Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (3) : 238-244    https://doi.org/10.1007/s40484-020-0215-4
RESEARCH ARTICLE
Transportation, germs, culture: a dynamic graph model of COVID-19 outbreak
Xiaofei Yang1,2, Tun Xu2,3, Peng Jia2,3, Han Xia3,4, Li Guo2,3,5, Lei Zhang6,7,8,9, Kai Ye2,3,5,10()
1. School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
4. Hugobiotech Co., Ltd., Beijing 102600, China
5. The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
6. China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
7. Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC 3004, Australia
8. Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
9. Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
10. Genome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
 Download: PDF(841 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Various models have been applied to predict the trend of the epidemic since the outbreak of COVID-19.

Methods: In this study, we designed a dynamic graph model, not for precisely predicting the number of infected cases, but for a glance of the dynamics under a public epidemic emergency situation and of different contributing factors.

Results: We demonstrated the impact of asymptomatic transmission in this outbreak and showed the effectiveness of city lockdown to halt virus spread within a city. We further illustrated that sudden emergence of a large number of cases could overwhelm the city medical system, and external medical aids are critical to not only containing the further spread of the virus but also reducing fatality.

Conclusion: Our model simulation showed that highly populated modern cities are particularly vulnerable and lessons learned in China could facilitate other countries to plan the proactive and decisive actions. We shall pay close attention to the asymptomatic transmission being suggested by rapidly accumulating evidence as dramatic changes in quarantine protocol are required to contain SARS-CoV-2 from spreading globally.

Keywords dynamic graph model      transportation      COVID-19      SARS-CoV-2     
Corresponding Author(s): Kai Ye   
Just Accepted Date: 28 July 2020   Online First Date: 09 September 2020    Issue Date: 25 September 2020
 Cite this article:   
Xiaofei Yang,Tun Xu,Peng Jia, et al. Transportation, germs, culture: a dynamic graph model of COVID-19 outbreak[J]. Quant. Biol., 2020, 8(3): 238-244.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0215-4
https://academic.hep.com.cn/qb/EN/Y2020/V8/I3/238
Fig.1  The relations between virus spreading and quarantine strategy.
Fig.2  Impact of transportation and confined space in virus spread.
Fig.3  Imported infections and medical aid affect the spreading and fatality rate.
Fig.4  The dynamic graph model of virus spread.
1 Coronavirus disease. 2019(COVID-19) Situation Report – 29.
2 J. M. Read,, J. R. Bridgen,, D. A. Cummings,, A. Ho, and C. P Jewell,. (2020) Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv, 20018549
https://doi.org/https://doi.org/10.1101/2020.01.23.20018549
3 Q. Li, , X. Guan, , P. Wu, , X. Wang, , L. Zhou, , Y. Tong, , R. Ren, , K. S. M. Leung, , E. H. Y. Lau, , J. Y. Wong, , et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 382, 1199–1207
https://doi.org/10.1056/NEJMoa2001316. pmid: 31995857
4 H. Tian,, Y. Liu,, Y. Li,, M. U. G. Kraemer, , B. Chen, , C.-H. Wu, , J. Cai, , B. Li, , B. Xu, , Q. Yang, , et al. (2020) Early evaluation of transmission control measures in response to the 2019 novel coronavirus outbreak in China. medRxiv, 20019844
https://doi.org/https://doi.org/10.1101/2020.01.30.20019844
5 C. Anastassopoulou,, L. Russo,, A. Tsakris, and C. Siettos, (2020) Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. PLoS ONE 15, e0230405
6 M. Gilbert,, G. Pullano,, F. Pinotti,, E. Valdano, , C. Poletto, , P.-Y. Boëlle, , E. D’Ortenzio, , Y. Yazdanpanah, , S.P. Eholie, , M.A. Pharm, , et al. (2020) Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. The Lancet. 395, 871–877
7 D. Wang, , B. Hu, , C. Hu, , F. Zhu, , X. Liu, , J. Zhang, , B. Wang, , H. Xiang, , Z. Cheng, , Y. Xiong, , et al. (2020) Clinical Characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323,1061–1069
https://doi.org/10.1001/jama.2020.1585
8 F. Casella, (2020) Can the COVID-19 epidemic be managed on the basis of daily data? arXiv, 2003.06967
9 Z. Tang,, X. Li,, and H. Li, (2020) Prediction of new coronavirus infection based on a modified SEIR model. medRxiv, 20030858
https://doi.org/https://doi.org/10.1101/2020.03.03.20030858
10 D. Guo, (2007) Visual analytics of spatial interaction patterns for pandemic decision support. Int. J. Geogr. Inf. Sci., 21, 859–877
https://doi.org/10.1080/13658810701349037.
11 D. Chang, , M. Lin, , L. Wei, , L. Xie,, G. Zhu,, C. S. Dela Cruz,, and L. Sharma, (2020) Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA, 323, 1092–1093
https://doi.org/10.1001/jama.2020.1623
12 L. Zou, , F. Ruan, , M. Huang, , L. Liang, , H. Huang, , Z. Hong, , J. Yu, , M. Kang, , Y. Song, , J. Xia, , et al. (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 382, 1177–1179
https://doi.org/10.1056/NEJMc2001737. pmid: 32074444
13 J. F.-W. Chan, , S. Yuan, , K.-H. Kok, , K. K. To, , H. Chu, , J. Yang, , F. Xing, , J. Liu, , C. C. Yip, , R. W. Poon, , et al. (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395, 514–523
https://doi.org/10.1016/S0140-6736(20)30154-9. pmid: 31986261
14 P. Wenzel, , S. Kopp, , S. Göbel, , T. Jansen, , M. Geyer, , F. Hahn, , K. Kreitner, , F. Escher, , H.P. Schultheiss, , T. and Münzel, (2020) Evidence of SARS-CoV-2 mRNA in endomyocardial biopsies of patients with clinically suspected myocarditis tested negative for COVID-19 in nasopharyngeal swab. Cardiovasc. Res., 116, 1661–1663
15 Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chinese Journal of Epidemiology, 41, 145–151, in Chinese
pmid: 32064853.
16 W. J. Guan, , Z. Y. Ni, , Y. Hu, , W. H. Liang, , C. Q. Ou, , J. X. He, , L. Liu, , H. Shan, , C. L. Lei, , D. S. C. Hui, , et al., (2020) Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 382, 1708–1720
https://doi.org/10.1056/NEJMoa2002032. pmid: 32109013
[1] QB-20215-OF-YK_suppl_1 Download
[1] Hanshuang Pan, Nian Shao, Yue Yan, Xinyue Luo, Shufen Wang, Ling Ye, Jin Cheng, Wenbin Chen. Multi-chain Fudan-CCDC model for COVID-19 -- a revisit to Singapore’s case[J]. Quant. Biol., 2020, 8(4): 325-335.
[2] Shilei Zhao, Hua Chen. Modeling the epidemic dynamics and control of COVID-19 outbreak in China[J]. Quant. Biol., 2020, 8(1): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed