal Process., 38, 113–125
https://doi.org/10.1016/0165-1684(94)90060-4
22 M. Abadi,, A. Agarwal, , P. Barham,, Z. Brevdo, Chen,, C. Citro,, G.S. Corrado,, A. Davis,, J. Dean,, M. Devin,, et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 1603.04467v2
23 K. W. Eliceiri, , M. R. Berthold, , I. G. Goldberg, , L. Ibáñez, , B. S. Manjunath, , M. E. Martone, , R. F. Murphy, , H. Peng, , A. L. Plant, , B. Roysam, , et al. (2012) Biological imaging software tools. Nat. Methods, 9, 697–710.
https://doi.org/10.1038/nmeth.2084 pmid: 22743775
[1] Shashank Singh, Yang Yang, Barnabás Póczos, Jian Ma. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks[J]. Quant. Biol., 2019, 7(2): 122-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed