Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2023, Vol. 11 Issue (2) : 143-154    https://doi.org/10.15302/J-QB-022-0314
REVIEW
Light-driven synthetic microbial consortia: playing with an oxygen dilemma
Huawei Zhu, Yin Li()
CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(1328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Light-driven synthetic microbial consortia are composed of photoautotrophs and heterotrophs. They exhibited better performance in stability, robustness and capacity for handling complex tasks when comparing with axenic cultures. Different from general microbial consortia, the intrinsic property of photosynthetic oxygen evolution in light-driven synthetic microbial consortia is an important factor affecting the functions of the consortia.

Results: In light-driven microbial consortia, the oxygen liberated by photoautotrophs will result in an aerobic environment, which exerts dual effects on different species and processes. On one hand, oxygen is favorable to the synthetic microbial consortia when they are used for wastewater treatment and aerobic chemical production, in which biomass accumulation and oxidized product formation will benefit from the high energy yield of aerobic respiration. On the other hand, the oxygen is harmful to the synthetic microbial consortia when they were used for anaerobic processes including biohydrogen production and bioelectricity generation, in which the presence of oxygen will deactivate some biological components and compete for electrons.

Conclusions: Developing anaerobic processes in using light-driven synthetic microbial consortia represents a cost-effective alternative for production of chemicals from carbon dioxide and light. Thus, exploring a versatile approach addressing the oxygen dilemma is essential to enable light-driven synthetic microbial consortia to get closer to practical applications.

Keywords synthetic microbial consortia      oxygen dilemma      photosynthesis     
Corresponding Author(s): Yin Li   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 13 January 2023   Online First Date: 21 February 2023    Issue Date: 21 June 2023
 Cite this article:   
Huawei Zhu,Yin Li. Light-driven synthetic microbial consortia: playing with an oxygen dilemma[J]. Quant. Biol., 2023, 11(2): 143-154.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-022-0314
https://academic.hep.com.cn/qb/EN/Y2023/V11/I2/143
Fig.1  The oxygen dilemma in light-driven synthetic microbial consortia.
PhotoautotrophsHeterotrophsWastewater sourcesPerformanceThe effects of oxygenReferences
Chlorella vulgarisRhizobium sp.Synthetic municipal wastewater3-fold higher biomass, 13-fold higher fatty acid, 41%~58% higher TOC/TN/TP removal efficiency relative to axenic algal cultureMicroalgae-generated oxygen supported the growth of Rhizobium[16]
Chlorella vulgarisPseudomonas putidaSynthetic municipal wastewaterBetter performance in both nutrients and COD removal (around 80% removal) than each of axenic culturesMicroalgae-generated oxygen served as an electron acceptor of P. putida[17]
Chlorella vulgarisPseudomonas putidaSynthetic municipal wastewaterRemoval efficiency of organics improved from 50% without aeration to 100% when photosynthetic aeration conductedMicroalgae-generated oxygen achieved in situ photosynthetic aeration for organic removal by P. putida[15]
Chlorella vulgarisBacillus licheniformisModified OECD mediumHigher removal efficiencies of NH4+ (86%) and TP (93%) than single algae system or single bacteria systemMicroalgae-generated oxygen supported the growth of B. licheniformis, and the latter in turn promoted the growth of C. vulgaris[18]
Chlorella vulgarisPseudomonas putidaSynthetic municipal wastewaterHigher removal of both nutrients and COD than the each axenic cultureP. putida mineralize organic carbons by consuming the dissolved oxygen in wastewater[19]
Scenedesmus dimorphusNitrifiers (enriched activated sludge)Artificial wastewater3.4-fold higher TN removal efficiency and 6.5-fold higher TP removal efficiency compared to nitrifiers-only reactorsMicroalgae maintained high dissolved oxygen without external aeration[20]
Tab.1  The light-driven synthetic microbial consortia for wastewater treatment
PhotoautotrophsHeterotrophsChemicalsPerformanceComments on oxygenReferences
Synechococcus elongatus PCC 7942Halomonas boliviensisPHB28.3 mg L?1 d?1 of PHB productivity, 5 months of continuous productionPHB production can undertake in aerobic conditions but optimal PHB accumulation occurs when oxygen is limiting[24]
Synechococcus elongatus PCC 7942Azotobacter vinelandiiPHBPHB content accounted for 20% dry cell weight[25]
Synechococcus elongatus PCC 7942Pseudomonas putida (cscAB)PHA23.8 mg L?1 d?1 of PHA productivity, 156 mg L?1 of maximal PHA titerPHA production is often an aerobic process, while the operating expense for aeration is high. PHA producer will benefited from photosynthetic oxygen evolution when co-cultured with cyanobacteria[26]
Synechococcus elongatus PCC 7942Pseudomonas putida (EM?DNT?S)PHASimultaneous removal of 2,4-dinitrotoluene and PHA accumulation PHA content of 23.4 mg g?1 dry cell weight[27]
Synechococcus elongatus PCC 7942Pseudomonas putida (cscRABY ?nasT)PHA42.1 mg L?1 d?1 of PHA productivity, 393 mg L?1 of maximal PHA titer[28]
Synechococcus elongatus UTEX 2973Escherichia coli (ABKm)3-HPProducing 3-HP at up to 68.29 mg L?1 directly from CO2The growth enhancement of S. elongatus was probably due to the quenching of ROS by E. coli[29]
Synechococcus elongatus PCC 7942Rhodotorula glutinisFatty acidsThe total biomass and lipid yield in co-culture were 40% to 60% higher than the mono-culture of S. elongatusThe ROS-induced growth inhibition of S. elongatus could be alleviated by R. glutinis[30]
Nostoc PCC 7413Aspergillus nidulansFatty acidsThe total biomass was 3-fold higher than the mono-culture of NostocAerobic fungi A. nidulans could benefit from oxygen-producing cyanobacteria[31]
Tab.2  The light-driven synthetic microbial consortia for chemical production
PhotoautotrophsElectroactive bacteria(heterotrophs)Energy carriersPower densities (mW m?2)Effects of oxygenReferences
Chlorella vulgarisActivated sludge sampleUndefined?Negative[58]
Chlorella vulgarisSediment sampleUndefined68Negative[59]
Chlamydomonas reinhardtiiGeobacter sulfurreducensFormate41Negative[60]
Synechocystis sp. PCC 6803Shewanella oneidensis MR-1Undefined?Negative[61]
Synechocystis sp. PCC 6803Shewanella oneidensis MR-1,Pseudomonas aeruginosa PA01Undefined600Negative[62]
Synechococcus elongatus UTEX 2973 (engineered)Shewanella oneidensis MR-1(engineered)d-lactate150Negative[63]
Synechococcus elongatus PCC 7942 (engineered)Escherichia coli (engineered), Shewanella oneidensis MR-1 (engineered), Geobacter sulfurreducensSucrose1700Negative[64]
Tab.3  The light-driven synthetic microbial consortia for bioelectricity generation
1 K. M., Rapp, J. P. Jenkins, M. Betenbaugh, (2020). Partners for life: building microbial consortia for the future. Curr. Opin. Biotechnol., 66: 292–300
https://doi.org/10.1016/j.copbio.2020.10.001
2 N. S. McCarty, (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197
https://doi.org/10.1016/j.tibtech.2018.11.002
3 C. M. Xu, H. Yu, (2021). Insights into constructing a stable and efficient microbial consortium. Chin. J. Chem. Eng., 30: 112–120
https://doi.org/10.1016/j.cjche.2020.12.012
4 S., Ben Said, R., Tecon, B. Borer, (2020). The engineering of spatially linked microbial consortia-potential and perspectives. Curr. Opin. Biotechnol., 62: 137–145
https://doi.org/10.1016/j.copbio.2019.09.015
5 X., Qian, L., Chen, Y., Sui, C., Chen, W., Zhang, J., Zhou, W., Dong, M., Jiang, F. Xin, (2020). Biotechnological potential and applications of microbial consortia. Biotechnol. Adv., 40: 107500
https://doi.org/10.1016/j.biotechadv.2019.107500
6 J. A. Jones, (2018). Use of bacterial co-cultures for the efficient production of chemicals. Curr. Opin. Biotechnol., 53: 33–38
https://doi.org/10.1016/j.copbio.2017.11.012
7 S., Wang, T., Zhang, M., Bao, H. Su, (2020). Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol. J., 15: e1900297
https://doi.org/10.1002/biot.201900297
8 H., Gao, C., Manishimwe, L., Yang, H., Wang, Y., Jiang, W., Jiang, W., Zhang, F. Xin, (2022). Applications of synthetic light-driven microbial consortia for biochemicals production. Bioresour. Technol., 351: 126954
https://doi.org/10.1016/j.biortech.2022.126954
9 S. R., Subashchandrabose, B., Ramakrishnan, M., Megharaj, K. Venkateswarlu, (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv., 29: 896–907
https://doi.org/10.1016/j.biotechadv.2011.07.009
10 S., Abinandan, S. R., Subashchandrabose, K. Venkateswarlu, (2018). Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit. Rev. Biotechnol., 38: 1244–1260
https://doi.org/10.1080/07388551.2018.1472066
11 A., nchez Zurano, C., mez Serrano, F. G., ndez, J. M. ndez-Sevilla, (2021). Modeling of photosynthesis and respiration rate for microalgae-bacteria consortia. Biotechnol. Bioeng., 118: 952–962
https://doi.org/10.1002/bit.27625
12 A., Fallahi, F., Rezvani, H., Asgharnejad, E., Khorshidi Nazloo, N. Hajinajaf, (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272: 129878
https://doi.org/10.1016/j.chemosphere.2021.129878
13 J. L., Mouget, A., Dakhama, M. C. Lavoie, (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18: 35–43
https://doi.org/10.1016/0168-6496(95)00038-C
14 D., Humbird, R. Davis, J. McMillan, (2017). Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J., 127: 161–166
https://doi.org/10.1016/j.bej.2017.08.006
15 P. Praveen, K. Loh, (2015). Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl. Microbiol. Biotechnol., 99: 10345–10354
https://doi.org/10.1007/s00253-015-6896-3
16 L., Ferro, M., Colombo, E., Posadas, C. Funk, (2019). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. J. Appl. Phycol., 31: 2299–2310
https://doi.org/10.1007/s10811-019-1741-1
17 G., Mujtaba, M. Rizwan, (2015). Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol. Bioprocess Eng. BBE, 20: 1114–1122
https://doi.org/10.1007/s12257-015-0421-5
18 Z., Liang, Y., Liu, F., Ge, Y., Xu, N., Tao, F. Peng, (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere, 92: 1383–1389
https://doi.org/10.1016/j.chemosphere.2013.05.014
19 G., Mujtaba, M. Rizwan, (2017). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem., 49: 145–151
https://doi.org/10.1016/j.jiec.2017.01.021
20 K. J., Choi, T. H., Han, G., Yoo, M. H. Cho, S. Hwang, (2018). Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J. Civ. Eng., 22: 3215–3221
https://doi.org/10.1007/s12205-017-0730-7
21 W., Du, F., Liang, Y., Duan, X. Tan, (2013). Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng., 19: 17–25
https://doi.org/10.1016/j.ymben.2013.05.001
22 S. A., Angermayr, A. Gorchs Rovira, K. Hellingwerf, (2015). Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol., 33: 352–361
https://doi.org/10.1016/j.tibtech.2015.03.009
23 G. W., Roell, J., Zha, R. R., Carr, M. A., Koffas, S. S. Fong, Y. J. Tang, (2019). Engineering microbial consortia by division of labor. Microb. Cell Fact., 18: 35
https://doi.org/10.1186/s12934-019-1083-3
24 T. L., Weiss, E. J. Young, D. Ducat, (2017). A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng., 44: 236–245
https://doi.org/10.1016/j.ymben.2017.10.009
25 M. J. SmithM. Francis. (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth. Biol., 5, 955–961.
26 H., we, K., Hobmeier, M., Moos, A. Kremling, (2017). Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels, 10: 190
https://doi.org/10.1186/s13068-017-0875-0
27 D. T., Fedeson, P., Saake, P., Calero, P. I. Nikel, D. Ducat, (2020). Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb. Biotechnol., 13: 997–1011
https://doi.org/10.1111/1751-7915.13544
28 F., Kratzl, A. Kremling, (2022). Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO2. Eng. Life Sci., 23: e2100156
https://doi.org/10.1002/elsc.202100156
29 L., Zhang, L., Chen, J., Diao, X., Song, M. Shi, (2020). Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels, 13: 82
https://doi.org/10.1186/s13068-020-01720-0
30 T., Li, C. T., Li, K., Butler, S. G., Hays, M. T., Guarnieri, G. A. Oyler, M. Betenbaugh, (2017). Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10: 55
https://doi.org/10.1186/s13068-017-0736-x
31 T. T., Li, L. Q., Jiang, Y. F., Hu, J. T., Paul, C., Zuniga, K. Zengler, M. Betenbaugh, (2020). Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45: 101755
https://doi.org/10.1016/j.algal.2019.101755
32 D. C., Ducat, J. A., Avelar-Rivas, J. C. Way, P. Silver, (2012). Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol., 78: 2660–2668
https://doi.org/10.1128/AEM.07901-11
33 S. G., Hays, L. L. W., Yan, P. A. Silver, D. Ducat, (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng., 11: 4
https://doi.org/10.1186/s13036-017-0048-5
34 M., a-Torreiro, T. A. Lu-Chau, J. Lema, (2016). Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess Biosyst. Eng., 39: 1365–1374
https://doi.org/10.1007/s00449-016-1612-y
35 D. E. Agnew, B. Pfleger, (2013). Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem. Eng. Sci., 103: 58–67
https://doi.org/10.1016/j.ces.2012.12.023
36 P. C., Lin, F. Zhang, H. Pakrasi, (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci. Rep., 10: 390
https://doi.org/10.1038/s41598-019-57319-5
37 C., Qiao, Y., Duan, M., Zhang, M., Hagemann, Q. Luo, (2018). Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol., 84: e02023–17
https://doi.org/10.1128/AEM.02023-17
38 Y., Wang, T., Sun, X., Gao, M., Shi, L., Wu, L. Chen, (2016). Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng., 34: 60–70
https://doi.org/10.1016/j.ymben.2015.10.008
39 J., Ma, T., Guo, M., Ren, L., Chen, X. Song, (2022). Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis. Biotechnol. Biofuels Bioprod., 15: 69
https://doi.org/10.1186/s13068-022-02163-5
40 T. Y., Lin, R. C., Wen, C. R. Shen, S. Tsai, (2020). Biotransformation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a syntrophic consortium of engineered Synechococcus elongatus and Pseudomonas putida. Biotechnol. J., 15: e1900357
https://doi.org/10.1002/biot.201900357
41 H., Liu, Y., Cao, J., Guo, X., Xu, Q., Long, L. Song, (2021). Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb. Cell Fact., 20: 6
https://doi.org/10.1186/s12934-020-01498-8
42 P., Bohutskyi, L. A., Kucek, E., Hill, G. E., Pinchuk, S. G. Mundree, A. Beliaev, (2018). Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresour. Technol., 260: 68–75
https://doi.org/10.1016/j.biortech.2018.02.080
43 R. A., Weusthuis, I., Lamot, J. van der Oost, J. P. Sanders, (2011). Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol., 29: 153–158
https://doi.org/10.1016/j.tibtech.2010.12.007
44 N., Fakhimi, A., Dubini, O. Tavakoli, (2019). Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures. Bioresour. Technol., 289: 121648
https://doi.org/10.1016/j.biortech.2019.121648
45 B., Esper, A. Badura, (2006). Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci., 11: 543–549
https://doi.org/10.1016/j.tplants.2006.09.001
46 S., Ban, W., Lin, F. Wu, (2018). Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour. Technol., 251: 350–357
https://doi.org/10.1016/j.biortech.2017.12.072
47 A., Melis, L., Zhang, M., Forestier, M. L. Ghirardi, (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol., 122: 127–136
https://doi.org/10.1104/pp.122.1.127
48 E., Touloupakis, C., Faraloni, A. M. S. Benavides, (2021). Recent achievements in microalgal photobiological hydrogen production. Energies, 14: 7170
https://doi.org/10.3390/en14217170
49 N., Fakhimi, D., Gonzalez-Ballester, E., ndez, (2020). Algae-bacteria consortia as a strategy to enhance H2 production. Cells, 9: 1353
https://doi.org/10.3390/cells9061353
50 L. L., Xu, D. Z., Li, Q. X. Wang, S. Wu, (2016). Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int. J. Hydrogen Energy, 41: 9276–9283
https://doi.org/10.1016/j.ijhydene.2016.04.009
51 N., Fakhimi, O., Tavakoli, S. A., Marashi, H., Moghimi, M. R., Mehrnia, A. Dubini, (2019). Acetic acid uptake rate controls H2 production in Chlamydomonas-bacteria co-cultures. Algal Res., 42: 101605
https://doi.org/10.1016/j.algal.2019.101605
52 M. A., Javed, A. M. Zafar, A. Hassan, (2022). Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production. Algal Res., 63: 102649
https://doi.org/10.1016/j.algal.2022.102649
53 T., Laurinavichene, I. Tolstygina, (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol., 114: 143–151
https://doi.org/10.1016/j.jbiotec.2004.05.012
54 L., Xu, X., Xu, S., Wu, Q. Wang, (2015). Optimization of co-cultivation conditions of Chlamydomonas reinhardtii and Bradyrhizobium japonicum for hydrogen production. Taiyang Neng Xuebao (in Chinese), 36: 2565–2570
55 K. Rabaey, (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23: 291–298
https://doi.org/10.1016/j.tibtech.2005.04.008
56 J., rtner, B. Lai, J. mer, (2019). Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol., 10: 866
https://doi.org/10.3389/fmicb.2019.00866
57 A. J., McCormick, P., Bombelli, R. W., Bradley, R., Thorne, T. Wenzel, C. Howe, (2015). Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8: 1092–1109
https://doi.org/10.1039/C4EE03875D
58 S., Mateo, A., Gonzalez del Campo, P., izares, J., Lobato, M. A. Rodrigo, F. Fernandez, (2014). Bioelectricity generation in a self-sustainable microbial solar cell. Bioresour. Technol., 159: 451–454
https://doi.org/10.1016/j.biortech.2014.03.059
59 Y. F., Zhang, J. S. Noori, (2011). Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ. Sci., 4: 4340–4346
https://doi.org/10.1039/c1ee02089g
60 K., Nishio, K. Hashimoto, (2013). Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J. Biosci. Bioeng., 115: 412–417
https://doi.org/10.1016/j.jbiosc.2012.10.015
61 L. Liu, (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. J. Power Sources, 348: 138–144
https://doi.org/10.1016/j.jpowsour.2017.03.014
62 L., Liu, M., Mohammadifar, A., Elhadad, M., Tahernia, Y. X., Zhang, W. F. Zhao, (2021). Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery. Adv. Energy Mater., 11: 2100713
https://doi.org/10.1002/aenm.202100713
63 H., Zhu, H., Meng, W., Zhang, H., Gao, J., Zhou, Y. Zhang, (2019). Development of a longevous two-species biophotovoltaics with constrained electron flow. Nat. Commun., 10: 4282
https://doi.org/10.1038/s41467-019-12190-w
64 H., Zhu, L., Xu, G., Luan, T., Zhan, Z., Kang, C., Li, X., Lu, X., Zhang, Z., Zhu, Y. Zhang, et al.. (2022). A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nat. Commun., 13: 5608
https://doi.org/10.1038/s41467-022-33358-x
65 D. P., Strik, R. A., Timmers, M., Helder, K. J. J., Steinbusch, H. V. M. Hamelers, C. J. Buisman, (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29: 41–49
https://doi.org/10.1016/j.tibtech.2010.10.001
66 K., Nishio, K. Hashimoto, (2010). Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microbiol. Biotechnol., 86: 957–964
https://doi.org/10.1007/s00253-009-2400-2
67 Y., Zou, J., Pisciotta, R. B. Billmyre, I. Baskakov, (2009). Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng., 104: 939–946
https://doi.org/10.1002/bit.22466
68 S., Malik, E., Drott, P., Grisdela, J., Lee, C., Lee, D. A., Lowy, S. Gray, L. Tender, (2009). A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci., 2: 292–298
https://doi.org/10.1039/b816417g
69 Z., He, J., Kan, F., Mansfeld, L. T. Angenent, K. Nealson, (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol., 43: 1648–1654
https://doi.org/10.1021/es803084a
70 B. E., Logan, R., Rossi, A. Ragab, P. Saikaly, (2019). Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol., 17: 307–319
https://doi.org/10.1038/s41579-019-0173-x
71 S. R., Lindemann, H. C., Bernstein, H. S., Song, J. K., Fredrickson, M. W., Fields, W., Shou, D. R. Johnson, A. Beliaev, (2016). Engineering microbial consortia for controllable outputs. ISME J., 10: 2077–2084
https://doi.org/10.1038/ismej.2016.26
72 L., Goers, P. Freemont, K. Polizzi, (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface, 11: 20140065
https://doi.org/10.1098/rsif.2014.0065
73 R. L., Shahab, S., Brethauer, M. P., Davey, A. G., Smith, S., Vignolini, J. S. Luterbacher, M. Studer, (2020). A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 369: eabb1214
https://doi.org/10.1126/science.abb1214
74 Y. Jeong, (2022). Multi-layered alginate hydrogel structures and bacteria encapsulation. Chem. Commun. (Camb.), 58: 8584–8587
https://doi.org/10.1039/D2CC01187E
75 A. Burmeister, (2020). Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr. Opin. Biotechnol., 62: 106–115
https://doi.org/10.1016/j.copbio.2019.09.001
76 G. N. Bennett, K. San, (2017). Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J. Ind. Microbiol. Biotechnol., 44: 647–658
https://doi.org/10.1007/s10295-016-1851-6
77 Y., Cui, K. Yang, (2021). Using co-culture to functionalize Clostridium fermentation. Trends Biotechnol., 39: 914–926
https://doi.org/10.1016/j.tibtech.2020.11.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed