Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2023, Vol. 11 Issue (1) : 1-14    https://doi.org/10.15302/J-QB-022-0306
REVIEW
Quantitative functionalization of biosynthetic caged protein materials
Quan Cheng1,2, Xuan Wang1, Xian-En Zhang3,4,5, Chengchen Xu1(), Feng Li2,5()
1. College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
3. Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
4. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(6945 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: As one of the representative protein materials, protein nanocages (PNCs) are self-assembled supramolecular structures with multiple advantages, such as good monodispersity, biocompatibility, structural addressability, and facile production. Precise quantitative functionalization is essential to the construction of PNCs with designed purposes.

Results: With three modifiable interfaces, the interior surface, outer surface, and interfaces between building blocks, PNCs can serve as an ideal platform for precise multi-functionalization studies and applications. This review summarizes the currently available methods for precise quantitative functionalization of PNCs and highlights the significance of precise quantitative control in fabricating PNC-based materials or devices. These methods can be categorized into three groups, genetic, chemical, and combined modification.

Conclusion: This review would be constructive for those who work with biosynthetic PNCs in diverse fields.

Keywords protein nanocages      virus-like particles      functionalization      genetic modification      chemical modification     
Corresponding Author(s): Chengchen Xu,Feng Li   
Online First Date: 13 January 2023    Issue Date: 13 March 2023
 Cite this article:   
Quan Cheng,Xuan Wang,Xian-En Zhang, et al. Quantitative functionalization of biosynthetic caged protein materials[J]. Quant. Biol., 2023, 11(1): 1-14.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-022-0306
https://academic.hep.com.cn/qb/EN/Y2023/V11/I1/1
Fig.1  Examples of PNCs.
Fig.2  Methods for functionalizing PNCs.
Fig.3  Genetic modification of PNCs.
Fig.4  Quantitative functionalization of PNCs through chemical modification.
Fig.5  Examples of combined genetic and chemical functionalization.
1 F., Li, D., Wang, J., Zhou, D. Men, X. Zhan, (2020). Design and biosynthesis of functional protein nanostructures. Sci. China Life Sci., 63: 1142–1158
https://doi.org/10.1007/s11427-019-1641-6
2 S., Nooraei, H., Bahrulolum, Z. S., Hoseini, C., Katalani, A., Hajizade, A. J. Easton, (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 19: 59
https://doi.org/10.1186/s12951-021-00806-7
3 R., Divine, H. V., Dang, G., Ueda, J. A., Fallas, I., Vulovic, W., Sheffler, S., Saini, Y. T., Zhao, I. X., Raj, P. A. Morawski, et al.. (2021). Designed proteins assemble antibodies into modular nanocages. Science, 372: abd9994
https://doi.org/10.1126/science.abd9994
4 A., Korpi, E., Anaya-Plaza, S. ki, (2020). Highly ordered protein cage assemblies: a toolkit for new materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 12: e1578
https://doi.org/10.1002/wnan.1578
5 M. A., Aoust, M. M., Couture, N., Charland, S., panier, N., Landry, F. Ors, L. zina, (2010). The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J., 8: 607–619
https://doi.org/10.1111/j.1467-7652.2009.00496.x
6 A., Naskalska, K., cka-Solarz, J., ycki, I., Stupka, M., Bochenek, E. Pyza, J. Heddle, (2021). Artificial protein cage delivers active protein cargos to the cell interior. Biomacromolecules, 22: 4146–4154
https://doi.org/10.1021/acs.biomac.1c00630
7 S. M. Williams, (2021). An overview of Dps: dual acting nanovehicles in prokaryotes with DNA binding and ferroxidation properties. Subcell. Biochem., 96: 177–216
https://doi.org/10.1007/978-3-030-58971-4_3
8 W. M., Aumiller, M. Uchida, (2018). Protein cage assembly across multiple length scales. Chem. Soc. Rev., 47: 3433–3469
https://doi.org/10.1039/C7CS00818J
9 M., Uchida, K., McCoy, M., Fukuto, L., Yang, H., Yoshimura, H. M., Miettinen, B., LaFrance, D. P., Patterson, B., Schwarz, J. A. Karty, et al.. (2018). Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano, 12: 942–953
https://doi.org/10.1021/acsnano.7b06049
10 M., Raeeszadeh-Sarmazdeh, E., Hartzell, J. V. Price, (2016). Protein nanoparticles as multifunctional biocatalysts and health assessment sensors. Curr. Opin. Chem. Eng., 13: 109–118
https://doi.org/10.1016/j.coche.2016.08.016
11 X., Lin, J., Xie, G., Niu, F., Zhang, H., Gao, M., Yang, Q., Quan, M. A., Aronova, G., Zhang, S. Lee, et al.. (2011). Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett., 11: 814–819
https://doi.org/10.1021/nl104141g
12 N. M. Molino, S. Wang, (2014). Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol., 28: 75–82
https://doi.org/10.1016/j.copbio.2013.12.007
13 H., Moon, J., Lee, H., Kim, S., Heo, J. Min, (2014). Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Biomater. Res., 18: 21
https://doi.org/10.1186/2055-7124-18-21
14 S. E. Hamby, J. Hirst, (2008). Prediction of glycosylation sites using random forests. BMC Bioinformatics, 9: 500
https://doi.org/10.1186/1471-2105-9-500
15 J., Schwarzer, E. Rapp, (2008). N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis, 29: 4203–4214
https://doi.org/10.1002/elps.200800042
16 M., Hyakumura, R., Walsh, M., Thaysen-Andersen, N. J., Kingston, M., La, L., Lu, G., Lovrecz, N. H., Packer, S. Locarnini, H. Netter, (2015). Modification of asparagine-linked glycan density for the design of hepatitis B virus virus-like particles with enhanced immunogenicity. J. Virol., 89: 11312–11322
https://doi.org/10.1128/JVI.01123-15
17 C. C. D., Joe, S., Chatterjee, G., Lovrecz, T. E., Adams, M., Thaysen-Andersen, R., Walsh, S. A., Locarnini, P. Smooker, H. Netter, (2020). Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine, 38: 3892–3901
https://doi.org/10.1016/j.vaccine.2020.03.007
18 M., De Filette, W., Min Jou, A., Birkett, K., Lyons, B., Schultz, A., Tonkyro, S. Resch, (2005). Universal influenza A vaccine: optimization of M2-based constructs. Virology, 337: 149–161
https://doi.org/10.1016/j.virol.2005.04.004
19 S., Ling, S., Yang, X., Hu, D., Yin, Y., Dai, X., Qian, D., Wang, X., Pan, J., Hong, X. Sun, et al.. (2021). Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng., 5: 144–156
https://doi.org/10.1038/s41551-020-00656-y
20 M. D., Levasseur, S., Mantri, T., Hayashi, M., Reichenbach, S., Hehn, Y., Waeckerle-Men, P. Johansen, (2021). Cell-specific delivery using an engineered protein nanocage. ACS Chem. Biol., 16: 838–843
https://doi.org/10.1021/acschembio.1c00007
21 Z., Wang, Y., Zhao, S., Zhang, X., Chen, G., Sun, B., Zhang, B., Jiang, Y., Yang, X. Yan, (2022). Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics, 12: 1800–1815
https://doi.org/10.7150/thno.68459
22 M. L., Martino, S. N., Crooke, M. Manchester, M. Finn, (2021). Single-point mutations in Qβ virus-like particles change binding to cells. Biomacromolecules, 22: 3332–3341
https://doi.org/10.1021/acs.biomac.1c00443
23 T. G. W., Edwardson, T. Mori, (2018). Rational engineering of a designed protein cage for siRNA delivery. J. Am. Chem. Soc., 140: 10439–10442
https://doi.org/10.1021/jacs.8b06442
24 D., Patterson, B., Schwarz, J., Avera, B., Western, M., Hicks, P., Krugler, M., Terra, M., Uchida, K. McCoy, (2017). Sortase-mediated ligation as a modular approach for the covalent attachment of proteins to the exterior of the bacteriophage P22 virus-like particle. Bioconjug. Chem., 28: 2114–2124
https://doi.org/10.1021/acs.bioconjchem.7b00296
25 D. Peabody, (1997). Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch. Biochem. Biophys., 347: 85–92
https://doi.org/10.1006/abbi.1997.0312
26 I. L., Aanei, T., Huynh, Y. Seo, M. Francis, (2018). Vascular cell adhesion molecule-targeted MS2 viral capsids for the detection of early-stage atherosclerotic plaques. Bioconjug. Chem., 29: 2526–2530
https://doi.org/10.1021/acs.bioconjchem.8b00453
27 G. J., Tong, S. C., Hsiao, Z. M. Carrico, M. Francis, (2009). Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc., 131: 11174–11178
https://doi.org/10.1021/ja903857f
28 N., Stephanopoulos, G. J., Tong, S. C. Hsiao, M. Francis, (2010). Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano, 4: 6014–6020
https://doi.org/10.1021/nn1014769
29 D. D., Brauer, E. C., Hartman, D. L. V., Bader, Z. N., Merz, D. Tullman-Ercek, M. Francis, (2019). Systematic engineering of a protein nanocage for high-yield, site-specific modification. J. Am. Chem. Soc., 141: 3875–3884
https://doi.org/10.1021/jacs.8b10734
30 L. I., Karpenko, V. A., Ivanisenko, I. A., Pika, N. A., Chikaev, A. M., Eroshkin, T. A. Veremeiko, A. Ilyichev, (2000). Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids, 18: 329–337
https://doi.org/10.1007/s007260070072
31 R. U., Takahashi, S. N., Kanesashi, T., Inoue, T., Enomoto, M. A., Kawano, H., Tsukamoto, F., Takeshita, T., Imai, T., Ochiya, K. Kataoka, et al.. (2008). Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J. Biotechnol., 135: 385–392
https://doi.org/10.1016/j.jbiotec.2008.05.012
32 Y. L., Zhang, Y. J., Guo, K. Y., Wang, K., Lu, K., Li, Y. Zhu, S. Sun, (2007). Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopes of foot-and-mouth disease virus. Scand. J. Immunol., 65: 320–328
https://doi.org/10.1111/j.1365-3083.2007.01900.x
33 R. Calendar. (2006) The Bacteriophages. 2nd ed. 457−468. New York: Oxford University Press
34 H., Mao, S. A., Hart, A. Schink, B. Pollok, (2004). Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc., 126: 2670–2671
https://doi.org/10.1021/ja039915e
35 L., Schoonen, J., Pille, A., Borrmann, R. J. Nolte, J. van Hest, (2015). Sortase a-mediated N-terminal modification of cowpea chlorotic mottle virus for highly efficient cargo loading. Bioconjug. Chem., 26: 2429–2434
https://doi.org/10.1021/acs.bioconjchem.5b00485
36 L. Schoonen, J. C. van Hest, (2018). Modification of CCMV nanocages for enzyme encapsulation. Methods Mol. Biol., 1798: 69–83
https://doi.org/10.1007/978-1-4939-7893-9_6
37 A. H. Keeble, (2020). Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. (Camb.), 11: 7281–7291
https://doi.org/10.1039/D0SC01878C
38 F. Sun, W. Zhang, (2017). Unleashing chemical power from protein sequence space toward genetically encoded “click” chemistry. Chin. Chem. Lett., 28: 2078–2084
https://doi.org/10.1016/j.cclet.2017.08.052
39 P. M., hl, A. C., Tissot, A., Fulurija, P., Maurer, J., Nussberger, R., Sabat, V., Nief, C., Schellekens, K., Sladko, K. Roubicek, et al.. (2007). A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J. Hypertens., 25: 63–72
https://doi.org/10.1097/HJH.0b013e32800ff5d6
40 A., Jegerlehner, T., Storni, G., Lipowsky, M., Schmid, P. Pumpens, M. Bachmann, (2002). Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol., 32: 3305–3314
https://doi.org/10.1002/1521-4141(200211)32:11<3305::AID-IMMU3305>3.0.CO;2-J
41 A., Gautam, V., Beiss, C., Wang, L. Wang, N. Steinmetz, (2021). Plant viral nanoparticle conjugated with anti-PD-1 peptide for ovarian cancer immunotherapy. Int. J. Mol. Sci., 22: 9733
https://doi.org/10.3390/ijms22189733
42 P., Anand, A., Neil, E., Lin, T. Douglas, (2015). Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep., 5: 12497
https://doi.org/10.1038/srep12497
43 F. A. Galaway, P. Stockley, (2013). MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol. Pharm., 10: 59–68
https://doi.org/10.1021/mp3003368
44 K. G. Patel, J. Swartz, (2011). Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 22: 376–387
https://doi.org/10.1021/bc100367u
45 E., Gillitzer, P., Suci, M. Young, (2006). Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small, 2: 962–966
https://doi.org/10.1002/smll.200500433
46 F. M., Brunel, J. D., Lewis, G., Destito, N. F., Steinmetz, M., Manchester, H. Stuhlmann, P. Dawson, (2010). Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett., 10: 1093–1097
https://doi.org/10.1021/nl1002526
47 Y., Li, Y., Hu, J., Xiao, G., Liu, X., Li, Y., Zhao, H., Tan, H. Shi, (2016). Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and Therapy. Sci. Rep., 6: 33511
https://doi.org/10.1038/srep33511
48 X., Nie, Y., Liu, M., Li, X., Yu, W., Yuan, S., Huang, D., Ren, Y. Wang, (2020). Sp94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS PharmSciTech, 21: 124
https://doi.org/10.1208/s12249-020-01655-7
49 C. E., Ashley, E. C., Carnes, G. K., Phillips, P. N., Durfee, M. D., Buley, C. A., Lino, D. P., Padilla, B., Phillips, M. B., Carter, C. L. Willman, et al.. (2011). Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano, 5: 5729–5745
https://doi.org/10.1021/nn201397z
50 R., Gao, H., Tan, S., Li, S., Ma, Y., Tang, K., Zhang, Z., Zhang, Q., Fan, J., Yang, X. E. Zhang, et al.. (2022). A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc. Natl. Acad. Sci. USA, 119: 2104964119
https://doi.org/10.1073/pnas.2104964119
51 F., Li, Y., Chen, H., Chen, W., He, Z. P., Zhang, X. E. Zhang, (2011). Monofunctionalization of protein nanocages. J. Am. Chem. Soc., 133: 20040–20043
https://doi.org/10.1021/ja207276g
52 N. F., Steinmetz, V., Hong, E. D., Spoerke, P., Lu, K., Breitenkamp, M. G. Finn, (2009). Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc., 131: 17093–17095
https://doi.org/10.1021/ja902293w
53 N. F., Steinmetz, G. P. Lomonossoff, D. Evans, (2006). Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir, 22: 3488–3490
https://doi.org/10.1021/la060078e
54 A. A., Aljabali, S., Shukla, G. P., Lomonossoff, N. F. Steinmetz, D. Evans, (2013). CPMV-DOX delivers. Mol. Pharm., 10: 3–10
https://doi.org/10.1021/mp3002057
55 T., Koho, T. O., Ihalainen, M., Stark, H., Uusi-Kerttula, R., Wieneke, R., Rahikainen, V., Blazevic, V., ki, M. S. Kulomaa, et al.. (2015). His-tagged norovirus-like particles: a versatile platform for cellular delivery and surface display. Eur. J. Pharm. Biopharm., 96: 22–31
https://doi.org/10.1016/j.ejpb.2015.07.002
56 S., Meunier, E. Strable, M. Finn, (2004). Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol., 11: 319–326
https://doi.org/10.1016/j.chembiol.2004.02.019
57 J. M., Hooker, A., Datta, M., Botta, K. N. Raymond, M. Francis, (2007). Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett., 7: 2207–2210
https://doi.org/10.1021/nl070512c
58 E. W., Kovacs, J. M., Hooker, D. W., Romanini, P. G., Holder, K. E. Berry, M. Francis, (2007). Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem., 18: 1140–1147
https://doi.org/10.1021/bc070006e
59 E., Strable, D. E. Prasuhn, A. K., Udit, S., Brown, A. J., Link, J. T., Ngo, G., Lander, J., Quispe, C. S., Potter, B. Carragher, et al.. (2008). Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem., 19: 866–875
https://doi.org/10.1021/bc700390r
60 R. Crichton. (2019) Biological inorganic chemistry. 3rd ed. 517−544. Cambridge: Academic Press
61 T. Douglas, V. Stark, (2000). Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem., 39: 1828–1830
https://doi.org/10.1021/ic991269q
62 P., Du, R., Liu, S., Sun, H., Dong, R., Zhao, R., Tang, J., Dai, H., Yin, J., Luo, Z. Liu, et al.. (2019). Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale, 11: 22748–22761
https://doi.org/10.1039/C9NR05549E
63 F., Li, Z. P., Zhang, J., Peng, Z. Q., Cui, D. W., Pang, K., Li, H. P., Wei, Y. F., Zhou, J. K. Wen, X. Zhang, (2009). Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small, 5: 718–726
https://doi.org/10.1002/smll.200801303
64 F., Li, K., Li, Z. Q., Cui, Z. P., Zhang, H. P., Wei, D., Gao, J. Y. Deng, X. Zhang, (2010). Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small, 6: 2301–2308
https://doi.org/10.1002/smll.201001078
65 B., rfer, Z. Pianowski, (2012). Efficient in vitro encapsulation of protein cargo by an engineered protein container. J. Am. Chem. Soc., 134: 909–911
https://doi.org/10.1021/ja211011k
66 R. Tan, A. Frankel, (1995). Structural variety of arginine-rich RNA-binding peptides. Proc. Natl. Acad. Sci. USA., 92: 5282–5286
https://doi.org/10.1073/pnas.92.12.5282
67 M., Brasch, R. M., Putri, M. V., de Ruiter, D., Luque, M. S., Koay, J. Cornelissen, (2017). Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J. Am. Chem. Soc., 139: 1512–1519
https://doi.org/10.1021/jacs.6b10948
68 D. F. M., Vervoort, R., Heiringhoff, S. B. P. E., Timmermans, M. H. M. E. van Stevendaal, J. C. van Hest, (2021). Dual site-selective presentation of functional handles on protein-engineered cowpea chlorotic mottle virus-like particles. Bioconjug. Chem., 32: 958–963
https://doi.org/10.1021/acs.bioconjchem.1c00108
69 T., Fang, W., Zhu, C., Li, F., Zhang, D., Gao, Z. P., Zhang, A., Liang, X. E. Zhang, (2019). Role of surface RGD patterns on protein nanocages in tumor targeting revealed using precise discrete models. Small, 15: e1904838
https://doi.org/10.1002/smll.201904838
70 T., Douglas, E., Strable, D., Willits, A., Aitouchen, M. Libera, (2002). Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater., 14: 415–418
https://doi.org/10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W
71 K., Li, Z. P., Zhang, M., Luo, X., Yu, Y., Han, H. P., Wei, Z. Q. Cui, X. Zhang, (2012). Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale, 4: 188–193
https://doi.org/10.1039/C1NR11132A
72 M., Yang, K. Sunderland, (2017). Virus-derived peptides for clinical applications. Chem. Rev., 117: 10377–10402
https://doi.org/10.1021/acs.chemrev.7b00100
73 N., Gandra, D. D., Wang, Y. Zhu, (2013). Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew. Chem. Int. Ed. Engl., 52: 11278–11281
https://doi.org/10.1002/anie.201301113
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed