Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2021, Vol. 9 Issue (3) : 292-303    https://doi.org/10.15302/J-QB-021-0236
RESEARCH ARTICLE
Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment
Lei Zhang1, Ji Lv1, Ming Xiao1, Li Yang2, Le Zhang1()
1. College of Computer Science, Sichuan University, Chengdu 610065, China
2. Sichuan Asia-core Gene Technology Co., Ltd, Chengdu 610045, China
 Download: PDF(1315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: A traditional Chinese medicine formula, Youdujing (YDJ) ointment, is widely used for treatment of human papilloma virus-related diseases, such as cervical cancer. However, the underlying mechanisms by which active compounds of YDJ alleviates cervical cancer are still unclear.

Methods: We applied a comprehensive network pharmacology approach to explore the key mechanisms of YDJ by integrating potential target identification, network analysis, and enrichment analysis into classical molecular docking procedures. First, we used network and enrichment analyses to identify potential therapeutic targets. Second, we performed molecular docking to investigate the potential active compounds of YDJ. Finally, we carried out a network-based analysis to unravel potentially effective drug combinations.

Results: Network analysis yielded four potential therapeutic targets: ESR1, NFKB1, TNF, and AKT1. Molecular docking highlighted that these proteins may interact with four potential active compounds of YDJ: E4, Y2, Y20, and Y21. Finally, we found that Y2 or Y21 can act alone or together with E4 to trigger apoptotic cascades via the mitochondrial apoptotic pathway and estrogen receptors.

Conclusion: Our study not only explained why YDJ is effective for cervical cancer treatment, but also lays a strong foundation for future clinical studies based on this traditional medicine.

Keywords Youdujing      cervical cancer      traditional Chinese medicine      network pharmacological      molecular docking      synergy effect     
Corresponding Author(s): Le Zhang   
Just Accepted Date: 26 January 2021   Online First Date: 19 March 2021    Issue Date: 29 September 2021
 Cite this article:   
Lei Zhang,Ji Lv,Ming Xiao, et al. Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment[J]. Quant. Biol., 2021, 9(3): 292-303.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-021-0236
https://academic.hep.com.cn/qb/EN/Y2021/V9/I3/292
Fig.1  Network pharmacology procedure to investigate the underlying mechanism of action of YDJ.
Name NFKB1 NR3C1 RXRA AKT1 HSP90AA1 NCOA1 TNF ESR1 PPARG PPARA
BC 0.188 0.256 0.142 0.216 0.172 0.050 0.111 0.101 0.058 0.043
Degree 17 15 14 13 13 13 12 11 10 8
Tab.1  Network topology characteristics of 10 hub nodes
Fig.2  Node degree distribution in the PPI network.
GO term Description Count in gene set FDR
GO0048545 Response to steroid hormone 29 of 324 2.09e–22
GO2000377 Regulation of reactive oxygen species metabolic process 18 of 169 7.56e–15
GO0042981 Regulation of apoptotic process 41 of 1501 9.85e–15
GO0043066 Negative regulation of apoptotic process 28 of 859 1.61e–11
…. ….
Tab.2  The most important GO biological processes in CC development
Pathway Description Genes Count in gene set FDR
hsa04915 Estrogen signaling pathway GPER1, CALM1, HSPA2, PRKACA, PGR, HSP90AA1, ESR2, ESR1, NCOA2, NCOA1, AKT1, BCL2 12 of 133 3.13e–09
hsa00140 Steroid hormone biosynthesis AKR1C1, AKR1C3, AKR1, HSD3B1, HSD17B1, CYP19A1, CYP1B1 8 of 58 8.54e–08
hsa05165 Human papillomavirus infection HDAC9, HDAC2, CDK6, PRKACA, NFKB1, JAK1, CASP3, CASP8, AKT1, TNF, PTGS2 11 of 317 2.21e–05
hsa00190 Oxidative phosphorylation MT-CO2, MT-CO3, COX5A, COX4A, SDHB, SDHD, SDHC 7 of 131 7.27e–05
Tab.3  The most important KEGG pathways in CC development
Name PDB Intrinsic ligand Ligandsa Ref.
ESR1 5AAU XBR Y20, E1, E3, E11, E15, E20 [47]
TNF 2AZ5 307 Y2, Y6, Y21 [48]
AKT1 3OCB XM1 E4 [49]
NFKB1 4KIK Compound 5 Y2, Y6, Y20, Y21 [50]
Tab.4  Potential key proteins and their corresponding ligands
ID PubChem Name Function Ref.
Y2 5742590 Sitogluside Promote programmed cell death [36,52,53]
Y20 193076 Macedonic acid
Y21 Semialatic acid Inhibit cancer cell proliferation and promote apoptosis [37,54]
E4 68071 Pinocembrin Inhibit cancer cell growth by inducing apoptosis [35,55]
Tab.5  The potential active compounds of YDJ
Fig.3  Docking results of (A) ESR1, (B) TNF, (C) AKT1, (D) NFKB1, and their corresponding ligands by Autodock Vina.
Fig.4  Network map showing the relationships among compound-target modules (Y2 in blue, Y21 in green, and E4 in red) and proteins involved in the potential target disease module (pink hexagon, apoptotic process).
Fig.5  Map of several pro-apoptotic pathways triggered by YDJ.
1 P. A. Cohen, , A. Jhingran, , A. Oaknin, and L. Denny, (2019) Cervical cancer. Lancet, 393, 169–182
https://doi.org/10.1016/S0140-6736(18)32470-X. pmid: 30638582
2 W. Wu, , L. Song, , Y. Yang, , J. Wang, , H. Liu, and L. Zhang, (2020) Exploring the dynamics and interplay of human papillomavirus and cervical tumorigenesis by integrating biological data into a mathematical model. BMC Bioinformatics, 21, 152
https://doi.org/10.1186/s12859-020-3454-5. pmid: 32366259
3 F. Bray, , J. Ferlay, , I. Soerjomataram, , R. L. Siegel, , L. A. Torre, and A. Jemal, (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca-A Cancer J. Clin., 6, 394–424
https://doi.org/10.3322/caac.21492
4 A. A. Cleveland, , J. W. Gargano, , I. U. Park, , M. R. Griffin, , L. M. Niccolai, , M. Powell, , N. M. Bennett, , K. Saadeh, , M. Pemmaraju, , K. Higgins, , et al. (2020) Cervical adenocarcinoma in situ: Human papillomavirus types and incidence trends in five states, 2008-2015. Int. J. Cancer, 146, 810–818
https://doi.org/10.1002/ijc.32340. pmid: 30980692
5 R. Roden, and T.-C. Wu, (2006) How will HPV vaccines affect cervical cancer? Nat. Rev. Cancer, 6, 753–763
https://doi.org/10.1038/nrc1973. pmid: 16990853
6 S. Vaccarella, , M. Laversanne, , J. Ferlay, and F. Bray, (2017) Cervical cancer in Africa, Latin America and the Caribbean and Asia: Regional inequalities and changing trends. Int. J. Cancer, 141, 1997–2001
https://doi.org/10.1002/ijc.30901. pmid: 28734013
7 M. Toots, , M. Ustav, Jr, A. Männik, , K. Mumm, , K. Tämm, , T. Tamm, , E. Ustav, and M. Ustav, (2017) Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog., 13, e1006168
https://doi.org/10.1371/journal.ppat.1006168. pmid: 28182794
8 S. Kolluru, , R. Momoh, , L. Lin, , J. R. Mallareddy, , and J. L. Krstenansky, (2019) Identification of potential binding pocket on viral oncoprotein HPV16 E6: a promising anti-cancer target for small molecule drug discovery. BMC Mol. Cell. Biol., 20, 30
https://doi.org/10.1186/s12860-019-0214-3
9 M. Celegato, , L. Messa, , L. Goracci, , B. Mercorelli, , C. Bertagnin, , F. Spyrakis, , I. Suarez, , A. Cousido-Siah, , G. Travé, , L. Banks, , et al. (2020) A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 470, 115–125
https://doi.org/10.1016/j.canlet.2019.10.046. pmid: 31693922
10 B. Gyawali, and M. Iddawela, (2017) Bevacizumab in advanced cervical cancer: issues and challenges for low- and middle-income countries. J. Glob. Oncol., 3, 93–97
https://doi.org/10.1200/JGO.2016.004895. pmid: 28717748
11 B. R. Corr, , C. Breed, , J. Sheeder, , S. Weisdack, and K. Behbakht, (2016) Bevacizumab induced hypertension in gynecologic cancer: Does it resolve after completion of therapy? Gynecol. Oncol. Rep., 17, 65–68
https://doi.org/10.1016/j.gore.2016.06.002. pmid: 27617286
12 K. S. Tewari, , M. W. Sill, , R. T. Penson, , H. Huang, , L. M. Ramondetta, , L. M. Landrum, , A. Oaknin, , T. J. Reid, , M. M. Leitao, , H. E. Michael, , et al. (2017) Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet, 390, 1654–1663
https://doi.org/10.1016/S0140-6736(17)31607-0. pmid: 28756902
13 J. Lin, , L. Chen, , X. Qiu, , N. Zhang, , Q. Guo, , Y. Wang, , M. Wang, , H. J. Gober, , D. Li, and L. Wang, (2017) Traditional Chinese medicine for human papillomavirus (HPV) infections: A systematic review. Biosci. Trends, 11, 267–273
https://doi.org/10.5582/bst.2017.01056. pmid: 28484110
14 X. Chen, , X. Hu, , L. Liu, , X. Liang, and J. Xiao, (2019) Extracts derived from a traditional Chinese herbal formula triggers necroptosis in ectocervical Ect1/E6E7 cells through activation of RIP1 kinase. J. Ethnopharmacol., 239, 111922
https://doi.org/10.1016/j.jep.2019.111922. pmid: 31034957
15 F. Tang, , Q. Zhang, , Z. Nie, , S. Yao, and B. Chen, (2009) Sample preparation for analyzing traditional Chinese medicines. Trends Analyt. Chem., 28, 1253–1262
https://doi.org/10.1016/j.trac.2009.09.004.
16 H. Gao, , Z. Wang, , Y. Li, and Z. Qian, (2011) Overview of the quality standard research of traditional Chinese medicine. Front. Med., 5, 195–202
https://doi.org/10.1007/s11684-011-0134-x. pmid: 21695625
17 J. Xiao, , J. Wu, , and B. Yu, (2012) Therapeutic efficacy of Youdujing preparation in treating cervical high-risk human papilloma virus infection patients. Chinese journal of integrated traditional and Western medicine, 9, 1212–1215, in Chinese
18 F. Cheng, , I. A. Kovács, and A.-L. Barabási, (2019) Network-based prediction of drug combinations. Nat. Commun., 1, 1–11
19 L. Zhang, , C. Fu, , J. Li, , Z. Zhao, , Y. Hou, , W. Zhou, and A. Fu, (2019) Discovery of a ruthenium complex for the theranosis of glioma through targeting the mitochondrial DNA with bioinformatic methods. Int. J. Mol. Sci., 20, 4643
https://doi.org/10.3390/ijms20184643. pmid: 31546801
20 G.-D. Liu, , Y.-C. Li, , W. Zhang, and L. Zhang, (2020) A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering (Beijing), 6, 462–467
21 M. Kanehisa, and S. Goto, (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27–30
https://doi.org/10.1093/nar/28.1.27. pmid: 10592173
22 L. Zhang, , M. Qiao, , H. Gao, , B. Hu, , H. Tan, , X. Zhou, and C. M. Li, (2016) Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 8, 14877–14887
https://doi.org/10.1039/C6NR01637E. pmid: 27460959
23 L. Zhang, , Y. Liu, , M. Wang, , Z. Wu, , N. Li, , J. Zhang, and C. Yang, (2017) EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol., 9, 477–488
https://doi.org/10.1093/jmcb/mjx056. pmid: 29272522
24 L. Zhang, and S. Zhang, (2017) Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev., 20, 140–142
https://doi.org/10.1016/j.plrev.2017.01.007. pmid: 28109753
25 L. Zhang, , C. Zheng, , T. Li, , L. Xing, , H. Zeng, , T. Li, , H. Yang, , J. Cao, , B. Chen, and Z. Zhou, (2017) Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 2017, 1–14
https://doi.org/10.1155/2017/8917258.
26 L. Zhang, , M. Xiao, , J. Zhou, and J. Yu, (2018) Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 34, 3624–3630
https://doi.org/10.1093/bioinformatics/bty392. pmid: 29762634
27 M. Xiao, , X. Yang, , J. Yu, , and L. Zhang, (2019) CGIDLA: Developing the Web Server for CpG Island related Density and LAUPs (Lineage-associated Underrepresented Permutations) Study, IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 2148–2154
https://doi.org/10.1109/TCBB.2019.2935971
28 L. Zhang, , W. Bai, , N. Yuan, and Z. Du, (2019) Comprehensively benchmarking applications for detecting copy number variation. PLOS Comput. Biol., 15, e1007069
https://doi.org/10.1371/journal.pcbi.1007069. pmid: 31136576
29 L. Zhang, , G. Liu, , M. Kong, , T. Li, , D. Wu, , X. Zhou, , C. Yang, , L. Xia, , Z. Yang, and L. Chen, (2019) Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics, btz542
https://doi.org/10.1093/bioinformatics/btz542. pmid: 31350562
30 O. Trott, and A. J. Olson, (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31, 455–461
pmid: 19499576.
31 T. Brake, and P. F. Lambert, (2005) Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc. Natl. Acad. Sci. USA, 102, 2490–2495
https://doi.org/10.1073/pnas.0409883102. pmid: 15699322
32 M. A. James, , J. H. Lee, and A. J. Klingelhutz, (2006) Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J. Virol., 80, 5301–5307
https://doi.org/10.1128/JVI.01942-05. pmid: 16699010
33 S. S. Beevi, , M. H. Rasheed, and A. Geetha, (2007) Evidence of oxidative and nitrosative stress in patients with cervical squamous cell carcinoma. Clin. Chim. Acta, 375, 119–123
https://doi.org/10.1016/j.cca.2006.06.028. pmid: 16889762
34 N. Cui, , W. T. Yang, and P. S. Zheng, (2016) Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/beta-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression, Oncotarget. Article, 7, 26152–26167
https://doi.org/10.18632/oncotarget.8434.
35 A. Rasul, , F. M. Millimouno, , W. Ali Eltayb, , M. Ali, , J. Li, and X. Li, (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int., 2013, 379850
https://doi.org/10.1155/2013/379850. pmid: 23984355
36 T. Rajavel, , R. Mohankumar, , G. Archunan, , K. Ruckmani, and K. P. Devi, (2017) Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells. Sci. Rep., 7, 3418
https://doi.org/10.1038/s41598-017-03511-4. pmid: 28611451
37 G. Wang, , Y.-Z. Wang, , Y. Yu, , J.-J. Wang, , P.-H. Yin, and K. Xu, (2019) Triterpenoids extracted from Rhus chinensis Mill act against colorectal cancer by inhibiting enzymes in glycolysis and glutaminolysis: network analysis and experimental validation. Nutr. Cancer, 72, 293–319
pmid: 31267795.
38 M. S. Kumar, , M. Nair, , P. Hema, , J. Mohan, , and T. Santhoshkumar, (2007) Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol. Carcinog., 3, 231-241. Mol Carcinog., 46, 231–41
https://doi.org/10.1002/mc.20272.
39 P. Galluzzo, , C. Martini, , P. Bulzomi, , S. Leone, , A. Bolli, , V. Pallottini, and M. Marino, (2009) Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol. Nutr. Food Res., 53, 699–708
https://doi.org/10.1002/mnfr.200800239. pmid: 19194971
40 D. W. Miller, (2012) Improving potency and ADMET properties using matched molecular pair analysis. Abstracts of Papers of the American Chemical Society
41 M., Safran, I. Dalah, , J. Alexander, , N. Rosen, , T. Stein, , M. Shmoish, , N. Nativ, , I. Bahir, , T. Doniger, , H. Krug, , et al. (2010) GeneCards Version 3: the human gene integrator. Database, 2010, baq020
42 W. Huang, , B. T. Sherman, and R. A. Lempicki, (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
https://doi.org/10.1038/nprot.2008.211. pmid: 19131956
43 J. M. M Walboomers, ., M.V. Jacobs, , M.M. Manos, , F.X. Bosch, , J.A. Kummer, , K.V. Shah, , P.J. Snijders, , J. Peto, , C.J. Meijer, , and N. Muñoz, , (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol., 189, 12–19
https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
44 A. Moktar, , R. Singh, , M. V. Vadhanam, , S. Ravoori, , J. W. Lillard, , C. G. Gairola, and R. C. Gupta, (2011) Cigarette smoke condensate-induced oxidative DNA damage and its removal in human cervical cancer cells. Int J Oncol, 39, 941–947
pmid: 21720711.
45 S. S. Wang, , R. E. Zuna, , N. Wentzensen, , S. T. Dunn, , M. E. Sherman, , M. A. Gold, , M. Schiffman, , S. Wacholder, , R. A. Allen, , I. Block, , et al. (2009) Human papillomavirus cofactors by disease progression and human papillomavirus types in the study to understand cervical cancer early endpoints and determinants. Cancer Epidemiol. Biomarkers Prev., 18, 113–120
https://doi.org/10.1158/1055-9965.EPI-08-0591. pmid: 19124488
46 S.-H. Chung, , S. Franceschi, and P. F. Lambert, (2010) Estrogen and ERalpha: culprits in cervical cancer? Trends Endocrinol. Metab., 21, 504–511
https://doi.org/10.1016/j.tem.2010.03.005. pmid: 20456973
47 C. De Savi, , R. H. Bradbury, , A. A. Rabow, , R. A. Norman, , C. de Almeida, , D. M. Andrews, , P. Ballard, , D. Buttar, , R. J. Callis, , G. S. Currie, , et al. (2015) Optimization of a novel binding motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic Acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J. Med. Chem., 58, 8128–8140
https://doi.org/10.1021/acs.jmedchem.5b00984. pmid: 26407012
48 M. M. He, , A. S. Smith, , J. D. Oslob, , W. M. Flanagan, , A. C. Braisted, , A. Whitty, , M. T. Cancilla, , J. Wang, , A. A. Lugovskoy, , J. C. Yoburn, , et al. (2005) Small-molecule inhibition of TNF-α. Science, 310, 1022–1025
https://doi.org/10.1126/science.1116304. pmid: 16284179
49 J. F. Blake, , N. C. Kallan, , D. Xiao, , R. Xu, , J. R. Bencsik, , N. J. Skelton, , K. L. Spencer, , I. S. Mitchell, , R. D. Woessner, , S. L. Gloor, , et al. (2010) Discovery of pyrrolopyrimidine inhibitors of Akt. Bioorg. Med. Chem. Lett., 20, 5607–5612
https://doi.org/10.1016/j.bmcl.2010.08.053. pmid: 20810279
50 H. Park, , Y. Shin, , H. Choe, and S. Hong, (2015) Computational design and discovery of nanomolar inhibitors of IκB kinase β. J. Am. Chem. Soc., 137, 337–348
https://doi.org/10.1021/ja510636t. pmid: 25513719
51 L. Chen, , J. Du, , Q. Dai, , H. Zhang, , W. Pang, , and J. Hu, , (2014) Prediction of anti-tumor chemical probes of a traditional Chinese medicine formula by HPLC fingerprinting combined with molecular docking. Eur. J. Med. Chem., 83, 294–306
https://doi.org/10.1016/j.ejmech.2014.06.037. pmid: 24974349
52 T. Rajavel, , G. Banu Priya, , V. Suryanarayanan, , S. K. Singh, and K. Pandima Devi, , (2019) Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism. Eur J Pharmacol, 855, 112–123
pmid: 31059712.
53 C. Zhao, , T. She, , L. Wang, , Y. Su, , L. Qu, , Y. Gao, , S. Xu, , S. Cai, and C. Shou, (2015) Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life Sci., 137, 37–43
https://doi.org/10.1016/j.lfs.2015.07.019. pmid: 26209138
54 G. Wang, , Y.-Z. Wang, , Y. Yu, and J.-J. Wang, (2019) Inhibitory ASIC2-mediated calcineurin/NFAT against colorectal cancer by triterpenoids extracted from Rhus chinensis Mill. J Ethnopharmacol, 235, 255–267
pmid: 30772482.
55 Y. Zheng, , K. Wang, , Y. Wu, , Y. Chen, , X. Chen, , C. W. Hu, and F. Hu, (2018) Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Lett, 431, 31–42
pmid: 29807112.
56 M. Cokol, , H. N. Chua, , M. Tasan, , B. Mutlu, , Z. B. Weinstein, , Y. Suzuki, , M. E. Nergiz, , M. Costanzo, , A. Baryshnikova, , G. Giaever, , et al. (2011) Systematic exploration of synergistic drug pairs. Mol. Syst. Biol., 7, 544
https://doi.org/10.1038/msb.2011.71. pmid: 22068327
57 J. Zou, , P. Ji, , Y. L. Zhao, , L. L. Li, , Y. Q. Wei, , Y. Z. Chen, and S. Y. Yang, (2012) Neighbor communities in drug combination networks characterize synergistic effect. Mol. Biosyst., 8, 3185–3196
https://doi.org/10.1039/c2mb25267h. pmid: 23014807
58 J. A. den Boon, , D. Pyeon, , S. S. Wang, , M. Horswill, , M. Schiffman, , M. Sherman, , R. E. Zuna, , Z. Wang, , S. M. Hewitt, , R. Pearson, , et al. (2015) Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc. Natl. Acad. Sci. USA, 112, E3255–E3264
https://doi.org/10.1073/pnas.1509322112. pmid: 26056290
59 S.-H. Chung, and P. F. Lambert, (2009) Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. Proc. Natl. Acad. Sci. USA, 106, 19467–19472
https://doi.org/10.1073/pnas.0911436106. pmid: 19901334
60 T. Naka, , K. Sugamura, , B. L. Hylander, , M. B. Widmer, , Y. M. Rustum, and E. A. Repasky, (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res, 62, 5800–5806
pmid: 12384541.
61 K. J. Chang, T. Reid, , N. Senzer, , S. Swisher, , H. Pinto, , N. Hanna, , A. Chak, , and R. Soetikno, , (2012) Phase I evaluation of TNFerade biologic plus chemoradiotherapy before esophagectomy for locally advanced resectable esophageal cancer. Gastrointes. Endos., 6, 1139–1146. e1132
https://doi.org/https://doi.org/10.1016/j.gie.2012.01.042
62 M. D’Archivio, , C. Santangelo, , B. Scazzocchio, , R. Varì, , C. Filesi, , R. Masella, and C. Giovannini, (2008) Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int. J. Mol. Sci., 9, 213–228
https://doi.org/10.3390/ijms9030213. pmid: 19325744
63 A. Gopalakrishnan, and A. N. Tony Kong, (2008) Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells. Food Chem. Toxicol., 46, 1257–1270
https://doi.org/10.1016/j.fct.2007.09.082. pmid: 17950513
64 J. Zhao, , A. K. Dasmahapatra, , S. I. Khan, and I. A. Khan, (2008) Anti-aromatase activity of the constituents from damiana (Turnera diffusa). J Ethnopharmacol, 120, 387–393
pmid: 18948180.
65 L. Wang, , G. B. Zhou, , P. Liu, , J. H. Song, , Y. Liang, , X. J. Yan, , F. Xu, , B. S. Wang, , J. H. Mao, , Z. X. Shen, , et al. (2008) Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA, 105, 4826–4831
https://doi.org/10.1073/pnas.0712365105. pmid: 18344322
66 P. Tian, (2011) Convergence: Where West meets East. Nature, 480, S84–S86
pmid: 22190086.
67 Z. Chen, , A. Rasul, , C. Zhao, , F. M. Millimouno, , I. Tsuji, , T. Yamamura, , R. Iqbal, , M. Malhi, , X. Li, and J. Li, , (2013) Antiproliferative and apoptotic effects of pinocembrin in human prostate cancer cells. Bangladesh J. Pharmacol., 3, 255–262
https://doi.org/10.3329/BJP.V8I3.14795
68 L. Zhang, , Z. Dai, , J. Yu, and M. Xiao, (2020) CpG-island-based annotation and analysis of human housekeeping genes. Brief. Bioinform. bbz134
https://doi.org/10.1093/bib/bbz134 pmid: 31982909
69 H.-Y. Xu, , Y. Q. Zhang, , Z. M. Liu, , T. Chen, , C. Y. Lv, , S. H. Tang, , X. B. Zhang, , W. Zhang, , Z. Y. Li, , R. R. Zhou, , et al. (2019) ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res., 47, D976–D982
https://doi.org/10.1093/nar/gky987. pmid: 30365030
70 L. Xue, , J. W. Godden, , F. L. Stahura, , J. Bajorath, (2003) Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. J. Chem. Inf. Comput. Sci., 4, 1151–1157
https://doi.org/10.1021/ci030285+
71 A. Cereto-Massagué, , M. J. Ojeda, , C. Valls, , M. Mulero, , S. Garcia-Vallvé, and G. J. M. Pujadas, (2015) Molecular fingerprint similarity search in virtual screening. Methods, 71, 58–63
https://doi.org/10.1016/j.ymeth.2014.08.005
72 D. S., Wishart, Y.D. Feunang, , A.C. Guo, , E.J. Lo, , A. Marcu, , J.R. Grant, , T. Sajed, , D. Johnson, , C. Li, , Z., Sayeeda, et al. (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46(D1), D1074–D1082
https://doi.org/10.1093/nar/gkx1037
73 D. Szklarczyk, , A. L. Gable, , D. Lyon, , A. Junge, , S. Wyder, , J. Huerta-Cepas, , M. Simonovic, , N. T. Doncheva, , J. H. Morris, , P. Bork, , et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47, D607–D613
https://doi.org/10.1093/nar/gky1131. pmid: 30476243
74 P. Shannon, , A. Markiel, , O. Ozier, , N. S. Baliga, , J. T. Wang, , D. Ramage, , N. Amin, , B. Schwikowski, and T. Ideker, (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498– 2504
https://doi.org/10.1101/gr.1239303. pmid: 14597658
75 A.-L. Barabási, and Z. N. Oltvai, (2004) Network biology: understanding the cell’s functional organization. Nat. Rev. Genet., 5, 101–113
https://doi.org/10.1038/nrg1272. pmid: 14735121
76 R. Albert, , H. Jeong, and A.-L. Barabási, (2000) Error and attack tolerance of complex networks. Nature. 6794, 378–382
77 J. Lamb, , E.D. Crawford, , D. Peck, , J.W. Modell, , I.C. Blat, , M.J. Wrobel, , J. Lerner, , J.P. Brunet, , A. Subramanian, , K.N. Ross, ,et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 5795, 1929–1935
https://doi.org/10.1126/science.1132939
78 H. Yu, , P. M. Kim, , E. Sprecher, , V. Trifonov, and M. Gerstein, (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLOS Comput. Biol., 3, e59
https://doi.org/10.1371/journal.pcbi.0030059. pmid: 17447836
79 J. Goñi, , F. J. Esteban, , N. V. de Mendizábal, , J. Sepulcre, , S. Ardanza-Trevijano, , I. Agirrezabal, and P. Villoslada, (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst. Biol., 2, 52
https://doi.org/10.1186/1752-0509-2-52. pmid: 18570646
80 G. O. Consortium, (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., suppl_1, D258–D261
81 G. M. Morris, , R. Huey, , W. Lindstrom, , M. F. Sanner, , R. K. Belew, , D. S. Goodsell, and A. J. Olson, (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30, 2785–2791
https://doi.org/10.1002/jcc.21256. pmid: 19399780
[1] QB-21236-OF-ZL_suppl_1 Download
[2] QB-21236-OF-ZL_suppl_2 Download
[3] QB-21236-OF-ZL_suppl_3 Download
[1] Vijayakumar Subramaniyan, Reetha Sekar, Arulmozhi Praveenkumar, Rajalakshmi Selvam. Molecular modeling studies of repandusinic acid as potent small molecule for hepatitis B virus through molecular docking and ADME analysis[J]. Quant. Biol., 2019, 7(4): 302-312.
[2] Jiyu Fan, Ailing Fu, Le Zhang. Progress in molecular docking[J]. Quant. Biol., 2019, 7(2): 83-89.
[3] Xinzhe Xiao, Zehui Chen, Zengrui Wu, Tianduanyi Wang, Weihua Li, Guixia Liu, Bo Zhang, Yun Tang. Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach[J]. Quant. Biol., 2019, 7(1): 42-53.
[4] Fuda Xie, Jiangyong Gu. Computational methods and applications for quantitative systems pharmacology[J]. Quant. Biol., 2019, 7(1): 3-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed