| 
					
						|  |  
    					|  |  
    					| Quantitative functionalization of biosynthetic caged protein materials |  
						| Quan Cheng1,2, Xuan Wang1, Xian-En Zhang3,4,5, Chengchen Xu1(  ), Feng Li2,5(  ) |  
						| 1. College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China 2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
 3. Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 4. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 5. University of Chinese Academy of Sciences, Beijing 100049, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Background: As one of the representative protein materials, protein nanocages (PNCs) are self-assembled supramolecular structures with multiple advantages, such as good monodispersity, biocompatibility, structural addressability, and facile production. Precise quantitative functionalization is essential to the construction of PNCs with designed purposes. Results: With three modifiable interfaces, the interior surface, outer surface, and interfaces between building blocks, PNCs can serve as an ideal platform for precise multi-functionalization studies and applications. This review summarizes the currently available methods for precise quantitative functionalization of PNCs and highlights the significance of precise quantitative control in fabricating PNC-based materials or devices. These methods can be categorized into three groups, genetic, chemical, and combined modification. Conclusion: This review would be constructive for those who work with biosynthetic PNCs in diverse fields. |  
															| Keywords 
																																																				protein nanocages  
																		  																																				virus-like particles  
																		  																																				functionalization  
																		  																																				genetic modification  
																		  																																				chemical modification |  
															| Corresponding Author(s):
																Chengchen Xu,Feng Li |  
															| Online First Date: 13 January 2023   
																																														Issue Date: 13 March 2023 |  |  
								            
								                
																																												
															| 1 | F., Li, D., Wang, J., Zhou, D. Men, X. Zhan, (2020). Design and biosynthesis of functional protein nanostructures. Sci. China Life Sci., 63: 1142–1158 https://doi.org/10.1007/s11427-019-1641-6
 |  
															| 2 | S., Nooraei, H., Bahrulolum, Z. S., Hoseini, C., Katalani, A., Hajizade, A. J. Easton, (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 19: 59 https://doi.org/10.1186/s12951-021-00806-7
 |  
															| 3 | R., Divine, H. V., Dang, G., Ueda, J. A., Fallas, I., Vulovic, W., Sheffler, S., Saini, Y. T., Zhao, I. X., Raj, P. A. Morawski, et al.. (2021). Designed proteins assemble antibodies into modular nanocages. Science, 372: abd9994 https://doi.org/10.1126/science.abd9994
 |  
															| 4 | A., Korpi, E., Anaya-Plaza, S. ki, (2020). Highly ordered protein cage assemblies: a toolkit for new materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 12: e1578 https://doi.org/10.1002/wnan.1578
 |  
															| 5 | M. A., Aoust, M. M., Couture, N., Charland, S., panier, N., Landry, F. Ors, L. zina, (2010). The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J., 8: 607–619 https://doi.org/10.1111/j.1467-7652.2009.00496.x
 |  
															| 6 | A., Naskalska, K., cka-Solarz, J., ycki, I., Stupka, M., Bochenek, E. Pyza, J. Heddle, (2021). Artificial protein cage delivers active protein cargos to the cell interior. Biomacromolecules, 22: 4146–4154 https://doi.org/10.1021/acs.biomac.1c00630
 |  
															| 7 | S. M. Williams, (2021). An overview of Dps: dual acting nanovehicles in prokaryotes with DNA binding and ferroxidation properties. Subcell. Biochem., 96: 177–216 https://doi.org/10.1007/978-3-030-58971-4_3
 |  
															| 8 | W. M., Aumiller, M. Uchida, (2018). Protein cage assembly across multiple length scales. Chem. Soc. Rev., 47: 3433–3469 https://doi.org/10.1039/C7CS00818J
 |  
															| 9 | M., Uchida, K., McCoy, M., Fukuto, L., Yang, H., Yoshimura, H. M., Miettinen, B., LaFrance, D. P., Patterson, B., Schwarz, J. A. Karty, et al.. (2018). Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano, 12: 942–953 https://doi.org/10.1021/acsnano.7b06049
 |  
															| 10 | M., Raeeszadeh-Sarmazdeh, E., Hartzell, J. V. Price, (2016). Protein nanoparticles as multifunctional biocatalysts and health assessment sensors. Curr. Opin. Chem. Eng., 13: 109–118 https://doi.org/10.1016/j.coche.2016.08.016
 |  
															| 11 | X., Lin, J., Xie, G., Niu, F., Zhang, H., Gao, M., Yang, Q., Quan, M. A., Aronova, G., Zhang, S. Lee, et al.. (2011). Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett., 11: 814–819 https://doi.org/10.1021/nl104141g
 |  
															| 12 | N. M. Molino, S. Wang, (2014). Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol., 28: 75–82 https://doi.org/10.1016/j.copbio.2013.12.007
 |  
															| 13 | H., Moon, J., Lee, H., Kim, S., Heo, J. Min, (2014). Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Biomater. Res., 18: 21 https://doi.org/10.1186/2055-7124-18-21
 |  
															| 14 | S. E. Hamby, J. Hirst, (2008). Prediction of glycosylation sites using random forests. BMC Bioinformatics, 9: 500 https://doi.org/10.1186/1471-2105-9-500
 |  
															| 15 | J., Schwarzer, E. Rapp, (2008). N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis, 29: 4203–4214 https://doi.org/10.1002/elps.200800042
 |  
															| 16 | M., Hyakumura, R., Walsh, M., Thaysen-Andersen, N. J., Kingston, M., La, L., Lu, G., Lovrecz, N. H., Packer, S. Locarnini, H. Netter, (2015). Modification of asparagine-linked glycan density for the design of hepatitis B virus virus-like particles with enhanced immunogenicity. J. Virol., 89: 11312–11322 https://doi.org/10.1128/JVI.01123-15
 |  
															| 17 | C. C. D., Joe, S., Chatterjee, G., Lovrecz, T. E., Adams, M., Thaysen-Andersen, R., Walsh, S. A., Locarnini, P. Smooker, H. Netter, (2020). Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine, 38: 3892–3901 https://doi.org/10.1016/j.vaccine.2020.03.007
 |  
															| 18 | M., De Filette, W., Min Jou, A., Birkett, K., Lyons, B., Schultz, A., Tonkyro, S. Resch, (2005). Universal influenza A vaccine: optimization of M2-based constructs. Virology, 337: 149–161 https://doi.org/10.1016/j.virol.2005.04.004
 |  
															| 19 | S., Ling, S., Yang, X., Hu, D., Yin, Y., Dai, X., Qian, D., Wang, X., Pan, J., Hong, X. Sun, et al.. (2021). Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng., 5: 144–156 https://doi.org/10.1038/s41551-020-00656-y
 |  
															| 20 | M. D., Levasseur, S., Mantri, T., Hayashi, M., Reichenbach, S., Hehn, Y., Waeckerle-Men, P. Johansen, (2021). Cell-specific delivery using an engineered protein nanocage. ACS Chem. Biol., 16: 838–843 https://doi.org/10.1021/acschembio.1c00007
 |  
															| 21 | Z., Wang, Y., Zhao, S., Zhang, X., Chen, G., Sun, B., Zhang, B., Jiang, Y., Yang, X. Yan, (2022). Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics, 12: 1800–1815 https://doi.org/10.7150/thno.68459
 |  
															| 22 | M. L., Martino, S. N., Crooke, M. Manchester, M. Finn, (2021). Single-point mutations in Qβ virus-like particles change binding to cells. Biomacromolecules, 22: 3332–3341 https://doi.org/10.1021/acs.biomac.1c00443
 |  
															| 23 | T. G. W., Edwardson, T. Mori, (2018). Rational engineering of a designed protein cage for siRNA delivery. J. Am. Chem. Soc., 140: 10439–10442 https://doi.org/10.1021/jacs.8b06442
 |  
															| 24 | D., Patterson, B., Schwarz, J., Avera, B., Western, M., Hicks, P., Krugler, M., Terra, M., Uchida, K. McCoy, (2017). Sortase-mediated ligation as a modular approach for the covalent attachment of proteins to the exterior of the bacteriophage P22 virus-like particle. Bioconjug. Chem., 28: 2114–2124 https://doi.org/10.1021/acs.bioconjchem.7b00296
 |  
															| 25 | D. Peabody, (1997). Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch. Biochem. Biophys., 347: 85–92 https://doi.org/10.1006/abbi.1997.0312
 |  
															| 26 | I. L., Aanei, T., Huynh, Y. Seo, M. Francis, (2018). Vascular cell adhesion molecule-targeted MS2 viral capsids for the detection of early-stage atherosclerotic plaques. Bioconjug. Chem., 29: 2526–2530 https://doi.org/10.1021/acs.bioconjchem.8b00453
 |  
															| 27 | G. J., Tong, S. C., Hsiao, Z. M. Carrico, M. Francis, (2009). Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc., 131: 11174–11178 https://doi.org/10.1021/ja903857f
 |  
															| 28 | N., Stephanopoulos, G. J., Tong, S. C. Hsiao, M. Francis, (2010). Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano, 4: 6014–6020 https://doi.org/10.1021/nn1014769
 |  
															| 29 | D. D., Brauer, E. C., Hartman, D. L. V., Bader, Z. N., Merz, D. Tullman-Ercek, M. Francis, (2019). Systematic engineering of a protein nanocage for high-yield, site-specific modification. J. Am. Chem. Soc., 141: 3875–3884 https://doi.org/10.1021/jacs.8b10734
 |  
															| 30 | L. I., Karpenko, V. A., Ivanisenko, I. A., Pika, N. A., Chikaev, A. M., Eroshkin, T. A. Veremeiko, A. Ilyichev, (2000). Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids, 18: 329–337 https://doi.org/10.1007/s007260070072
 |  
															| 31 | R. U., Takahashi, S. N., Kanesashi, T., Inoue, T., Enomoto, M. A., Kawano, H., Tsukamoto, F., Takeshita, T., Imai, T., Ochiya, K. Kataoka, et al.. (2008). Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J. Biotechnol., 135: 385–392 https://doi.org/10.1016/j.jbiotec.2008.05.012
 |  
															| 32 | Y. L., Zhang, Y. J., Guo, K. Y., Wang, K., Lu, K., Li, Y. Zhu, S. Sun, (2007). Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopes of foot-and-mouth disease virus. Scand. J. Immunol., 65: 320–328 https://doi.org/10.1111/j.1365-3083.2007.01900.x
 |  
															| 33 | R. Calendar. (2006) The Bacteriophages. 2nd ed. 457−468. New York: Oxford University Press |  
															| 34 | H., Mao, S. A., Hart, A. Schink, B. Pollok, (2004). Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc., 126: 2670–2671 https://doi.org/10.1021/ja039915e
 |  
															| 35 | L., Schoonen, J., Pille, A., Borrmann, R. J. Nolte, J. van Hest, (2015). Sortase a-mediated N-terminal modification of cowpea chlorotic mottle virus for highly efficient cargo loading. Bioconjug. Chem., 26: 2429–2434 https://doi.org/10.1021/acs.bioconjchem.5b00485
 |  
															| 36 | L. Schoonen, J. C. van Hest, (2018). Modification of CCMV nanocages for enzyme encapsulation. Methods Mol. Biol., 1798: 69–83 https://doi.org/10.1007/978-1-4939-7893-9_6
 |  
															| 37 | A. H. Keeble, (2020). Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. (Camb.), 11: 7281–7291 https://doi.org/10.1039/D0SC01878C
 |  
															| 38 | F. Sun, W. Zhang, (2017). Unleashing chemical power from protein sequence space toward genetically encoded “click” chemistry. Chin. Chem. Lett., 28: 2078–2084 https://doi.org/10.1016/j.cclet.2017.08.052
 |  
															| 39 | P. M., hl, A. C., Tissot, A., Fulurija, P., Maurer, J., Nussberger, R., Sabat, V., Nief, C., Schellekens, K., Sladko, K. Roubicek, et al.. (2007). A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J. Hypertens., 25: 63–72 https://doi.org/10.1097/HJH.0b013e32800ff5d6
 |  
															| 40 | A., Jegerlehner, T., Storni, G., Lipowsky, M., Schmid, P. Pumpens, M. Bachmann, (2002). Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol., 32: 3305–3314 https://doi.org/10.1002/1521-4141(200211)32:11<3305::AID-IMMU3305>3.0.CO;2-J
 |  
															| 41 | A., Gautam, V., Beiss, C., Wang, L. Wang, N. Steinmetz, (2021). Plant viral nanoparticle conjugated with anti-PD-1 peptide for ovarian cancer immunotherapy. Int. J. Mol. Sci., 22: 9733 https://doi.org/10.3390/ijms22189733
 |  
															| 42 | P., Anand, A., Neil, E., Lin, T. Douglas, (2015). Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep., 5: 12497 https://doi.org/10.1038/srep12497
 |  
															| 43 | F. A. Galaway, P. Stockley, (2013). MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol. Pharm., 10: 59–68 https://doi.org/10.1021/mp3003368
 |  
															| 44 | K. G. Patel, J. Swartz, (2011). Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 22: 376–387 https://doi.org/10.1021/bc100367u
 |  
															| 45 | E., Gillitzer, P., Suci, M. Young, (2006). Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small, 2: 962–966 https://doi.org/10.1002/smll.200500433
 |  
															| 46 | F. M., Brunel, J. D., Lewis, G., Destito, N. F., Steinmetz, M., Manchester, H. Stuhlmann, P. Dawson, (2010). Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett., 10: 1093–1097 https://doi.org/10.1021/nl1002526
 |  
															| 47 | Y., Li, Y., Hu, J., Xiao, G., Liu, X., Li, Y., Zhao, H., Tan, H. Shi, (2016). Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and Therapy. Sci. Rep., 6: 33511 https://doi.org/10.1038/srep33511
 |  
															| 48 | X., Nie, Y., Liu, M., Li, X., Yu, W., Yuan, S., Huang, D., Ren, Y. Wang, (2020). Sp94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS PharmSciTech, 21: 124 https://doi.org/10.1208/s12249-020-01655-7
 |  
															| 49 | C. E., Ashley, E. C., Carnes, G. K., Phillips, P. N., Durfee, M. D., Buley, C. A., Lino, D. P., Padilla, B., Phillips, M. B., Carter, C. L. Willman, et al.. (2011). Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano, 5: 5729–5745 https://doi.org/10.1021/nn201397z
 |  
															| 50 | R., Gao, H., Tan, S., Li, S., Ma, Y., Tang, K., Zhang, Z., Zhang, Q., Fan, J., Yang, X. E. Zhang, et al.. (2022). A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc. Natl. Acad. Sci. USA, 119: 2104964119 https://doi.org/10.1073/pnas.2104964119
 |  
															| 51 | F., Li, Y., Chen, H., Chen, W., He, Z. P., Zhang, X. E. Zhang, (2011). Monofunctionalization of protein nanocages. J. Am. Chem. Soc., 133: 20040–20043 https://doi.org/10.1021/ja207276g
 |  
															| 52 | N. F., Steinmetz, V., Hong, E. D., Spoerke, P., Lu, K., Breitenkamp, M. G. Finn, (2009). Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc., 131: 17093–17095 https://doi.org/10.1021/ja902293w
 |  
															| 53 | N. F., Steinmetz, G. P. Lomonossoff, D. Evans, (2006). Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir, 22: 3488–3490 https://doi.org/10.1021/la060078e
 |  
															| 54 | A. A., Aljabali, S., Shukla, G. P., Lomonossoff, N. F. Steinmetz, D. Evans, (2013). CPMV-DOX delivers. Mol. Pharm., 10: 3–10 https://doi.org/10.1021/mp3002057
 |  
															| 55 | T., Koho, T. O., Ihalainen, M., Stark, H., Uusi-Kerttula, R., Wieneke, R., Rahikainen, V., Blazevic, V., ki, M. S. Kulomaa, et al.. (2015). His-tagged norovirus-like particles: a versatile platform for cellular delivery and surface display. Eur. J. Pharm. Biopharm., 96: 22–31 https://doi.org/10.1016/j.ejpb.2015.07.002
 |  
															| 56 | S., Meunier, E. Strable, M. Finn, (2004). Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol., 11: 319–326 https://doi.org/10.1016/j.chembiol.2004.02.019
 |  
															| 57 | J. M., Hooker, A., Datta, M., Botta, K. N. Raymond, M. Francis, (2007). Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett., 7: 2207–2210 https://doi.org/10.1021/nl070512c
 |  
															| 58 | E. W., Kovacs, J. M., Hooker, D. W., Romanini, P. G., Holder, K. E. Berry, M. Francis, (2007). Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem., 18: 1140–1147 https://doi.org/10.1021/bc070006e
 |  
															| 59 | E., Strable, D. E. Prasuhn, A. K., Udit, S., Brown, A. J., Link, J. T., Ngo, G., Lander, J., Quispe, C. S., Potter, B. Carragher, et al.. (2008). Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem., 19: 866–875 https://doi.org/10.1021/bc700390r
 |  
															| 60 | R. Crichton. (2019) Biological inorganic chemistry. 3rd ed. 517−544. Cambridge: Academic Press |  
															| 61 | T. Douglas, V. Stark, (2000). Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem., 39: 1828–1830 https://doi.org/10.1021/ic991269q
 |  
															| 62 | P., Du, R., Liu, S., Sun, H., Dong, R., Zhao, R., Tang, J., Dai, H., Yin, J., Luo, Z. Liu, et al.. (2019). Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale, 11: 22748–22761 https://doi.org/10.1039/C9NR05549E
 |  
															| 63 | F., Li, Z. P., Zhang, J., Peng, Z. Q., Cui, D. W., Pang, K., Li, H. P., Wei, Y. F., Zhou, J. K. Wen, X. Zhang, (2009). Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small, 5: 718–726 https://doi.org/10.1002/smll.200801303
 |  
															| 64 | F., Li, K., Li, Z. Q., Cui, Z. P., Zhang, H. P., Wei, D., Gao, J. Y. Deng, X. Zhang, (2010). Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small, 6: 2301–2308 https://doi.org/10.1002/smll.201001078
 |  
															| 65 | B., rfer, Z. Pianowski, (2012). Efficient in vitro encapsulation of protein cargo by an engineered protein container. J. Am. Chem. Soc., 134: 909–911 https://doi.org/10.1021/ja211011k
 |  
															| 66 | R. Tan, A. Frankel, (1995). Structural variety of arginine-rich RNA-binding peptides. Proc. Natl. Acad. Sci. USA., 92: 5282–5286 https://doi.org/10.1073/pnas.92.12.5282
 |  
															| 67 | M., Brasch, R. M., Putri, M. V., de Ruiter, D., Luque, M. S., Koay, J. Cornelissen, (2017). Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J. Am. Chem. Soc., 139: 1512–1519 https://doi.org/10.1021/jacs.6b10948
 |  
															| 68 | D. F. M., Vervoort, R., Heiringhoff, S. B. P. E., Timmermans, M. H. M. E. van Stevendaal, J. C. van Hest, (2021). Dual site-selective presentation of functional handles on protein-engineered cowpea chlorotic mottle virus-like particles. Bioconjug. Chem., 32: 958–963 https://doi.org/10.1021/acs.bioconjchem.1c00108
 |  
															| 69 | T., Fang, W., Zhu, C., Li, F., Zhang, D., Gao, Z. P., Zhang, A., Liang, X. E. Zhang, (2019). Role of surface RGD patterns on protein nanocages in tumor targeting revealed using precise discrete models. Small, 15: e1904838 https://doi.org/10.1002/smll.201904838
 |  
															| 70 | T., Douglas, E., Strable, D., Willits, A., Aitouchen, M. Libera, (2002). Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater., 14: 415–418 https://doi.org/10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W
 |  
															| 71 | K., Li, Z. P., Zhang, M., Luo, X., Yu, Y., Han, H. P., Wei, Z. Q. Cui, X. Zhang, (2012). Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale, 4: 188–193 https://doi.org/10.1039/C1NR11132A
 |  
															| 72 | M., Yang, K. Sunderland, (2017). Virus-derived peptides for clinical applications. Chem. Rev., 117: 10377–10402 https://doi.org/10.1021/acs.chemrev.7b00100
 |  
															| 73 | N., Gandra, D. D., Wang, Y. Zhu, (2013). Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew. Chem. Int. Ed. Engl., 52: 11278–11281 https://doi.org/10.1002/anie.201301113
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |