Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2021, Vol. 9 Issue (3) : 329-340    https://doi.org/10.15302/J-QB-021-0237
RESEARCH ARTICLE
Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio
Zongwei Guo1, Fangkui Yin2, Peiran Wang2, Ting Song2(), Zhichao Zhang2()
1. School of Bioengineering, Dalian University of Technology, Dalian 116024, China
2. State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1737 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Inhibitors of B-cell CLL/lymphoma 2 (Bcl-2) family proteins have shown hope as antitumor drugs. While the notion that it is efficient to coordinate, balance, and neutralize both arms of the anti-apoptotic Bcl-2 family has been validated in many cancer cells, the weights of the two arms contributing to apoptosis inhibition have not been explored. This study analyzed the best combination ratio for different Bcl-2 selective inhibitors.

Methods: We used a previously established mathematical model to study the weights of Bcl-2 (representing both Bcl-2 and Bcl-xL in this study) and myeloid cell leukemia-1 (Mcl-1). Correlation and single-parameter sensitivity analysis were used to find the major molecular determinants for Bcl-2 and Mcl-1 dependency, as well as their weights. Biological experiments were used to verify the mathematical model.

Results: Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants for Bcl-2 and Mcl-1 dependency. The model gained agreement with the experimental assays for ABT-737/A-1210477 and ABT-737/compound 5 combination effect in MCF-7 and MDA-MB-231. Two sets of equations composed of Bcl-2 and Mcl-1 levels were obtained to predict the best combination ratio for Bcl-2 inhibitors with Mcl-1 inhibitors that stabilize and downregulate Mcl-1, respectively.

Conclusions: The two sets of equations can be used as tools to bypass time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment.

Keywords weights of Bcl-2/Mcl-1      drug-target network      Bcl-2/Mcl-1 inhibitors combination      mathematical modeling     
Corresponding Author(s): Ting Song,Zhichao Zhang   
Just Accepted Date: 30 January 2021   Online First Date: 22 March 2021    Issue Date: 29 September 2021
 Cite this article:   
Zongwei Guo,Fangkui Yin,Peiran Wang, et al. Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio[J]. Quant. Biol., 2021, 9(3): 329-340.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-021-0237
https://academic.hep.com.cn/qb/EN/Y2021/V9/I3/329
Fig.1  Mathematical model of Bcl-2-controlled MOMP that was formulated in terms of Bcl-2 protein interactions.
Cell lines
(30)
Model prediceddependency Experimentally determineddependency Bcl-2
level
(nM)
Bcl-xL
level
(nM)
Mcl-1
level
(nM)
Bax
level
(nM)
Bak
level
(nM)
Puma
level
(nM)
Bim
level
(nM)
RS4;11 280 300 35 312 224 8 8
MOLM-13 351 289 42 276 285 13 6
MDA-MB-231a 225 145 125 332 301 7 11
NCI-H23 ?▲ ?▲ 14 20 145 236 520 9 15
MCF-7a ?▲ ?▲ 283 163 188 270 314 13 9
OCI-AML3b ?▲ ?▲ 213 104 226 294 280 16 7
T-47D 312 112 102 341 330 19 6
HCT-116a 247 576 31 327 655 21 13
THP-1a 186 98 72 286 320 18 12
Hep-G2 340 354 82 254 231 11 17
SNU-423 379 127 55 432 176 7 9
Panc 10.05 402 252 58 358 417 15 10
U-118MG 174 388 94 258 479 16 22
AU-565 ?▲ ?▲ 24 20 93 425 328 12 13
HCC-1954 ?▲ ?▲ 41 32 105 267 422 8 19
SK-BR-3 ?▲ ?▲ 45 21 89 350 346 20 8
BT-20 ?▲ ?▲ 53 45 112 278 531 15 9
Capan-1 ?▲ ?▲ 62 25 95 356 321 10 16
COLO-679 ?▲ 368 184 105 402 255 9 12
HCC-1395 ?▲ 319 305 87 268 521 14 18
CFPAC-1 ?▲ ?▲ 46 36 107 325 379 11 15
DBTRG-05MG 287 228 85 246 321 13 7
SK-MEL-5 314 191 64 332 412 15 11
SK-MEL-28 520 115 101 542 164 18 16
OV-90 311 269 120 348 317 14 12
Panc 02.03 276 264 92 259 415 10 13
SW-480 458 217 83 452 316 8 14
Hs-766T 546 364 128 387 464 9 11
SW-948 241 332 102 259 523 14 10
A-172 641 211 130 521 357 16 9
Tab.1  Model predicted Bcl-2 and/or Mcl-1 dependency in comparison with experimental finding in literature
Fig.2  Correlation analysis of Bcl-2 protein levels, Mcl-1 protein levels, and Mcl-1 production rates with Bcl-2 or Mcl-1 dependency.
Fig.3  Statistical analysis of the best-fit parameter for the degradation rates of Mcl-1/A-1210477 and Mcl-1/compound 5.
Fig.4  The model predicted best combination ratios of ABT-737/A-1210477 and ABT-737/compound 5 in various cancers.
Fig.5  The best combination ratios of ABT-737/A-1210477 and ABT-737/compound 5 were experimentally verified in MCF-7 and MDA-MB-231.
Fig.6  Percentage change of the best drug ratio λ in response to a 5% increase or decrease of each parameter.
1 B. Leber, , J. Lin, and D. W. Andrews, (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis, 12, 897–911
https://doi.org/10.1007/s10495-007-0746-4. pmid: 17453159
2 M. F. van Delft, and D. C. Huang, (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res., 16, 203–213
https://doi.org/10.1038/sj.cr.7310028. pmid: 16474435
3 A. J. García-Sáez, (2012) The secrets of the Bcl-2 family. Cell Death Differ., 19, 1733–1740
https://doi.org/10.1038/cdd.2012.105. pmid: 22935609
4 M. Certo, , V. Del Gaizo Moore, , M. Nishino, , G. Wei, , S. Korsmeyer, , S. A. Armstrong, and A. Letai, (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 9, 351–365
https://doi.org/10.1016/j.ccr.2006.03.027. pmid: 16697956
5 J. T. Opferman, (2016) Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J., 283, 2661–2675
https://doi.org/10.1111/febs.13472. pmid: 26293580
6 G. Dewson, and R. M. Kluck, (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci., 122, 2801–2808
https://doi.org/10.1242/jcs.038166. pmid: 19795525
7 A. Shamas-Din, , J. Kale, , B. Leber, and D. W. Andrews, (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol., 5, a008714
https://doi.org/10.1101/cshperspect.a008714. pmid: 23545417
8 S. Lee, , K. Park, and D. Kim, (2009) Building a drug-target network and its applications. Expert Opin. Drug Discov., 4, 1177–1189
https://doi.org/10.1517/17460440903322234. pmid: 23480435
9 J. M. Adams, and S. Cory, (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
https://doi.org/10.1038/sj.onc.1210220. pmid: 17322918
10 R. J. Youle, and A. Strasser, (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 9, 47–59
https://doi.org/10.1038/nrm2308. pmid: 18097445
11 J. E. Chipuk, , T. Moldoveanu, , F. Llambi, , M. J. Parsons, and D. R. Green, (2010) The BCL-2 family reunion. Mol. Cell, 37, 299–310
https://doi.org/10.1016/j.molcel.2010.01.025. pmid: 20159550
12 L. Chen, , S. N. Willis, , A. Wei, , B. J. Smith, , J. I. Fletcher, , M. G. Hinds, , P. M. Colman, , C. L. Day, , J. M. Adams, and D. C. Huang, (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 17, 393–403
https://doi.org/10.1016/j.molcel.2004.12.030. pmid: 15694340
13 T. Oltersdorf, , S. W. Elmore, , A. R. Shoemaker, , R. C. Armstrong, , D. J. Augeri, , B. A. Belli, , M. Bruncko, , T. L. Deckwerth, , J. Dinges, , P. J. Hajduk, , et al. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 435, 677–681
https://doi.org/10.1038/nature03579. pmid: 15902208
14 V. Del Gaizo Moore, , J. R. Brown, , M. Certo, , T. M. Love, , C. D. Novina, and A. Letai, (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest., 117, 112–121
https://doi.org/10.1172/JCI28281. pmid: 17200714
15 S. K. Tahir, , X. Yang, , M. G. Anderson, , S. E. Morgan-Lappe, , A. V. Sarthy, , J. Chen, , R. B. Warner, , S. C. Ng, , S. W. Fesik, , S. W. Elmore, , et al. (2007) Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res., 67, 1176–1183
https://doi.org/10.1158/0008-5472.CAN-06-2203. pmid: 17283153
16 M. Vogler, , D. Dinsdale, , X. M. Sun, , K. W. Young, , M. Butterworth, , P. Nicotera, , M. J. Dyer, and G. M. Cohen, (2008) A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ., 15, 820–830
https://doi.org/10.1038/cdd.2008.25. pmid: 18309326
17 M. F. van Delft, , A. H. Wei, , K. D. Mason, , C. J. Vandenberg, , L. Chen, , P. E. Czabotar, , S. N. Willis, , C. L. Scott, , C. L. Day, , S. Cory, , et al. (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 10, 389–399
https://doi.org/10.1016/j.ccr.2006.08.027. pmid: 17097561
18 M. Nguyen, , R. C. Marcellus, , A. Roulston, , M. Watson, , L. Serfass, , S. R. Murthy Madiraju, , D. Goulet, , J. Viallet, , L. Bélec, , X. Billot, , et al. (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 104, 19512–19517
https://doi.org/10.1073/pnas.0709443104. pmid: 18040043
19 Z. Li, , S. He, and A. T. Look, (2019) The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia, 33, 262–266
https://doi.org/10.1038/s41375-018-0201-2. pmid: 30008477
20 D. M. Moujalled, , G. Pomilio, , C. Ghiurau, , A. Ivey, , J. Salmon, , S. Rijal, , S. Macraild, , L. Zhang, , T. C. Teh, , I. S. Tiong, , et al. (2019) Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia, 33, 905–917
https://doi.org/10.1038/s41375-018-0261-3. pmid: 30214012
21 E. F. Lee, , T. J. Harris, , S. Tran, , M. Evangelista, , S. Arulananda, , T. John, , C. Ramnac, , C. Hobbs, , H. Zhu, , G. Gunasingh, , et al. (2019) BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis., 10, 342
https://doi.org/10.1038/s41419-019-1568-3. pmid: 31019203
22 E. M. Algarín, , A. Díaz-Tejedor, , P. Mogollón, , S. Hernández-García, , L. A. Corchete, , L. San-Segundo, , M. Martín-Sánchez, , L. González-Méndez, , M. Schoumacher, , S. Banquet, , et al. (2020) Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 105, e116–e120
https://doi.org/10.3324/haematol.2018.212308. pmid: 31320555
23 A. U. Lindner, , C. G. Concannon, , G. J. Boukes, , M. D. Cannon, , F. Llambi, , D. Ryan, , K. Boland, , J. Kehoe, , D. A. McNamara, , F. Murray, , et al. (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res., 73, 519–528
https://doi.org/10.1158/0008-5472.CAN-12-2269. pmid: 23329644
24 A. U. Lindner, , M. Salvucci, , C. Morgan, , N. Monsefi, , A. J. Resler, , M. Cremona, , S. Curry, , S. Toomey, , R. O’Byrne, , O. Bacon, , et al. (2017) BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut, 66, 2141–2148
https://doi.org/10.1136/gutjnl-2016-312287. pmid: 27663504
25 F. Lucantoni, , A. U. Lindner, , N. O’Donovan, , H. Düssmann, and J. H. M. Prehn, (2018) Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 9, 42
https://doi.org/10.1038/s41419-017-0039-y. pmid: 29352235
26 A. Hantusch, , K. K. Das, , A. J. García-Sáez, , T. Brunner, and M. Rehm, (2018) Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis., 9, 430
https://doi.org/10.1038/s41419-018-0464-6. pmid: 29567940
27 P. E. Czabotar, , E. F. Lee, , M. F. van Delft, , C. L. Day, , B. J. Smith, , D. C. S. Huang, , W. D. Fairlie, , M. G. Hinds, and P. M. Colman, (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA, 104, 6217–6222
https://doi.org/10.1073/pnas.0701297104. pmid: 17389404
28 T. Yang, , H. L. Buchan, , K. J. Townsend, and R. W. Craig, (1996) MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell. Physiol., 166, 523–536
https://doi.org/10.1002/(SICI)1097-4652(199603)166:3<523::AID-JCP7>3.0.CO;2-R. pmid: 8600156
29 D. Nijhawan, , M. Fang, , E. Traer, , Q. Zhong, , W. Gao, , F. Du, and X. Wang, (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev., 17, 1475–1486
https://doi.org/10.1101/gad.1093903. pmid: 12783855
30 H. Zhang, , S. Guttikonda, , L. Roberts, , T. Uziel, , D. Semizarov, , S. W. Elmore, , J. D. Leverson, and L. T. Lam, (2011) Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 30, 1963–1968
https://doi.org/10.1038/onc.2010.559. pmid: 21132008
31 J. D. Leverson, , H. Zhang, , J. Chen, , S. K. Tahir, , D. C. Phillips, , J. Xue, , P. Nimmer, , S. Jin, , M. Smith, , Y. Xiao, , et al. (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 6, e1590
https://doi.org/10.1038/cddis.2014.561. pmid: 25590800
32 T. Song, , Z. Wang, , F. Ji, , Y. Feng, , Y. Fan, , G. Chai, , X. Li, , Z. Li, and Z. Zhang, (2016) Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the Bcl-2 homology 3 domain and facilitating Mcl-1 ubiquitination. Angew. Chem. Int. Ed. Engl., 55, 14250–14256
https://doi.org/10.1002/anie.201606543. pmid: 27701804
33 T. Tokar, and J. Ulicny, (2013) The mathematical model of the Bcl-2 family mediated MOMP regulation can perform a non-trivial pattern recognition. PLoS One, 8, e81861
https://doi.org/10.1371/journal.pone.0081861. pmid: 24386084
34 J. M. Adams, and S. Cory, (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
https://doi.org/10.1038/sj.onc.1210220. pmid: 17322918
35 R. S. Soderquist, , L. Crawford, , E. Liu, , M. Lu, , A. Agarwal, , G. R. Anderson, , K. H. Lin, , P. S. Winter, , M. Cakir, and K. C. Wood, (2018) Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 9, 3513
https://doi.org/10.1038/s41467-018-05815-z. pmid: 30158527
36 T. Song, , M. Zhang, , P. Liu, , Z. Xue, , Y. Fan, and Z. Zhang, (2018) Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 155, 102–109
https://doi.org/10.1016/j.bcp.2018.06.019. pmid: 29953843
37 T. Song, , G. Chai, , Y. Liu, , X. Yu, , Z. Wang, and Z. Zhang, (2016) Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Br. J. Pharmacol., 173, 471–483
https://doi.org/10.1111/bph.13370. pmid: 26493374
38 C. Touzeau, , J. Ryan, , J. Guerriero, , P. Moreau, , T. N. Chonghaile, , S. Le Gouill, , P. Richardson, , K. Anderson, , M. Amiot, and A. Letai, (2016) BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia, 30, 761–764
https://doi.org/10.1038/leu.2015.184. pmid: 26174630
39 S. Al-Harbi, , B. T. Hill, , S. Mazumder, , K. Singh, , J. Devecchio, , G. Choudhary, , L. A. Rybicki, , M. Kalaycio, , J. P. Maciejewski, , J. A. Houghton, , et al. (2011) An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood, 118, 3579–3590
https://doi.org/10.1182/blood-2011-03-340364. pmid: 21772052
40 C. M. Goodwin, , O. W. Rossanese, , E. T. Olejniczak, and S. W. Fesik, (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ., 22, 2098–2106
https://doi.org/10.1038/cdd.2015.73. pmid: 26045046
41 Z. Wang, , N. He, , Z. Guo, , C. Niu, , T. Song, , Y. Guo, , K. Cao, , A. Wang, , J. Zhu, , X. Zhang, , et al. (2019) Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J. Med. Chem., 62, 8152–8163
https://doi.org/10.1021/acs.jmedchem.9b00919. pmid: 31389699
42 H. Lebraud, and T. D. Heightman, (2017) Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem., 61, 517–527
https://doi.org/10.1042/EBC20170030. pmid: 28970340
43 J. W. Papatzimas, , E. Gorobets, , R. Maity, , M. I. Muniyat, , J. L. MacCallum, , P. Neri, , N. J. Bahlis, and D. J. Derksen, (2019) From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 62, 5522–5540
https://doi.org/10.1021/acs.jmedchem.9b00455. pmid: 31117518
44 S. An, and L. Fu, (2018) Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553–562
pmid: 30224312.
45 X. Wang, , M. Bathina, , J. Lynch, , B. Koss, , C. Calabrese, , S. Frase, , J. D. Schuetz, , J. E. Rehg, and J. T. Opferman, (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev., 27, 1351–1364
https://doi.org/10.1101/gad.215855.113. pmid: 23788622
46 T. Song, , P. Wang, , X. Yu, , A. Wang, , G. Chai, , Y. Fan, and Z. Zhang, (2019) Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br. J. Pharmacol., 176, 491–504
https://doi.org/10.1111/bph.14555. pmid: 30500985
47 Z. Guo, , T. Song, , Z. Xue, , P. Liu, , M. Zhang, , X. Zhang, and Z. Zhang, (2020) Using CETSA assay and a mathematical model to reveal dual Bcl-2/Mcl-1 inhibition and on-target mechanism for ABT-199 and S1. Eur. J. Pharm. Sci., 142, 105105
https://doi.org/10.1016/j.ejps.2019.105105. pmid: 31669390
48 M. Wilhelm, , J. Schlegl, , H. Hahne, , A. M. Gholami, , M. Lieberenz, , M. M. Savitski, , E. Ziegler, , L. Butzmann, , S. Gessulat, , H. Marx, , et al. (2014) Mass-spectrometry-based draft of the human proteome. Nature, 509, 582–587
https://doi.org/10.1038/nature13319. pmid: 24870543
[1] QB-21237-OF-ZZC_suppl_1 Download
[1] Naoki Matsuda, Ken-ichi Hironaka, Masashi Fujii, Takumi Wada, Katsuyuki Kunida, Haruki Inoue, Miki Eto, Daisuke Hoshino, Yasuro Furuichi, Yasuko Manabe, Nobuharu L. Fujii, Hiroyuki Noji, Hiromi Imamura, Shinya Kuroda. Monitoring and mathematical modeling of mitochondrial ATP in myotubes at single-cell level reveals two distinct population with different kinetics[J]. Quant. Biol., 2020, 8(3): 228-237.
[2] Wenlong Li,Ming Yi,Xiufen Zou. Mathematical modeling reveals the mechanisms of feedforward regulation in cell fate decisions in budding yeast[J]. Quant. Biol., 2015, 3(2): 55-68.
[3] Derek Eidum,Kanishk Asthana,Samir Unni,Michael Deng,Lingchong You. Construction, visualization, and analysis of biological network models in Dynetica[J]. Quant. Biol., 2014, 2(4): 142-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed