| 
					
						|  |  
    					|  |  
    					| Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities |  
						| Huan Du1,2, Meng Li1,2, Yang Liu1,2(  ) |  
						| 1. Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China 2. Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Background: Synthetic microbial communities, with different strains brought together by balancing their nutrition and promoting their interactions, demonstrate great advantages for exploring complex performance of communities and for further biotechnology applications. The potential of such microbial communities has not been explored, due to our limited knowledge of the extremely complex microbial interactions that are involved in designing and controlling effective and stable communities.  Results: Genome-scale metabolic models (GEM) have been demonstrated as an effective tool for predicting and guiding the investigation and design of microbial communities, since they can explicitly and efficiently predict the phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbe-habitats and microbe-microbe interactions. In this work, we reviewed two main categories of GEM-based approaches and three uses related to design of synthetic microbial communities: predicting multi-species interactions, exploring environmental impacts on microbial phenotypes, and optimizing community-level performance.  Conclusions: Although at the infancy stage, GEM-based approaches exhibit an increasing scope of applications in designing synthetic microbial communities. Compared to other methods, especially the use of laboratory cultures, GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic communities and improving their functionality, such as identifying community members, determining media composition, evaluating microbial interaction potential or selecting the best community configuration. Future efforts should be made to overcome the limitations of the approaches, ranging from quality control of GEM reconstructions to community-level modeling algorithms, so that more applications of GEMs in studying phenotypes of microbial communities can be expected. |  
															| Keywords 
																																																				genome-scale metabolic modeling  
																		  																																				microbial community design  
																		  																																				interspecies interaction  
																		  																																				environmental impact  
																		  																																				community-level performance |  
															| Corresponding Author(s):
																Yang Liu |  
															| Online First Date: 21 February 2023   
																																														Issue Date: 13 March 2023 |  |  
								            
								                
																																												
															| 1 | T. kopf, O. Soyer, (2014). Synthetic microbial communities. Curr. Opin. Microbiol., 18: 72–77 https://doi.org/10.1016/j.mib.2014.02.002
 |  
															| 2 | K., Zhou, K., Qiao, S. Edgar, (2015). Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol., 33: 377–383 https://doi.org/10.1038/nbt.3095
 |  
															| 3 | X., Wang, R., Su, K., Chen, S., Xu, J. Feng, (2019). Engineering a microbial consortium based whole-cell system for efficient production of glutarate from L-lysine. Front. Microbiol., 10: 341 https://doi.org/10.3389/fmicb.2019.00341
 |  
															| 4 | S. G., Hays, W. G., Patrick, M., Ziesack, N. Oxman, P. Silver, (2015). Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol., 36: 40–49 https://doi.org/10.1016/j.copbio.2015.08.008
 |  
															| 5 | N. S. McCarty, (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197 https://doi.org/10.1016/j.tibtech.2018.11.002
 |  
															| 6 | D., Beyter, P. Z., Tang, S., Becker, T., Hoang, D., Bilgin, Y. W., Lim, T. C., Peterson, S., Mayfield, F., Haerizadeh, J. B. Shurin, et al.. (2016). Diversity, productivity, and stability of an industial microbial ecosystem. Appl. Environ. Microbiol., 82: 2494–2505 https://doi.org/10.1128/AEM.03965-15
 |  
															| 7 | J. B., Shurin, R. L., Abbott, M. S., Deal, G. T., Kwan, E., Litchman, R. C., McBride, S. Mandal, V. Smith, (2013). Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett., 16: 1393–1404 https://doi.org/10.1111/ele.12176
 |  
															| 8 | T., Senthilvelan, J., Kanagaraj, R. C. Panda, A. Mandal, (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technol. Environ. Policy, 16: 113–126 https://doi.org/10.1007/s10098-013-0598-2
 |  
															| 9 | H., Zhang, B., Pereira, Z. Li, (2015). Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U.S.A., 112: 8266–8271 https://doi.org/10.1073/pnas.1506781112
 |  
															| 10 | T. R., Zuroff, S. B. Xiques, W. Curtis, (2013). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels, 6: 59 https://doi.org/10.1186/1754-6834-6-59
 |  
															| 11 | S. Patle, (2007). Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett., 29: 1839–1843 https://doi.org/10.1007/s10529-007-9493-4
 |  
															| 12 | J. P., Wang, W., Lin, V., Wray, D. Lai, (2013). Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett., 54: 2492–2496 https://doi.org/10.1016/j.tetlet.2013.03.005
 |  
															| 13 | S., Caballero, S., Kim, R. A., Carter, I. M., Leiner, B., ac, L., Miller, G. J., Kim, L. Ling, E. Pamer, (2017). Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe, 21: 592–602.e4 https://doi.org/10.1016/j.chom.2017.04.002
 |  
															| 14 | S., Brugiroux, M., Beutler, C., Pfann, D., Garzetti, H. J., Ruscheweyh, D., Ring, M., Diehl, S., Herp, Y., tscher, S. Hussain, et al.. (2017). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol., 2: 16215 https://doi.org/10.1038/nmicrobiol.2016.215
 |  
															| 15 | S. Che, (2019). Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J. Ind. Microbiol. Biotechnol., 46: 1343–1358 https://doi.org/10.1007/s10295-019-02211-4
 |  
															| 16 | N. I., Johns, T., Blazejewski, A. L. Gomes, H. Wang, (2016). Principles for designing synthetic microbial communities. Curr. Opin. Microbiol., 31: 146–153 https://doi.org/10.1016/j.mib.2016.03.010
 |  
															| 17 | M. T., Mee, J. J., Collins, G. M. Church, H. Wang, (2014). Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. U.S.A., 111: E2149–E2156 https://doi.org/10.1073/pnas.1405641111
 |  
															| 18 | M., Embree, J. K., Liu, M. M. Al-Bassam, (2015). Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 15450–15455 https://doi.org/10.1073/pnas.1506034112
 |  
															| 19 | K. Zengler, L. Zaramela, (2018). The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol., 16: 383–390 https://doi.org/10.1038/s41579-018-0004-5
 |  
															| 20 | E., Bauer, J., Zimmermann, F., Baldini, I. Thiele, (2017). BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Comput. Biol., 13: e1005544 https://doi.org/10.1371/journal.pcbi.1005544
 |  
															| 21 | S. H. J., Chan, M. N. Simons, C. Maranas, (2017). SteadyCom: Predicting microbial abundances while ensuring community stability. PLOS Comput. Biol., 13: e1005539 https://doi.org/10.1371/journal.pcbi.1005539
 |  
															| 22 | M., Kumar, B., Ji, K. Zengler, (2019). Modelling approaches for studying the microbiome. Nat. Microbiol., 4: 1253–1267 https://doi.org/10.1038/s41564-019-0491-9
 |  
															| 23 | M., Kanehisa, M., Furumichi, Y., Sato, M. Ishiguro-Watanabe, (2021). KEGG: integrating viruses and cellular organisms. Nucleic Acids Res., 49: D545–D551 https://doi.org/10.1093/nar/gkaa970
 |  
															| 24 | R., Caspi, R., Billington, I. M., Keseler, A., Kothari, M., Krummenacker, P. E., Midford, W. K., Ong, S., Paley, P. Subhraveti, P. Karp, (2020). The MetaCyc database of metabolic pathways and enzymes — a 2019 update. Nucleic Acids Res., 48: D445–D453 https://doi.org/10.1093/nar/gkz862
 |  
															| 25 | Z. A., King, J., Lu, A., ger, P., Miller, S., Federowicz, J. A., Lerman, A., Ebrahim, B. O. Palsson, N. Lewis, (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44: D515–D522 https://doi.org/10.1093/nar/gkv1049
 |  
															| 26 | I. Thiele, B. Palsson, (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc., 5: 93–121 https://doi.org/10.1038/nprot.2009.203
 |  
															| 27 | J. Pramanik, J. Keasling, (1997). Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng., 56: 398–421 https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
 |  
															| 28 | A. Feist, J. Scholten, B., Palsson, F. Brockman, (2006). Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 2006.0004 https://doi.org/10.1038/msb4100046
 |  
															| 29 | C., Gu, G. B., Kim, W. J., Kim, H. U. Kim, S. Lee, (2019). Current status and applications of genome-scale metabolic models. Genome Biol., 20: 121 https://doi.org/10.1186/s13059-019-1730-3
 |  
															| 30 | D., Machado, S., Andrejev, M. Tramontano, K. Patil, (2018). Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res., 46: 7542–7553 https://doi.org/10.1093/nar/gky537
 |  
															| 31 | S. M. D., Seaver, F., Liu, Q., Zhang, J., Jeffryes, J. P., Faria, J. N., Edirisinghe, M., Mundy, N., Chia, E., Noor, M. E. Beber, et al.. (2021). The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res., 49: D575–D588 https://doi.org/10.1093/nar/gkaa746
 |  
															| 32 | M., Aite, M., Chevallier, C., Frioux, C., Trottier, J., Got, S. N., Mendoza, G., Carrier, O., Dameron, N. Guillaudeux, et al.. (2018). Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of genome-scale metabolic models. PLOS Comput. Biol., 14: e1006146 https://doi.org/10.1371/journal.pcbi.1006146
 |  
															| 33 | C. S., Henry, M. D., Jankowski, L. J. Broadbelt, (2006). Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J., 90: 1453–1461 https://doi.org/10.1529/biophysj.105.071720
 |  
															| 34 | B., Pereira, J., Miguel, S., Soares, I. Rocha, (2018). Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC Syst. Biol., 12: 61 https://doi.org/10.1186/s12918-018-0585-7
 |  
															| 35 | J. D., Orth, I. Thiele, B. Palsson, (2010). What is flux balance analysis? Nat. Biotechnol., 28: 245–248 https://doi.org/10.1038/nbt.1614
 |  
															| 36 | J. S. Edwards, B. Palsson, (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem., 274: 17410–17416 https://doi.org/10.1074/jbc.274.25.17410
 |  
															| 37 | J. M., Monk, C. J., Lloyd, E., Brunk, N., Mih, A., Sastry, Z., King, R., Takeuchi, W., Nomura, Z., Zhang, H. Mori, et al.. (2017). iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol., 35: 904–908 https://doi.org/10.1038/nbt.3956
 |  
															| 38 | T. zdamar, (2017). Analyses of extracellular protein production in Bacillus subtilis – I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J., 127: 229–241 https://doi.org/10.1016/j.bej.2017.07.005
 |  
															| 39 | H., Nazem-Bokaee, S., Gopalakrishnan, J. G., Ferry, T. K. Wood, C. Maranas, (2016). Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb. Cell Fact., 15: 10 https://doi.org/10.1186/s12934-015-0404-4
 |  
															| 40 | J., rster, I., Famili, P., Fu, B. Palsson, (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res., 13: 244–253 https://doi.org/10.1101/gr.234503
 |  
															| 41 | S., Mintz-Oron, S., Meir, S., Malitsky, E., Ruppin, A. Aharoni, (2012). Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc. Natl. Acad. Sci. U.S.A., 109: 339–344 https://doi.org/10.1073/pnas.1100358109
 |  
															| 42 | A., Mardinoglu, R., Agren, C., Kampf, A., Asplund, I., Nookaew, P., Jacobson, A. J., Walley, P., Froguel, L. M., Carlsson, M. Uhlen, et al.. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol., 9: 649 https://doi.org/10.1038/msb.2013.5
 |  
															| 43 | A. P., Arkin, R. W., Cottingham, C. S., Henry, N. L., Harris, R. L., Stevens, S., Maslov, P., Dehal, D., Ware, F., Perez, S. Canon, et al.. (2018). KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol., 36: 566–569 https://doi.org/10.1038/nbt.4163
 |  
															| 44 | L., Heirendt, S., Arreckx, T., Pfau, S. N., Mendoza, A., Richelle, A., Heinken, H. S., ttir, J., Wachowiak, S. M., Keating, V. Vlasov, et al.. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nat. Protoc., 14: 639–702 https://doi.org/10.1038/s41596-018-0098-2
 |  
															| 45 | P. D., Karp, P. E., Midford, R., Billington, A., Kothari, M., Krummenacker, M., Latendresse, W. K., Ong, P., Subhraveti, R., Caspi, C. Fulcher, et al.. (2021). Pathway Tools version 23. 0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform., 22: 109–126 https://doi.org/10.1093/bib/bbz104
 |  
															| 46 | S., ttir, A., Heinken, L., Kutt, D. A., Ravcheev, E., Bauer, A., Noronha, K., Greenhalgh, C., ger, J., Baginska, P. Wilmes, et al.. (2017). Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol., 35: 81–89 https://doi.org/10.1038/nbt.3703
 |  
															| 47 | T., Blasco, S., rez-Burillo, F., Balzerani, D., Hinojosa-Nogueira, A., Lerma-Aguilera, S., Pastoriza, X., Cendoya, M. J., Gosalbes, N. ndez, et al.. (2021). An extended reconstruction of human gut microbiota metabolism of dietary compounds. Nat. Commun., 12: 4728 https://doi.org/10.1038/s41467-021-25056-x
 |  
															| 48 | R., Agren, L., Liu, S., Shoaie, W., Vongsangnak, I. Nookaew, (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol., 9: e1002980 https://doi.org/10.1371/journal.pcbi.1002980
 |  
															| 49 | J., Capela, D., Lagoa, R., Rodrigues, E., Cunha, F., Cruz, A., Barbosa, J., Bastos, D., Lima, E. C., Ferreira, M. Rocha, et al.. (2022). merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Res., 50: 6052–6066 https://doi.org/10.1093/nar/gkac459
 |  
															| 50 | B. J., nchez, C., Zhang, A., Nilsson, P. J., Lahtvee, E. J. Kerkhoven, (2017). Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13: 935 https://doi.org/10.15252/msb.20167411
 |  
															| 51 | J. L., Steffensen, K. Dufault-Thompson, (2016). PSAMM: A portable system for the analysis of metabolic models. PLOS Comput. Biol., 12: e1004732 https://doi.org/10.1371/journal.pcbi.1004732
 |  
															| 52 | E., rnson, (2016). Personalized cardiovascular disease prediction and treatment—A review of existing strategies and novel systems medicine tools. Front. Physiol., 7: 2 https://doi.org/10.3389/fphys.2016.00002
 |  
															| 53 | J. S., Cho, C., Gu, T. H., Han, J. Y. Ryu, S. Lee, (2019). Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring. Curr. Opin. Syst. Biol., 15: 1–11 https://doi.org/10.1016/j.coisb.2019.02.009
 |  
															| 54 | E. Esvap, K. Ulgen, (2021). Advances in genome-scale metabolic modeling toward microbial community analysis of the human microbiome. ACS Synth. Biol., 10: 2121–2137 https://doi.org/10.1021/acssynbio.1c00140
 |  
															| 55 | L. Lin, (2022). Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnol. Biofuels Bioprod., 15: 14 https://doi.org/10.1186/s13068-022-02113-1
 |  
															| 56 | J., guez, R., Kleerebezem, J. M. Lema, M. C. van Loosdrecht, (2006). Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng., 93: 592–606 https://doi.org/10.1002/bit.20765
 |  
															| 57 | J., Pramanik, P. L., Trelstad, A. J., Schuler, D. Jenkins, J. Keasling, (1999). Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Water Res., 33: 462–476 https://doi.org/10.1016/S0043-1354(98)00225-5
 |  
															| 58 | A. R. Zomorrodi, C. Maranas, (2012). OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLOS Comput. Biol., 8: e1002363 https://doi.org/10.1371/journal.pcbi.1002363
 |  
															| 59 | R. A., Khandelwal, B. G., Olivier, W. F. M., ling, B. Teusink, F. Bruggeman, (2013). Community flux balance analysis for microbial consortia at balanced growth. PLoS One, 8: e64567 https://doi.org/10.1371/journal.pone.0064567
 |  
															| 60 | M., Thommes, T., Wang, Q., Zhao, I. C. Paschalidis, (2019). Designing metabolic division of labor in microbial communities. mSystems, 4: e00263–e18 https://doi.org/10.1128/mSystems.00263-18
 |  
															| 61 | E., Vitkin, A., Gillis, M., Polikovsky, B., Bender, A. Golberg, (2020). Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PLoS One, 15: e0227363 https://doi.org/10.1371/journal.pone.0227363
 |  
															| 62 | A., Zelezniak, S., Andrejev, O., Ponomarova, D. R., Mende, P. Bork, K. Patil, (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 6449–6454 https://doi.org/10.1073/pnas.1421834112
 |  
															| 63 | K., Zhuang, M., Izallalen, P., Mouser, H., Richter, C., Risso, R. Mahadevan, D. Lovley, (2011). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J., 5: 305–316 https://doi.org/10.1038/ismej.2010.117
 |  
															| 64 | A. R., Zomorrodi, M. M. Islam, C. Maranas, (2014). d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol., 3: 247–257 https://doi.org/10.1021/sb4001307
 |  
															| 65 | W. R., Harcombe, W. J., Riehl, I., Dukovski, B. R., Granger, A., Betts, A. H., Lang, G., Bonilla, A., Kar, N., Leiby, P. Mehta, et al.. (2014). Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep., 7: 1104–1115 https://doi.org/10.1016/j.celrep.2014.03.070
 |  
															| 66 | B., Borer, M., Ataman, V. Hatzimanikatis, (2019). Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLOS Comput. Biol., 15: e1007127 https://doi.org/10.1371/journal.pcbi.1007127
 |  
															| 67 | J., Geng, B., Ji, G., Li, F. pez-Isunza, (2021). CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc. Natl. Acad. Sci. U.S.A., 118: e2019336118 https://doi.org/10.1073/pnas.2019336118
 |  
															| 68 | E. J., Brien, J. M. Monk, B. Palsson, (2015). Using genome-scale models to predict biological capabilities. Cell, 161: 971–987 https://doi.org/10.1016/j.cell.2015.05.019
 |  
															| 69 | S., Stolyar, S., Van Dien, K. L., Hillesland, N., Pinel, T. J., Lie, J. A. Leigh, D. Stahl, (2007). Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol., 3: 92 https://doi.org/10.1038/msb4100131
 |  
															| 70 | I. E., El-Semman, F. H., Karlsson, S., Shoaie, I., Nookaew, T. H. Soliman, (2014). Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol., 8: 41 https://doi.org/10.1186/1752-0509-8-41
 |  
															| 71 | F., Baldini, A., Heinken, L., Heirendt, S., Magnusdottir, R. M. T. Fleming, (2019). The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics, 35: 2332–2334 https://doi.org/10.1093/bioinformatics/bty941
 |  
															| 72 | H., Mendes-Soares, M., Mundy, L. M. Soares, (2016). MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics, 17: 343 https://doi.org/10.1186/s12859-016-1230-3
 |  
															| 73 | A. R., Pacheco, M. Moel, (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun., 10: 103 https://doi.org/10.1038/s41467-018-07946-9
 |  
															| 74 | E. J., Brien, J. A., Lerman, R. L., Chang, D. R. Hyduke, B. Palsson, (2013). Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 9: 693 https://doi.org/10.1038/msb.2013.52
 |  
															| 75 | A. Khodayari, C. Maranas, (2016). A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun., 7: 13806 https://doi.org/10.1038/ncomms13806
 |  
															| 76 | N. Klitgord, (2010). Environments that induce synthetic microbial ecosystems. PLOS Comput. Biol., 6: e1001002 https://doi.org/10.1371/journal.pcbi.1001002
 |  
															| 77 | A. Heinken, (2015). Anoxic conditions promote species-specific mutualism between gut microbes In Silico. Appl. Environ. Microbiol., 81: 4049–4061 https://doi.org/10.1128/AEM.00101-15
 |  
															| 78 | K., Chen, Y., Gao, N., Mih, E. J., Brien, L. Yang, B. Palsson, (2017). Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl. Acad. Sci. U.S.A., 114: 11548–11553 https://doi.org/10.1073/pnas.1705524114
 |  
															| 79 | L., Yang, N., Mih, A., Anand, J. H., Park, J., Tan, J. T., Yurkovich, J. M., Monk, C. J., Lloyd, T. E., Sandberg, S. W. Seo, et al.. (2019). Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl. Acad. Sci. U.S.A., 116: 14368–14373 https://doi.org/10.1073/pnas.1905039116
 |  
															| 80 | B., Du, L., Yang, C. J., Lloyd, X. Fang, B. Palsson, (2019). Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLOS Comput. Biol., 15: e1007525 https://doi.org/10.1371/journal.pcbi.1007525
 |  
															| 81 | G. C., diCenzo, M., Tesi, T., Pfau, A. Mengoni, (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat. Commun., 11: 2574 https://doi.org/10.1038/s41467-020-16484-2
 |  
															| 82 | A. B., Shreiner, J. Y. Kao, V. Young, (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 31: 69–75 https://doi.org/10.1097/MOG.0000000000000139
 |  
															| 83 | J., Qin, Y., Li, Z., Cai, S., Li, J., Zhu, F., Zhang, S., Liang, W., Zhang, Y., Guan, D. Shen, et al.. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490: 55–60 https://doi.org/10.1038/nature11450
 |  
															| 84 | P. J., Turnbaugh, M., Hamady, T., Yatsunenko, B. L., Cantarel, A., Duncan, R. E., Ley, M. L., Sogin, W. J., Jones, B. A., Roe, J. P. Affourtit, et al.. (2009). A core gut microbiome in obese and lean twins. Nature, 457: 480–484 https://doi.org/10.1038/nature07540
 |  
															| 85 | A., Heinken, D. A., Ravcheev, F., Baldini, L., Heirendt, R. M. T. Fleming, (2019). Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome, 7: 75 https://doi.org/10.1186/s40168-019-0689-3
 |  
															| 86 | C., Diener, S. M. Gibbons, (2020). MICOM: Metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems, 5: e00606–e00619 https://doi.org/10.1128/mSystems.00606-19
 |  
															| 87 | M., Kumar, B., Ji, P., Babaei, P., Das, D., Lappa, G., Ramakrishnan, T. E., Fox, R., Haque, W. A., Petri, F. ckhed, et al.. (2018). Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab. Eng., 49: 128–142 https://doi.org/10.1016/j.ymben.2018.07.018
 |  
															| 88 | S. Shoaie, (2014). Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet., 5: 86 https://doi.org/10.3389/fgene.2014.00086
 |  
															| 89 | S., Shoaie, P., Ghaffari, P., Kovatcheva-Datchary, A., Mardinoglu, P., Sen, E., Pujos-Guillot, T., de Wouters, C., Juste, S., Rizkalla, J. Chilloux, et al.. (2015). Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab., 22: 320–331 https://doi.org/10.1016/j.cmet.2015.07.001
 |  
															| 90 | N., Swainston, K., Smallbone, H., Hefzi, P. D., Dobson, J., Brewer, M., Hanscho, D. C., Zielinski, K. S., Ang, N. J., Gardiner, J. M. Gutierrez, et al.. (2016). Recon 2. 2: from reconstruction to model of human metabolism. Metabolomics, 12: 109 https://doi.org/10.1007/s11306-016-1051-4
 |  
															| 91 | E., Brunk, S., Sahoo, D. C., Zielinski, A., Altunkaya, A., ger, N., Mih, F., Gatto, A., Nilsson, G. A., Preciat Gonzalez, M. K. Aurich, et al.. (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol., 36: 272–281 https://doi.org/10.1038/nbt.4072
 |  
															| 92 | N. C., Duarte, S. A., Becker, N., Jamshidi, I., Thiele, M. L., Mo, T. D., Vo, R. Srivas, B. Palsson, (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A., 104: 1777–1782 https://doi.org/10.1073/pnas.0610772104
 |  
															| 93 | S. Sahoo, (2013). Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum. Mol. Genet., 22: 2705–2722 https://doi.org/10.1093/hmg/ddt119
 |  
															| 94 | M. Zampieri, (2016). Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems. Bioinformatics, 32: 1733–1739 https://doi.org/10.1093/bioinformatics/btw062
 |  
															| 95 | H., Du, J., Pan, D., Zou, Y., Huang, Y. Liu, (2022). Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. Microbiome, 10: 224 https://doi.org/10.1186/s40168-022-01421-w
 |  
															| 96 | R., Mahadevan, J. S. Edwards, F. J. Doyle, (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J., 83: 1331–1340 https://doi.org/10.1016/S0006-3495(02)73903-9
 |  
															| 97 | T. J. Hanly, M. Henson, (2013). Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels, 6: 44 https://doi.org/10.1186/1754-6834-6-44
 |  
															| 98 | T. J. Hanly, M. Henson, (2011). Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng., 108: 376–385 https://doi.org/10.1002/bit.22954
 |  
															| 99 | F., Salimi, K. Zhuang, (2010). Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J., 5: 726–738 https://doi.org/10.1002/biot.201000159
 |  
															| 100 | B., nez, (2018). FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics, 34: i954–i963 https://doi.org/10.1093/bioinformatics/bty561
 |  
															| 101 | A. V., Colarusso, I., Goodchild-Michelman, M. Rayle, A. Zomorrodi, (2021). Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol., 26: 46–57 https://doi.org/10.1016/j.coisb.2021.04.001
 |  
															| 102 | B., nez, J. Torres-Bacete, (2020). Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J., 19: 226–246 https://doi.org/10.1016/j.csbj.2020.12.003
 |  
															| 103 | A. P., Burgard, P. Pharkya, C. Maranas, (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84: 647–657 https://doi.org/10.1002/bit.10803
 |  
															| 104 | D. Vitkup, G. Church, (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A., 99: 15112–15117 https://doi.org/10.1073/pnas.232349399
 |  
															| 105 | N. Tepper, (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 26: 536–543 https://doi.org/10.1093/bioinformatics/btp704
 |  
															| 106 | H. S., Choi, S. Y., Lee, T. Y. Kim, H. Woo, (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76: 3097–3105 https://doi.org/10.1128/AEM.00115-10
 |  
															| 107 | D. B., Bernstein, S., Sulheim, E. Almaas, (2021). Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol., 22: 64 https://doi.org/10.1186/s13059-021-02289-z
 |  
															| 108 | J. C., Xavier, K. R. Patil, (2017). Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes. Metab. Eng., 39: 200–208 https://doi.org/10.1016/j.ymben.2016.12.002
 |  
															| 109 | C., Lieven, M. E., Beber, B. G., Olivier, F. T., Bergmann, M., Ataman, P., Babaei, J. A., Bartell, L. M., Blank, S., Chauhan, K. Correia, et al.. (2020). MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol., 38: 272–276 https://doi.org/10.1038/s41587-020-0446-y
 |  
															| 110 | D. G., Maghini, E. L., Moss, S. E. Vance, A. Bhatt, (2021). Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nat. Protoc., 16: 458–471 https://doi.org/10.1038/s41596-020-00424-x
 |  
															| 111 | W., Zheng, S., Zhao, Y., Yin, H., Zhang, D. M., Needham, E. D., Evans, C. L., Dai, P. J., Lu, E. J. Alm, D. Weitz, (2022). High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science, 376: eabm1483 https://doi.org/10.1126/science.abm1483
 |  
															| 112 | J. C., Lachance, C. J., Lloyd, J. M., Monk, L., Yang, A. V., Sastry, Y., Seif, B. O., Palsson, S., Rodrigue, A. M., Feist, Z. A. King, et al.. (2019). BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLOS Comput. Biol., 15: e1006971 https://doi.org/10.1371/journal.pcbi.1006971
 |  
															| 113 | H., LengY., WangW., ZhaoS. M. Sievert. (2022) An expanded deep-branching thermophilic bacterial clade sheds light on the early evolution of bacteria. BioRxiv |  
															| 114 | J. M., Dreyfuss, J. D., Zucker, H. M., Hood, L. R., Ocasio, M. S. Sachs, J. Galagan, (2013). Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLOS Comput. Biol., 9: e1003126 https://doi.org/10.1371/journal.pcbi.1003126
 |  
															| 115 | J. Y., Ryu, H. U. Kim, S. Lee, (2019). Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. U.S.A., 116: 13996–14001 https://doi.org/10.1073/pnas.1821905116
 |  
															| 116 | G. L. Medlock, J. Papin, (2020). Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and machine learning. Cell Syst., 10: 109–119.e3 https://doi.org/10.1016/j.cels.2019.11.006
 |  
															| 117 | K., Plaimas, J. P., Mallm, M., Oswald, F., Svara, V., Sourjik, R. Eils, (2008). Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Biol., 2: 67 https://doi.org/10.1186/1752-0509-2-67
 |  
															| 118 | J., Zhang, S. D., Petersen, T., Radivojevic, A., Ramirez, A., quez, E., Abeliuk, B. J., nchez, Z., Costello, Y., Chen, M. J. Fero, et al.. (2020). Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun., 11: 4880 https://doi.org/10.1038/s41467-020-17910-1
 |  
															| 119 | T., Oyetunde, D., Liu, H. G. Martin, Y. Tang, (2019). Machine learning framework for assessment of microbial factory performance. PLoS One, 14: e0210558 https://doi.org/10.1371/journal.pone.0210558
 |  
															| 120 | C., Culley, S., Vijayakumar, G. Zampieri, (2020). A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. U.S.A., 117: 18869–18879 https://doi.org/10.1073/pnas.2002959117
 |  
															| 121 | J. H., Yang, S. N., Wright, M., Hamblin, D., McCloskey, M. A., Alcantar, L., bbers, A. J., Lopatkin, S., Satish, A., Nili, B. O. Palsson, et al.. (2019). A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell, 177: 1649–1661.e9 https://doi.org/10.1016/j.cell.2019.04.016
 |  
															| 122 | L., Li, X., Zhou, W. K. Ching, (2010). Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC Bioinformatics, 11: 501 https://doi.org/10.1186/1471-2105-11-501
 |  
															| 123 | D., DiMucci, M. Kon, (2018). Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem network. mSystems, 3: e00181–e18 https://doi.org/10.1128/mSystems.00181-18
 |  
															| 124 | O., Perez-Garcia, G. Lear, (2016). Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front. Microbiol., 7: 673 https://doi.org/10.3389/fmicb.2016.00673
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |