|
|
Light-driven synthetic microbial consortia: playing with an oxygen dilemma |
Huawei Zhu, Yin Li( ) |
CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Background: Light-driven synthetic microbial consortia are composed of photoautotrophs and heterotrophs. They exhibited better performance in stability, robustness and capacity for handling complex tasks when comparing with axenic cultures. Different from general microbial consortia, the intrinsic property of photosynthetic oxygen evolution in light-driven synthetic microbial consortia is an important factor affecting the functions of the consortia. Results: In light-driven microbial consortia, the oxygen liberated by photoautotrophs will result in an aerobic environment, which exerts dual effects on different species and processes. On one hand, oxygen is favorable to the synthetic microbial consortia when they are used for wastewater treatment and aerobic chemical production, in which biomass accumulation and oxidized product formation will benefit from the high energy yield of aerobic respiration. On the other hand, the oxygen is harmful to the synthetic microbial consortia when they were used for anaerobic processes including biohydrogen production and bioelectricity generation, in which the presence of oxygen will deactivate some biological components and compete for electrons. Conclusions: Developing anaerobic processes in using light-driven synthetic microbial consortia represents a cost-effective alternative for production of chemicals from carbon dioxide and light. Thus, exploring a versatile approach addressing the oxygen dilemma is essential to enable light-driven synthetic microbial consortia to get closer to practical applications.
|
Keywords
synthetic microbial consortia
oxygen dilemma
photosynthesis
|
Corresponding Author(s):
Yin Li
|
About author: * These authors contributed equally to this work. |
Just Accepted Date: 13 January 2023
Online First Date: 21 February 2023
Issue Date: 21 June 2023
|
|
1 |
K. M., Rapp, J. P. Jenkins, M. Betenbaugh, (2020). Partners for life: building microbial consortia for the future. Curr. Opin. Biotechnol., 66: 292–300
https://doi.org/10.1016/j.copbio.2020.10.001
|
2 |
N. S. McCarty, (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197
https://doi.org/10.1016/j.tibtech.2018.11.002
|
3 |
C. M. Xu, H. Yu, (2021). Insights into constructing a stable and efficient microbial consortium. Chin. J. Chem. Eng., 30: 112–120
https://doi.org/10.1016/j.cjche.2020.12.012
|
4 |
S., Ben Said, R., Tecon, B. Borer, (2020). The engineering of spatially linked microbial consortia-potential and perspectives. Curr. Opin. Biotechnol., 62: 137–145
https://doi.org/10.1016/j.copbio.2019.09.015
|
5 |
X., Qian, L., Chen, Y., Sui, C., Chen, W., Zhang, J., Zhou, W., Dong, M., Jiang, F. Xin, (2020). Biotechnological potential and applications of microbial consortia. Biotechnol. Adv., 40: 107500
https://doi.org/10.1016/j.biotechadv.2019.107500
|
6 |
J. A. Jones, (2018). Use of bacterial co-cultures for the efficient production of chemicals. Curr. Opin. Biotechnol., 53: 33–38
https://doi.org/10.1016/j.copbio.2017.11.012
|
7 |
S., Wang, T., Zhang, M., Bao, H. Su, (2020). Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol. J., 15: e1900297
https://doi.org/10.1002/biot.201900297
|
8 |
H., Gao, C., Manishimwe, L., Yang, H., Wang, Y., Jiang, W., Jiang, W., Zhang, F. Xin, (2022). Applications of synthetic light-driven microbial consortia for biochemicals production. Bioresour. Technol., 351: 126954
https://doi.org/10.1016/j.biortech.2022.126954
|
9 |
S. R., Subashchandrabose, B., Ramakrishnan, M., Megharaj, K. Venkateswarlu, (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv., 29: 896–907
https://doi.org/10.1016/j.biotechadv.2011.07.009
|
10 |
S., Abinandan, S. R., Subashchandrabose, K. Venkateswarlu, (2018). Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit. Rev. Biotechnol., 38: 1244–1260
https://doi.org/10.1080/07388551.2018.1472066
|
11 |
A., nchez Zurano, C., mez Serrano, F. G., ndez, J. M. ndez-Sevilla, (2021). Modeling of photosynthesis and respiration rate for microalgae-bacteria consortia. Biotechnol. Bioeng., 118: 952–962
https://doi.org/10.1002/bit.27625
|
12 |
A., Fallahi, F., Rezvani, H., Asgharnejad, E., Khorshidi Nazloo, N. Hajinajaf, (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272: 129878
https://doi.org/10.1016/j.chemosphere.2021.129878
|
13 |
J. L., Mouget, A., Dakhama, M. C. Lavoie, (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18: 35–43
https://doi.org/10.1016/0168-6496(95)00038-C
|
14 |
D., Humbird, R. Davis, J. McMillan, (2017). Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J., 127: 161–166
https://doi.org/10.1016/j.bej.2017.08.006
|
15 |
P. Praveen, K. Loh, (2015). Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl. Microbiol. Biotechnol., 99: 10345–10354
https://doi.org/10.1007/s00253-015-6896-3
|
16 |
L., Ferro, M., Colombo, E., Posadas, C. Funk, (2019). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. J. Appl. Phycol., 31: 2299–2310
https://doi.org/10.1007/s10811-019-1741-1
|
17 |
G., Mujtaba, M. Rizwan, (2015). Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol. Bioprocess Eng. BBE, 20: 1114–1122
https://doi.org/10.1007/s12257-015-0421-5
|
18 |
Z., Liang, Y., Liu, F., Ge, Y., Xu, N., Tao, F. Peng, (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere, 92: 1383–1389
https://doi.org/10.1016/j.chemosphere.2013.05.014
|
19 |
G., Mujtaba, M. Rizwan, (2017). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem., 49: 145–151
https://doi.org/10.1016/j.jiec.2017.01.021
|
20 |
K. J., Choi, T. H., Han, G., Yoo, M. H. Cho, S. Hwang, (2018). Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J. Civ. Eng., 22: 3215–3221
https://doi.org/10.1007/s12205-017-0730-7
|
21 |
W., Du, F., Liang, Y., Duan, X. Tan, (2013). Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng., 19: 17–25
https://doi.org/10.1016/j.ymben.2013.05.001
|
22 |
S. A., Angermayr, A. Gorchs Rovira, K. Hellingwerf, (2015). Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol., 33: 352–361
https://doi.org/10.1016/j.tibtech.2015.03.009
|
23 |
G. W., Roell, J., Zha, R. R., Carr, M. A., Koffas, S. S. Fong, Y. J. Tang, (2019). Engineering microbial consortia by division of labor. Microb. Cell Fact., 18: 35
https://doi.org/10.1186/s12934-019-1083-3
|
24 |
T. L., Weiss, E. J. Young, D. Ducat, (2017). A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng., 44: 236–245
https://doi.org/10.1016/j.ymben.2017.10.009
|
25 |
M. J. SmithM. Francis. (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth. Biol., 5, 955–961.
|
26 |
H., we, K., Hobmeier, M., Moos, A. Kremling, (2017). Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels, 10: 190
https://doi.org/10.1186/s13068-017-0875-0
|
27 |
D. T., Fedeson, P., Saake, P., Calero, P. I. Nikel, D. Ducat, (2020). Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb. Biotechnol., 13: 997–1011
https://doi.org/10.1111/1751-7915.13544
|
28 |
F., Kratzl, A. Kremling, (2022). Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO2. Eng. Life Sci., 23: e2100156
https://doi.org/10.1002/elsc.202100156
|
29 |
L., Zhang, L., Chen, J., Diao, X., Song, M. Shi, (2020). Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels, 13: 82
https://doi.org/10.1186/s13068-020-01720-0
|
30 |
T., Li, C. T., Li, K., Butler, S. G., Hays, M. T., Guarnieri, G. A. Oyler, M. Betenbaugh, (2017). Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10: 55
https://doi.org/10.1186/s13068-017-0736-x
|
31 |
T. T., Li, L. Q., Jiang, Y. F., Hu, J. T., Paul, C., Zuniga, K. Zengler, M. Betenbaugh, (2020). Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45: 101755
https://doi.org/10.1016/j.algal.2019.101755
|
32 |
D. C., Ducat, J. A., Avelar-Rivas, J. C. Way, P. Silver, (2012). Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol., 78: 2660–2668
https://doi.org/10.1128/AEM.07901-11
|
33 |
S. G., Hays, L. L. W., Yan, P. A. Silver, D. Ducat, (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng., 11: 4
https://doi.org/10.1186/s13036-017-0048-5
|
34 |
M., a-Torreiro, T. A. Lu-Chau, J. Lema, (2016). Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess Biosyst. Eng., 39: 1365–1374
https://doi.org/10.1007/s00449-016-1612-y
|
35 |
D. E. Agnew, B. Pfleger, (2013). Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem. Eng. Sci., 103: 58–67
https://doi.org/10.1016/j.ces.2012.12.023
|
36 |
P. C., Lin, F. Zhang, H. Pakrasi, (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci. Rep., 10: 390
https://doi.org/10.1038/s41598-019-57319-5
|
37 |
C., Qiao, Y., Duan, M., Zhang, M., Hagemann, Q. Luo, (2018). Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol., 84: e02023–17
https://doi.org/10.1128/AEM.02023-17
|
38 |
Y., Wang, T., Sun, X., Gao, M., Shi, L., Wu, L. Chen, (2016). Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng., 34: 60–70
https://doi.org/10.1016/j.ymben.2015.10.008
|
39 |
J., Ma, T., Guo, M., Ren, L., Chen, X. Song, (2022). Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis. Biotechnol. Biofuels Bioprod., 15: 69
https://doi.org/10.1186/s13068-022-02163-5
|
40 |
T. Y., Lin, R. C., Wen, C. R. Shen, S. Tsai, (2020). Biotransformation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a syntrophic consortium of engineered Synechococcus elongatus and Pseudomonas putida. Biotechnol. J., 15: e1900357
https://doi.org/10.1002/biot.201900357
|
41 |
H., Liu, Y., Cao, J., Guo, X., Xu, Q., Long, L. Song, (2021). Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb. Cell Fact., 20: 6
https://doi.org/10.1186/s12934-020-01498-8
|
42 |
P., Bohutskyi, L. A., Kucek, E., Hill, G. E., Pinchuk, S. G. Mundree, A. Beliaev, (2018). Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresour. Technol., 260: 68–75
https://doi.org/10.1016/j.biortech.2018.02.080
|
43 |
R. A., Weusthuis, I., Lamot, J. van der Oost, J. P. Sanders, (2011). Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol., 29: 153–158
https://doi.org/10.1016/j.tibtech.2010.12.007
|
44 |
N., Fakhimi, A., Dubini, O. Tavakoli, (2019). Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures. Bioresour. Technol., 289: 121648
https://doi.org/10.1016/j.biortech.2019.121648
|
45 |
B., Esper, A. Badura, (2006). Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci., 11: 543–549
https://doi.org/10.1016/j.tplants.2006.09.001
|
46 |
S., Ban, W., Lin, F. Wu, (2018). Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour. Technol., 251: 350–357
https://doi.org/10.1016/j.biortech.2017.12.072
|
47 |
A., Melis, L., Zhang, M., Forestier, M. L. Ghirardi, (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol., 122: 127–136
https://doi.org/10.1104/pp.122.1.127
|
48 |
E., Touloupakis, C., Faraloni, A. M. S. Benavides, (2021). Recent achievements in microalgal photobiological hydrogen production. Energies, 14: 7170
https://doi.org/10.3390/en14217170
|
49 |
N., Fakhimi, D., Gonzalez-Ballester, E., ndez, (2020). Algae-bacteria consortia as a strategy to enhance H2 production. Cells, 9: 1353
https://doi.org/10.3390/cells9061353
|
50 |
L. L., Xu, D. Z., Li, Q. X. Wang, S. Wu, (2016). Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int. J. Hydrogen Energy, 41: 9276–9283
https://doi.org/10.1016/j.ijhydene.2016.04.009
|
51 |
N., Fakhimi, O., Tavakoli, S. A., Marashi, H., Moghimi, M. R., Mehrnia, A. Dubini, (2019). Acetic acid uptake rate controls H2 production in Chlamydomonas-bacteria co-cultures. Algal Res., 42: 101605
https://doi.org/10.1016/j.algal.2019.101605
|
52 |
M. A., Javed, A. M. Zafar, A. Hassan, (2022). Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production. Algal Res., 63: 102649
https://doi.org/10.1016/j.algal.2022.102649
|
53 |
T., Laurinavichene, I. Tolstygina, (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol., 114: 143–151
https://doi.org/10.1016/j.jbiotec.2004.05.012
|
54 |
L., Xu, X., Xu, S., Wu, Q. Wang, (2015). Optimization of co-cultivation conditions of Chlamydomonas reinhardtii and Bradyrhizobium japonicum for hydrogen production. Taiyang Neng Xuebao (in Chinese), 36: 2565–2570
|
55 |
K. Rabaey, (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23: 291–298
https://doi.org/10.1016/j.tibtech.2005.04.008
|
56 |
J., rtner, B. Lai, J. mer, (2019). Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol., 10: 866
https://doi.org/10.3389/fmicb.2019.00866
|
57 |
A. J., McCormick, P., Bombelli, R. W., Bradley, R., Thorne, T. Wenzel, C. Howe, (2015). Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8: 1092–1109
https://doi.org/10.1039/C4EE03875D
|
58 |
S., Mateo, A., Gonzalez del Campo, P., izares, J., Lobato, M. A. Rodrigo, F. Fernandez, (2014). Bioelectricity generation in a self-sustainable microbial solar cell. Bioresour. Technol., 159: 451–454
https://doi.org/10.1016/j.biortech.2014.03.059
|
59 |
Y. F., Zhang, J. S. Noori, (2011). Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ. Sci., 4: 4340–4346
https://doi.org/10.1039/c1ee02089g
|
60 |
K., Nishio, K. Hashimoto, (2013). Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J. Biosci. Bioeng., 115: 412–417
https://doi.org/10.1016/j.jbiosc.2012.10.015
|
61 |
L. Liu, (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. J. Power Sources, 348: 138–144
https://doi.org/10.1016/j.jpowsour.2017.03.014
|
62 |
L., Liu, M., Mohammadifar, A., Elhadad, M., Tahernia, Y. X., Zhang, W. F. Zhao, (2021). Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery. Adv. Energy Mater., 11: 2100713
https://doi.org/10.1002/aenm.202100713
|
63 |
H., Zhu, H., Meng, W., Zhang, H., Gao, J., Zhou, Y. Zhang, (2019). Development of a longevous two-species biophotovoltaics with constrained electron flow. Nat. Commun., 10: 4282
https://doi.org/10.1038/s41467-019-12190-w
|
64 |
H., Zhu, L., Xu, G., Luan, T., Zhan, Z., Kang, C., Li, X., Lu, X., Zhang, Z., Zhu, Y. Zhang, et al.. (2022). A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nat. Commun., 13: 5608
https://doi.org/10.1038/s41467-022-33358-x
|
65 |
D. P., Strik, R. A., Timmers, M., Helder, K. J. J., Steinbusch, H. V. M. Hamelers, C. J. Buisman, (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29: 41–49
https://doi.org/10.1016/j.tibtech.2010.10.001
|
66 |
K., Nishio, K. Hashimoto, (2010). Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microbiol. Biotechnol., 86: 957–964
https://doi.org/10.1007/s00253-009-2400-2
|
67 |
Y., Zou, J., Pisciotta, R. B. Billmyre, I. Baskakov, (2009). Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng., 104: 939–946
https://doi.org/10.1002/bit.22466
|
68 |
S., Malik, E., Drott, P., Grisdela, J., Lee, C., Lee, D. A., Lowy, S. Gray, L. Tender, (2009). A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci., 2: 292–298
https://doi.org/10.1039/b816417g
|
69 |
Z., He, J., Kan, F., Mansfeld, L. T. Angenent, K. Nealson, (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol., 43: 1648–1654
https://doi.org/10.1021/es803084a
|
70 |
B. E., Logan, R., Rossi, A. Ragab, P. Saikaly, (2019). Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol., 17: 307–319
https://doi.org/10.1038/s41579-019-0173-x
|
71 |
S. R., Lindemann, H. C., Bernstein, H. S., Song, J. K., Fredrickson, M. W., Fields, W., Shou, D. R. Johnson, A. Beliaev, (2016). Engineering microbial consortia for controllable outputs. ISME J., 10: 2077–2084
https://doi.org/10.1038/ismej.2016.26
|
72 |
L., Goers, P. Freemont, K. Polizzi, (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface, 11: 20140065
https://doi.org/10.1098/rsif.2014.0065
|
73 |
R. L., Shahab, S., Brethauer, M. P., Davey, A. G., Smith, S., Vignolini, J. S. Luterbacher, M. Studer, (2020). A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 369: eabb1214
https://doi.org/10.1126/science.abb1214
|
74 |
Y. Jeong, (2022). Multi-layered alginate hydrogel structures and bacteria encapsulation. Chem. Commun. (Camb.), 58: 8584–8587
https://doi.org/10.1039/D2CC01187E
|
75 |
A. Burmeister, (2020). Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr. Opin. Biotechnol., 62: 106–115
https://doi.org/10.1016/j.copbio.2019.09.001
|
76 |
G. N. Bennett, K. San, (2017). Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J. Ind. Microbiol. Biotechnol., 44: 647–658
https://doi.org/10.1007/s10295-016-1851-6
|
77 |
Y., Cui, K. Yang, (2021). Using co-culture to functionalize Clostridium fermentation. Trends Biotechnol., 39: 914–926
https://doi.org/10.1016/j.tibtech.2020.11.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|