| 
					
						|  |  
    					|  |  
    					| From qualitative to quantitative: the state of the art and challenges for plant synthetic biology |  
						| Chenfei Tian1,2, Jianhua Li1(  ), Yong Wang1(  ) |  
						| 1. CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China 2. University of Chinese Academy of Sciences, Beijing 100039, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Backgrounds: As an increasing number of synthetic switches and circuits have been created for plant systems and of synthetic products produced in plant chassis, plant synthetic biology is taking a strong foothold in agriculture and medicine. The ever-exploding data has also promoted the expansion of toolkits in this field. Genetic parts libraries and quantitative characterization approaches have been developed. However, plant synthetic biology is still in its infancy. The considerations for selecting biological parts to design and construct genetic circuits with predictable functions remain desired.  Results: In this article, we review the current biotechnological progresses in field of plant synthetic biology. Assembly standardization and quantitative approaches of genetic parts and genetic circuits are discussed. We also highlight the main challenges in the iterative cycles of design-build-test-learn for introducing novel traits into plants.  Conclusion: Plant synthetic biology promises to provide important solutions to many issues in agricultural production, human health care, and environmental sustainability. However, tremendous challenges exist in this field. For example, the quantitative characterization of genetic parts is limited; the orthogonality and the transfer functions of circuits are unpredictable; and also, the mathematical modeling-assisted circuits design still needs to improve predictability and reliability. These challenges are expected to be resolved in the near future as interests in this field are intensifying. |  
															| Keywords 
																																																				plant synthetic biology  
																		  																																				quantitative characterization  
																		  																																				genetic parts  
																		  																																				genetic circuits |  
															| Corresponding Author(s):
																Jianhua Li,Yong Wang |  
															| Just Accepted Date: 08 August 2023  
																																														Online First Date: 07 September 2023   
																																														Issue Date: 08 October 2023 |  |  
								            
								                
																																												
															| 1 | D. Endy, (2005). Foundations for engineering biology. Nature, 438: 449–453 https://doi.org/10.1038/nature04342
 |  
															| 2 | L., Zhang, S. Chang, (2011). Synthetic biology: from the first synthetic cell to see its current situation and future development. Chin. Sci. Bull., 56: 229–237 https://doi.org/10.1007/s11434-010-4304-z
 |  
															| 3 | H. Fausther-Bovendo, (2021). Plant-made vaccines and therapeutics. Science, 373: 740–741 https://doi.org/10.1126/science.abf5375
 |  
															| 4 | X., Zhu, X., Liu, T., Liu, Y., Wang, N., Ahmed, Z. Li, (2021). Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells. Plant Commun., 2: 100229 https://doi.org/10.1016/j.xplc.2021.100229
 |  
															| 5 | Y., Jiao, Y., Han, Q., Yang, Y., Huang, J., An, Y. Yang, (2021). Commercialization development trend of genetically modified maize and the enlightenment. Shengwu Jishu Tongbao (in Chinese), 37: 164–176 |  
															| 6 | T., Imamura, N., Isozumi, Y., Higashimura, S. Ohki, (2021). Production of ORF8 protein from SARS-CoV-2 using an inducible virus-mediated expression system in suspension-cultured tobacco BY-2 cells. Plant Cell Rep., 40: 433–436 https://doi.org/10.1007/s00299-020-02654-5
 |  
															| 7 | B., Diego-Martin, B., lez, M., Vazquez-Vilar, S., Selma, R., ndez, S., Gianoglio, A. ndez-Del-Carmen, (2020). Pilot production of SARS-CoV-2 related proteins in plants: a proof of concept for rapid repurposing of indoor farms into biomanufacturing facilities. Front. Plant Sci., 11: 612781 https://doi.org/10.3389/fpls.2020.612781
 |  
															| 8 | D., Breitel, P., Brett, S., Alseekh, A. R., Fernie, E. Butelli, (2021). Metabolic engineering of tomato fruit enriched in L-DOPA. Metab. Eng., 65: 185–196 https://doi.org/10.1016/j.ymben.2020.11.011
 |  
															| 9 | F. J., Molina-Hidalgo, M., Vazquez-Vilar, L., Andrea, O. C., Demurtas, P., Fraser, G., Giuliano, R., Bock, D. ez, (2021). Engineering metabolism in nicotiana species: a promising future. Trends Biotechnol., 39: 901–913 https://doi.org/10.1016/j.tibtech.2020.11.012
 |  
															| 10 | K., Akama, J., Kanetou, S., Shimosaki, K., Kawakami, S. Tsuchikura, (2009). Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res., 18: 865–876 https://doi.org/10.1007/s11248-009-9272-1
 |  
															| 11 | Q., Zhu, B., Wang, J., Tan, T., Liu, L. Li, Y. Liu, (2019). Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun., 1: 100017 https://doi.org/10.1016/j.xplc.2019.100017
 |  
															| 12 | K., ller, D., Siegel, F., Rodriguez Jahnke, K., Gerrer, S., Wend, E. L., Decker, R., Reski, W. Weber, M. Zurbriggen, (2014). A red light-controlled synthetic gene expression switch for plant systems. Mol. Biosyst., 10: 1679–1688 https://doi.org/10.1039/C3MB70579J
 |  
															| 13 | C., Chatelle, R., Ochoa-Fernandez, R., Engesser, N., Schneider, H. M., Beyer, A. R., Jones, J., Timmer, M. D. Zurbriggen, (2018). A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol., 7: 1349–1358 https://doi.org/10.1021/acssynbio.7b00450
 |  
															| 14 | A., Khakhar, A. R., Leydon, A. C., Lemmex, E. Klavins, J. Nemhauser, (2018). Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife, 7: e34702 https://doi.org/10.7554/eLife.34702
 |  
															| 15 | M. S., Gomide, T. T., Sales, L. R. C., Barros, C. G., Limia, M. A., de Oliveira, L. H., Florentino, L. M. G., Barros, M. L., Robledo, M. S. M. Almeida, et al.. (2020). Genetic switches designed for eukaryotic cells and controlled by serine integrases. Commun. Biol., 3: 255 https://doi.org/10.1038/s42003-020-0971-8
 |  
															| 16 | J. M., -Orts, A., Quijano-Rubio, M., Vazquez-Vilar, J., o-Bonillo, V., Moles-Casas, S., Selma, S., Gianoglio, A. Granell, (2020). A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res., 48: 3379–3394 https://doi.org/10.1093/nar/gkaa104
 |  
															| 17 | J. P. B., Lloyd, F., Ly, P., Gong, J., Pflueger, T., Swain, C., Pflueger, E., Fourie, M. A., Khan, B. N. Kidd, (2022). Synthetic memory circuits for stable cell reprogramming in plants. Nat. Biotechnol., 40: 1862–1872 https://doi.org/10.1038/s41587-022-01383-2
 |  
															| 18 | J. A. N., Brophy, K. J., Magallon, L., Duan, V., Zhong, P., Ramachandran, K. Kniazev, J. Dinneny, (2022). Synthetic genetic circuits as a means of reprogramming plant roots. Science, 377: 747–751 https://doi.org/10.1126/science.abo4326
 |  
															| 19 | J., Liu, C. Q., Li, Y., Dong, X. Yang, Y. Wang, (2018). Dosage imbalance of B- and C-class genes causes petaloid-stamen relating to F1 hybrid variation. BMC Plant Biol., 18: 341 https://doi.org/10.1186/s12870-018-1562-4
 |  
															| 20 | A. J., Dickinson, J., Zhang, M., Luciano, G., Wachsman, E., Sandoval, M., Schnermann, J. R. Dinneny, P. Benfey, (2021). A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation. Science, 373: 1532–1536 https://doi.org/10.1126/science.abf7461
 |  
															| 21 | S., He, L., Yang, S., Ye, Y., Lin, X., Li, Y., Wang, G., Chen, G., Liu, M., Zhao, X. Zhao, et al.. (2022). MPOD: Applications of integrated multi-omics database for medicinal plants. Plant Biotechnol. J., 20: 797–799 https://doi.org/10.1111/pbi.13769
 |  
															| 22 | R., Dreos, G., Ambrosini, R., Groux, R. rier, (2017). The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Res., 45: D51–D55 https://doi.org/10.1093/nar/gkw1069
 |  
															| 23 | J. Grau, J. Franco-Zorrilla, (2022). TDTHub, a web server tool for the analysis of transcription factor binding sites in plants. Plant J., 111: 1203–1215 https://doi.org/10.1111/tpj.15873
 |  
															| 24 | K. Kusunoki, Y. Yamamoto, (2017). Plant promoter database (PPDB). Methods Mol. Biol., 1533: 299–314 https://doi.org/10.1007/978-1-4939-6658-5_18
 |  
															| 25 | M., Lescot, P., hais, G., Thijs, K., Marchal, Y., Moreau, Y., Van de Peer, (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res., 30: 325–327 https://doi.org/10.1093/nar/30.1.325
 |  
															| 26 | K., Kolar, C., Knobloch, H., Stork, (2018). OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol., 7: 1825–1828 https://doi.org/10.1021/acssynbio.8b00120
 |  
															| 27 | V., Matys, O. V., Kel-Margoulis, E., Fricke, I., Liebich, S., Land, A., Barre-Dirrie, I., Reuter, D., Chekmenev, M., Krull, K. Hornischer, et al.. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res., 34: D108–D110 https://doi.org/10.1093/nar/gkj143
 |  
															| 28 | G., Moisseyev, K., Park, A., Cui, D., Freitas, D., Rajagopal, A. R., Konda, M., Martin-Olenski, M., Mcham, K., Liu, Q. Du, et al.. (2020). RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. Database (Oxford), 2020: baaa038 https://doi.org/10.1093/database/baaa038
 |  
															| 29 | M., de Medeiros Oliveira, I., Bonadio, A., Lie de Melo, G. Mendes Souza, A. Durham, (2021). TSSFinder-fast and accurate ab initio prediction of the core promoter in eukaryotic genomes. Brief. Bioinform., 22: bbab198 https://doi.org/10.1093/bib/bbab198
 |  
															| 30 | I. A., Shahmuradov, A. J., Gammerman, J. M., Hancock, P. M. Bramley, V. Solovyev, (2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res., 31: 114–117 https://doi.org/10.1093/nar/gkg041
 |  
															| 31 | V. V., Solovyev, I. A. Shahmuradov, A. Salamov, (2010). Identification of promoter regions and regulatory sites. Methods Mol. Biol., 674: 57–83 https://doi.org/10.1007/978-1-60761-854-6_5
 |  
															| 32 | I. A. Shahmuradov, V. Solovyev, (2015). Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements. Bioinformatics, 31: 3544–3545 https://doi.org/10.1093/bioinformatics/btv404
 |  
															| 33 | A., Yilmaz, M. K., Mejia-Guerra, K., Kurz, X., Liang, L. Welch, (2011). AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res., 39: D1118–D1122 https://doi.org/10.1093/nar/gkq1120
 |  
															| 34 | R., Hehl, L., Norval, A. Romanov, (2016). Boosting AthaMap database content with data from protein binding microarrays. Plant Cell Physiol., 57: e4 https://doi.org/10.1093/pcp/pcv156
 |  
															| 35 | I. A., Shahmuradov, V. V. Solovyev, A. Gammerman, (2005). Plant promoter prediction with confidence estimation. Nucleic Acids Res., 33: 1069–1076 https://doi.org/10.1093/nar/gki247
 |  
															| 36 | I. A., Shahmuradov, R. K. Umarov, V. Solovyev, (2017). TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic Acids Res., 45: gkw1353 https://doi.org/10.1093/nar/gkw1353
 |  
															| 37 | Y. M., Cai, K., Kallam, H., Tidd, G., Gendarini, A. Salzman, N. Patron, (2020). Rational design of minimal synthetic promoters for plants. Nucleic Acids Res., 48: 11845–11856 https://doi.org/10.1093/nar/gkaa682
 |  
															| 38 | J., Duvick, A., Fu, U., Muppirala, M., Sabharwal, M. D., Wilkerson, C. J., Lawrence, C. Lushbough, (2008). PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res., 36: D959–D965 https://doi.org/10.1093/nar/gkm1041
 |  
															| 39 | Y., Liu, Z., Wang, X., Wu, J., Zhu, H., Luo, D., Tian, C., Li, J., Luo, W., Zhao, H. Hao, et al.. (2021). SorGSD: updating and expanding the sorghum genome science database with new contents and tools. Biotechnol. Biofuels, 14: 165 https://doi.org/10.1186/s13068-021-02016-7
 |  
															| 40 | F., Chen, W., Dong, J., Zhang, X., Guo, J., Chen, Z., Wang, Z., Lin, H. Tang, (2018). The sequenced angiosperm genomes and genome databases. Front. Plant Sci., 9: 418 https://doi.org/10.3389/fpls.2018.00418
 |  
															| 41 | Y., Yang, J. H., Lee, M. R., Poindexter, Y., Shao, W., Liu, S. C., Lenaghan, A. H., Ahkami, E. Blumwald, C. N. Stewart, (2021). Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. Plant Biotechnol. J., 19: 1354–1369 https://doi.org/10.1111/pbi.13550
 |  
															| 42 | D. L. F., Pedro, T. S., Amorim, A., Varani, R., Guyot, D. S. Domingues, A. Paschoal, (2021). An atlas of plant transposable elements. F1000 Res., 10: 1194 https://doi.org/10.12688/f1000research.74524.1
 |  
															| 43 | L. J. Clarke, R. Kitney, (2016). Synthetic biology in the UK—An outline of plans and progress. Synth. Syst. Biotechnol., 1: 243–257 https://doi.org/10.1016/j.synbio.2016.09.003
 |  
															| 44 | S. M., Chung, E. L. Frankman, (2005). A versatile vector system for multiple gene expression in plants. Trends Plant Sci., 10: 357–361 https://doi.org/10.1016/j.tplants.2005.06.001
 |  
															| 45 | T., Nakagawa, T., Kurose, T., Hino, K., Tanaka, M., Kawamukai, Y., Niwa, K., Toyooka, K., Matsuoka, T. Jinbo, (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng., 104: 34–41 https://doi.org/10.1263/jbb.104.34
 |  
															| 46 | C. Smolke, (2009). Building outside of the box: iGEM and the BioBricks foundation. Nat. Biotechnol., 27: 1099–1102 https://doi.org/10.1038/nbt1209-1099
 |  
															| 47 | T. Knight. (2003) Idempotent Vector Design for Standard Assembly of Biobricks. Cambridge: Mit Artificial Intelligence Laboratory; Mit Synthetic Biology Working Group |  
															| 48 | M. A. Smedley, W. Harwood, (2015). Gateway®-compatible plant transformation vectors. Methods Mol. Biol., 1223: 3–16 https://doi.org/10.1007/978-1-4939-1695-5_1
 |  
															| 49 | M., Karimi, A. Depicker, (2007). Recombinational cloning with plant gateway vectors. Plant Physiol., 145: 1144–1154 https://doi.org/10.1104/pp.107.106989
 |  
															| 50 | M., Karimi, A., Bleys, R. Vanderhaeghen, (2007). Building blocks for plant gene assembly. Plant Physiol., 145: 1183–1191 https://doi.org/10.1104/pp.107.110411
 |  
															| 51 | M. D. M., s-Bueno, A. K., Morao, A., Cayrel, M. P., Platre, M., Barberon, E., Caillieux, V., Colot, Y., Jaillais, F. Roudier, (2016). A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J., 85: 320–333 https://doi.org/10.1111/tpj.13099
 |  
															| 52 | C., Engler, R. Kandzia, (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One, 3: e3647 https://doi.org/10.1371/journal.pone.0003647
 |  
															| 53 | N. J., Patron, D., Orzaez, S., Marillonnet, H., Warzecha, C., Matthewman, M., Youles, O., Raitskin, A., Leveau, C. Rogers, et al.. (2015). Standards for plant synthetic biology: a common syntax for exchange of DNA parts. New Phytol., 208: 13–19 https://doi.org/10.1111/nph.13532
 |  
															| 54 | C., Engler, M., Youles, R., Gruetzner, T. M., Ehnert, S., Werner, J. D., Jones, N. J. Patron, (2014). A golden gate modular cloning toolbox for plants. ACS Synth. Biol., 3: 839–843 https://doi.org/10.1021/sb4001504
 |  
															| 55 | A., Sarrion-PerdigonesE. FalconiS. ZandalinasP., rezA., ndez-del-CarmenA. Granell. (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 6, e21622 |  
															| 56 | A., Sarrion-Perdigones, M., Vazquez-Vilar, B., Castelijns, J., Forment, P., Ziarsolo, J., Blanca, A. Granell, (2013). GoldenBraid 2. 0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol., 162: 1618–1631 https://doi.org/10.1104/pp.113.217661
 |  
															| 57 | M., Vazquez-Vilar, A., Quijano-Rubio, A., Fernandez-Del-Carmen, A., Sarrion-Perdigones, R., Ochoa-Fernandez, P., Ziarsolo, J., Blanca, A. Granell, (2017). GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res., 45: 2196–2209 https://doi.org/10.1093/nar/gkw1326.PMID:28053117
 |  
															| 58 | M., Vazquez-VilarV., Garcia-CarpinteroS., Selma. M., Sanchez-Vicente, J., Salazar-Sarasua, B., Ressa, A., de Paola, C., Ajenjo, M., Quintela, J. C., et al. (2021) The GB4.0 platform, an All-In-One tool for CRISPR/Cas-based multiplex genome engineering in plants. Front. Plant Sci., 12, 689937 |  
															| 59 | M., Vazquez-Vilar, P., Juarez, J. M. -Orts, (2022). Design of multiplexing CRISPR/Cas9 constructs for plant genome engineering using the GoldenBraid DNA assembly standard. Methods Mol. Biol., 2379: 27–44 https://doi.org/10.1007/978-1-0716-1791-5_2
 |  
															| 60 | B., lez, M., Vazquez-Vilar, J. nchez-Vicente, (2022). Optimization of vectors and targeting strategies including GoldenBraid and genome editing tools: GoldenBraid assembly of multiplex CRISPR/Cas12a guide RNAs for gene editing in Nicotiana benthamiana. Methods Mol. Biol., 2480: 193–214 https://doi.org/10.1007/978-1-0716-2241-4_12
 |  
															| 61 | R. S., Vemanna, B. K., Chandrashekar, H. M., Hanumantha Rao, S. K., Sathyanarayanagupta, K. S., Sarangi, K. N. Nataraja, (2013). A modified MultiSite gateway cloning strategy for consolidation of genes in plants. Mol. Biotechnol., 53: 129–138 https://doi.org/10.1007/s12033-012-9499-6
 |  
															| 62 | P. M., Shih, K., Vuu, N., Mansoori, L., Ayad, K. B., Louie, B. P., Bowen, T. R. Northen, (2016). A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nat. Commun., 7: 13215 https://doi.org/10.1038/ncomms13215
 |  
															| 63 | Q., Zhu, D., Zeng, S., Yu, C., Cui, J., Li, H., Li, J., Chen, R., Zhang, X., Zhao, L. Chen, et al.. (2018). From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm. Mol. Plant, 11: 1440–1448 https://doi.org/10.1016/j.molp.2018.09.007
 |  
															| 64 | Q., Zhu, S., Yu, D., Zeng, H., Liu, H., Wang, Z., Yang, X., Xie, R., Shen, J., Tan, H. Li, et al.. (2017). Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol. Plant, 10: 918–929 https://doi.org/10.1016/j.molp.2017.05.008
 |  
															| 65 | L., Lin, Y. G., Liu, X. Xu, (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc. Natl. Acad. Sci. USA, 100: 5962–5967 https://doi.org/10.1073/pnas.0931425100
 |  
															| 66 | Y., Zhao, J., Han, J., Tan, Y., Yang, S., Li, Y., Gou, Y., Luo, T., Li, W., Xiao, Y. Xue, et al.. (2022). Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination. Plant Biotechnol. J., 20: 1983–1995 https://doi.org/10.1111/pbi.13882
 |  
															| 67 | F., Altpeter, N. M., Springer, L. E., Bartley, A. E., Blechl, T. P., Brutnell, V., Citovsky, L. J., Conrad, S. B., Gelvin, D. P., Jackson, A. P. Kausch, et al.. (2016). Advancing crop transformation in the era of genome editing. Plant Cell, 28: 1510–1520 https://doi.org/10.1105/tpc.16.00196
 |  
															| 68 | K. A., Schaumberg, M. S., Antunes, T. K., Kassaw, W., Xu, C. S., Zalewski, J. I. Medford, (2016). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods, 13: 94–100 https://doi.org/10.1038/nmeth.3659
 |  
															| 69 | N., Matsuo, M., Minami, T. Maeda, (2001). Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. (Tsukuba), 18: 71–75 https://doi.org/10.5511/plantbiotechnology.18.71
 |  
															| 70 | T., Jores, J., Tonnies, M. W., Dorrity, J. T., Cuperus, S. Fields, (2020). Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves. Plant Cell, 32: 2120–2131 https://doi.org/10.1105/tpc.20.00155
 |  
															| 71 | Y. S., Kim, G. D., Johnson, J., Seo, A., Barrera, T. N., Cowart, W. H., Majoros, A., Ochoa, A. S. Allen, T. Reddy, (2021). Correcting signal biases and detecting regulatory elements in STARR-seq data. Genome Res., 31: 877–889 https://doi.org/10.1101/gr.269209.120
 |  
															| 72 | T., Jores, J., Tonnies, T., Wrightsman, E. S., Buckler, J. T., Cuperus, S. Fields, (2021). Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants, 7: 842–855 https://doi.org/10.1038/s41477-021-00932-y
 |  
															| 73 | J., Sun, N., He, L., Niu, Y., Huang, W., Shen, Y., Zhang, L. Li, (2019). Global quantitative mapping of enhancers in rice by STARR-seq. Genom. Proteom. Bioinf., 17: 140–153 https://doi.org/10.1016/j.gpb.2018.11.003
 |  
															| 74 | C., TianY., ZhangJ. Li. (2022) Benchmarking intrinsic promoters and terminators for plant synthetic biology research. BioDesign Research., 2022 |  
															| 75 | A. I., AndreouJ., NirkkoM. Ochoa-Villarreal. (2021) Mobius assembly for plant systems highlights promoter-terminator interaction in gene regulation. bioRxiv doi: 10.1101/2021.03.31.437819 |  
															| 76 | A., Gunadi, P. J., Rushton, L. K., Mchale, A. H. Gutek, J. Finer, (2016). Characterization of 40 soybean (Glycine max) promoters, isolated from across 5 thematic gene groups. Plant Cell Tissue Organ Cult., 127: 1–16 https://doi.org/10.1007/s11240-016-1038-x
 |  
															| 77 | Y., Kakei, H., Masuda, N. K., Nishizawa, H. Hattori, M. Aung, (2021). Elucidation of novel cis-regulatory elements and promoter structures involved in iron excess response mechanisms in rice using a bioinformatics approach. Front. Plant Sci., 12: 660303 https://doi.org/10.3389/fpls.2021.660303
 |  
															| 78 | A., Kaur, P. K., Pati, A. M. Pati, A. Nagpal, (2017). In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One, 12: e0184523 https://doi.org/10.1371/journal.pone.0184523
 |  
															| 79 | R. J., Schmitz, E. Grotewold, (2022). Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell, 34: 718–741 https://doi.org/10.1093/plcell/koab281
 |  
															| 80 | D. Basu, P. South, (2022). Design and analysis of native photorespiration gene motifs of promoter untranslated region combinations under short term abiotic stress conditions. Front. Plant Sci., 13: 828729 https://doi.org/10.3389/fpls.2022.828729
 |  
															| 81 | J. P. C., To, I. W., Davis, M. S., Marengo, A., Shariff, C., Baublite, K., Decker, Z., Gao, O., Haragutchi, J. W. Jung, et al.. (2021). Expression elements derived from plant sequences provide effective gene expression regulation and new opportunities for plant biotechnology traits. Front. Plant Sci., 12: 712179 https://doi.org/10.3389/fpls.2021.712179
 |  
															| 82 | I. W., Davis, C., Benninger, P. N. Benfey, (2012). POWRS: position-sensitive motif discovery. PLoS One, 7: e40373 https://doi.org/10.1371/journal.pone.0040373
 |  
															| 83 | D. M. McCarthy, J. Medford, (2020). Quantitative and predictive genetic parts for plant synthetic biology. Front. Plant Sci., 11: 512526 https://doi.org/10.3389/fpls.2020.512526
 |  
															| 84 | L., Han, S., Silvestre, O., Sayanova, R. P. Haslam, J. Napier, (2022). Using field evaluation and systematic iteration to rationalise the accumulation of omega-3 long-chain polyunsaturated fatty acids in transgenic Camelina sativa. Plant Biotechnol. J., 20: 1833–1852 https://doi.org/10.1111/pbi.13867
 |  
															| 85 | J. R., Petrie, X. R., Zhou, A., Leonforte, J., McAllister, P., Shrestha, Y., Kennedy, S., Belide, G., Buzza, N., Gororo, W. Gao, et al.. (2020). Development of a Brassica napus (Canola) crop containing fish oil-like levels of DHA in the seed oil. Front. Plant Sci., 11: 727 https://doi.org/10.3389/fpls.2020.00727
 |  
															| 86 | S., Belide, P., Shrestha, Y., Kennedy, A., Leonforte, M. D., Devine, J. R., Petrie, S. P. Singh, X. Zhou, (2022). Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica juncea. Plant Biotechnol. J., 20: 19–21 https://doi.org/10.1111/pbi.13739
 |  
															| 87 | L., Yan-yan, G., Li-na, L. Cheng-zhen, M. Zhi-gang, Y., Li, L., Guo, C., Liang, Z., Meng, S., Tahira, S. Guo, (2022). Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass. J. Integr. Agric., 21: 49–59 |  
															| 88 | H., Fan, Y., Liu, C. Y., Li, Y., Jiang, J. J., Song, L., Yang, Q., Zhao, Y. H., Hu, X. Y. Chen, J. Xu, (2021). Engineering high coenzyme Q10 tomato. Metab. Eng., 68: 86–93 https://doi.org/10.1016/j.ymben.2021.09.007
 |  
															| 89 | E. C. F., Forestier, T., Czechowski, A. C., Cording, A. D., Gilday, A. J., King, G. D. Brown, I. Graham, (2021). Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation. Plant Biotechnol. J., 19: 1614–1623 https://doi.org/10.1111/pbi.13574
 |  
															| 90 | K., Davis, D. S., Gkotsi, D. R. M., Smith, R. J. M., Goss, L. Caputi, S. Connor, (2020). Nicotiana benthamiana as a transient expression host to produce auxin analogs. Front. Plant Sci., 11: 581675 https://doi.org/10.3389/fpls.2020.581675
 |  
															| 91 | Q. M., Allen, V. J., Febres, B. Rathinasabapathi, J. Chaparro, (2022). Engineering a plant-derived astaxanthin synthetic pathway into Nicotiana benthamiana. Front. Plant Sci., 12: 831785 https://doi.org/10.3389/fpls.2021.831785
 |  
															| 92 | N., Narayanan, G., Beyene, R. D., Chauhan, J., Gehan, P., Butts, D., Siritunga, I., Okwuonu, A., Woll, D. M. nez-Aguilar, et al.. (2019). Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol., 37: 144–151 https://doi.org/10.1038/s41587-018-0002-1
 |  
															| 93 | Q., Liang, K., Wang, X., Liu, B., Riaz, L., Jiang, X., Wan, X. Ye, (2019). Improved folate accumulation in genetically modified maize and wheat. J. Exp. Bot., 70: 1539–1551 https://doi.org/10.1093/jxb/ery453
 |  
															| 94 | X., Liu, X., Ma, H., Wang, S., Li, W., Yang, R. D., Nugroho, L., Luo, X., Zhou, C., Tang, Y. Fan, et al.. (2021). Metabolic engineering of astaxanthin-rich maize and its use in the production of biofortified eggs. Plant Biotechnol. J., 19: 1812–1823 https://doi.org/10.1111/pbi.13593
 |  
															| 95 | R. S., Nett, W. Lau, E. Sattely, (2020). Discovery and engineering of colchicine alkaloid biosynthesis. Nature, 584: 148–153 https://doi.org/10.1038/s41586-020-2546-8
 |  
															| 96 | J., Li, I., Mutanda, K., Wang, L., Yang, J. Wang, (2019). Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat. Commun., 10: 4850 https://doi.org/10.1038/s41467-019-12879-y
 |  
															| 97 | R., ndez, E., nez, S., Gianoglio, A., Quijano-Rubio, A., Rubert, J. L., Rambla, M., Vazquez-Vilar, E. Huet, et al.. (2021). Production of volatile moth sex pheromones in transgenic Nicotiana benthamiana plants. BioDesign Research., 2021: 9891082 https://doi.org/10.34133/2021/9891082
 |  
															| 98 | S., Iacopino, S., Jurinovich, L., Cupellini, L., Piccinini, F., Cardarelli, P., Perata, B., Mennucci, B. Giuntoli, (2019). A synthetic oxygen sensor for plants based on animal hypoxia signaling. Plant Physiol., 179: 986–1000 https://doi.org/10.1104/pp.18.01003
 |  
															| 99 | J. L. Nemhauser, K. Torii, (2016). Plant synthetic biology for molecular engineering of signalling and development. Nat. Plants, 2: 16010 https://doi.org/10.1038/nplants.2016.10
 |  
															| 100 | G., Swinnen, A. Goossens, (2016). Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci., 21: 506–515 https://doi.org/10.1016/j.tplants.2016.01.014
 |  
															| 101 | J., Andres, T. Blomeier, M. Zurbriggen, (2019). Synthetic switches and regulatory circuits in plants. Plant Physiol., 179: 862–884 https://doi.org/10.1104/pp.18.01362
 |  
															| 102 | Y., Zhou, M., Ding, S., Gao, J., Yu-Strzelczyk, M., Krischke, X., Duan, J., Leide, M., Riederer, M. J., Mueller, R. Hedrich, et al.. (2021). Optogenetic control of plant growth by a microbial rhodopsin. Nat. Plants, 7: 144–151 https://doi.org/10.1038/s41477-021-00853-w
 |  
															| 103 | L., Liu, J., Gallagher, E. D., Arevalo, R., Chen, T., Skopelitis, Q., Wu, M. Bartlett, (2021). Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants, 7: 287–294 https://doi.org/10.1038/s41477-021-00858-5
 |  
															| 104 | D., guez-Leal, Z. H., Lemmon, J., Man, M. E. Bartlett, Z. Lippman, (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171: 470–480.e8 https://doi.org/10.1016/j.cell.2017.08.030
 |  
															| 105 | X., Song, X., Meng, H., Guo, Q., Cheng, Y., Jing, M., Chen, G., Liu, B., Wang, Y., Wang, J. Li, et al.. (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol., 40: 1403–1411 https://doi.org/10.1038/s41587-022-01281-7
 |  
															| 106 | L. G., Lowder, J., Zhou, Y., Zhang, A., Malzahn, Z., Zhong, T. F., Hsieh, D. F., Voytas, Y. Zhang, (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-Act systems. Mol. Plant, 11: 245–256 https://doi.org/10.1016/j.molp.2017.11.010
 |  
															| 107 | L. G., Lowder, J. W. Paul, (2017). Multiplexed transcriptional activation or repression in plants using CRISPR-dCas9-based systems. Methods Mol. Biol., 1629: 167–184 https://doi.org/10.1007/978-1-4939-7125-1_12
 |  
															| 108 | L. G., Lowder, D., Zhang, N. J., Baltes, J. W. Paul, X., Tang, X., Zheng, D. F., Voytas, T. F., Hsieh, Y. Zhang, (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol., 169: 971–985 https://doi.org/10.1104/pp.15.00636
 |  
															| 109 | A., Chavez, J., Scheiman, S., Vora, B. W., Pruitt, M., Tuttle, E., P R Iyer, S., Lin, S., Kiani, C. D., Guzman, D. J. Wiegand, et al.. (2015). Highly efficient Cas9-mediated transcriptional programming. Nat. Methods, 12: 326–328 https://doi.org/10.1038/nmeth.3312
 |  
															| 110 | S. Sajwan, (2019). Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci. Rep., 9: 18104 https://doi.org/10.1038/s41598-019-54179-x
 |  
															| 111 | J. G., Zalatan, M. E., Lee, R., Almeida, L. A., Gilbert, E. H., Whitehead, M., La Russa, J. C., Tsai, J. S., Weissman, J. E., Dueber, L. S. Qi, et al.. (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160: 339–350 https://doi.org/10.1016/j.cell.2014.11.052
 |  
															| 112 | H., Zhou, J., Liu, C., Zhou, N., Gao, Z., Rao, H., Li, X., Hu, C., Li, X., Yao, X. Shen, et al.. (2018). In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci., 21: 440–446 https://doi.org/10.1038/s41593-017-0060-6
 |  
															| 113 | Z., Li, D., Zhang, X., Xiong, B., Yan, W., Xie, J. Sheen, J. Li, (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants, 3: 930–936 https://doi.org/10.1038/s41477-017-0046-0
 |  
															| 114 | C., Pan, X., Wu, K., Markel, A. A., Malzahn, N., Kundagrami, S., Sretenovic, Y., Zhang, Y., Cheng, P. M. Shih, (2021). CRISPR-Act3. 0 for highly efficient multiplexed gene activation in plants. Nat. Plants, 7: 942–953 https://doi.org/10.1038/s41477-021-00953-7
 |  
															| 115 | S., Selma, J. M., -Orts, M., Vazquez-Vilar, B., Diego-Martin, M., Ajenjo, V., Garcia-Carpintero, A. Granell, (2019). Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator. Plant Biotechnol. J., 17: 1703–1705 https://doi.org/10.1111/pbi.13138
 |  
															| 116 | S., Selma, A., Espinosa-Ruiz, S., Gianoglio, M. P., Lopez-Gresa, M., zquez-Vilar, V., Flors, A. Granell, (2022). Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. Plant Biotechnol. J., 20: 1578–1590 https://doi.org/10.1111/pbi.13834
 |  
															| 117 | C., Pan, G., Li, A. A., Malzahn, Y., Cheng, B., Leyson, S., Sretenovic, F., Gurel, G. D. Coleman, (2022). Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants, 8: 513–525 https://doi.org/10.1038/s41477-022-01151-9
 |  
															| 118 | N., Dey, S., Sarkar, S. Acharya, I. Maiti, (2015). Synthetic promoters in planta. Planta, 242: 1077–1094 https://doi.org/10.1007/s00425-015-2377-2
 |  
															| 119 | J., Aysha, M., Noman, F., Wang, W., Liu, Y., Zhou, H. Li, (2018). Synthetic promoters: designing the cis regulatory modules for controlled gene expression. Mol. Biotechnol., 60: 608–620 https://doi.org/10.1007/s12033-018-0089-0
 |  
															| 120 | R. Pandiarajan. (2018) In vivo promoter engineering in plants: are we ready? Plant Sci., 277, 132–138 |  
															| 121 | W. Z., Ouma, K. Pogacar, (2018). Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties. PLOS Comput. Biol., 14: e1006098 https://doi.org/10.1371/journal.pcbi.1006098
 |  
															| 122 | L. J., Core, A. L., Martins, C. G., Danko, C. T., Waters, A. Siepel, J. Lis, (2014). Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet., 46: 1311–1320 https://doi.org/10.1038/ng.3142
 |  
															| 123 | W. A., Ricci, Z., Lu, L., Ji, A. P., Marand, C. L., Ethridge, N. G., Murphy, J. M., Noshay, M., Galli, M. K., a-Guerra, et al.. (2019). Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants, 5: 1237–1249 https://doi.org/10.1038/s41477-019-0547-0
 |  
															| 124 | M., Fagny, M. L., Kuijjer, M., Stam, J., Joets, O., Turc, J., re, S., Pateyron, A. Venon, (2021). Identification of key tissue-specific, biological processes by integrating enhancer information in maize gene regulatory networks. Front. Genet., 11: 606285 https://doi.org/10.3389/fgene.2020.606285
 |  
															| 125 | W., Ding, J., Cheng, D., Guo, L., Mao, J., Li, L., Lu, Y., Zhang, J. Yang, (2018). Engineering the 5′UTR-mediated regulation of protein abundance in yeast using nucleotide sequence activity relationships. ACS Synth. Biol., 7: 2709–2714 https://doi.org/10.1021/acssynbio.8b00127
 |  
															| 126 | V. K., Mutalik, J. C., Guimaraes, G., Cambray, C., Lam, M. J., Christoffersen, Q. A., Mai, A. B., Tran, M., Paull, J. D., Keasling, A. P. Arkin, et al.. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods, 10: 354–360 https://doi.org/10.1038/nmeth.2404
 |  
															| 127 | Y., Chen, S., Zhang, E. M., Young, T. S., Jones, D. Densmore, C. Voigt, (2020). Genetic circuit design automation for yeast. Nat. Microbiol., 5: 1349–1360 https://doi.org/10.1038/s41564-020-0757-2
 |  
															| 128 | P. F., Xia, H., Ling, J. L. Foo, M. Chang, (2019). Synthetic genetic circuits for programmable biological functionalities. Biotechnol. Adv., 37: 107393 https://doi.org/10.1016/j.biotechadv.2019.04.015
 |  
															| 129 | M., Van Brempt, J., Clauwaert, F., Mey, M., Stock, J., Maertens, W. Waegeman, (2020). Predictive design of sigma factor-specific promoters. Nat. Commun., 11: 5822 https://doi.org/10.1038/s41467-020-19446-w
 |  
															| 130 | A. A., Nielsen, B. S., Der, J., Shin, P., Vaidyanathan, V., Paralanov, E. A., Strychalski, D., Ross, D. Densmore, C. Voigt, (2016). Genetic circuit design automation. Science, 352: aac7341 https://doi.org/10.1126/science.aac7341
 |  
															| 131 | T. S., Jones, S. M. D., Oliveira, C. J., Myers, C. A. Voigt, (2022). Genetic circuit design automation with Cello 2. 0. Nat. Protoc., 17: 1097–1113 https://doi.org/10.1038/s41596-021-00675-2
 |  
															| 132 | R. Kwok, (2010). Five hard truths for synthetic biology. Nature, 463: 288–290 https://doi.org/10.1038/463288a
 |  
															| 133 | J., Shin, S., Zhang, B. S., Der, A. A. Nielsen, C. Voigt, (2020). Programming Escherichia coli to function as a digital display. Mol. Syst. Biol., 16: e9401 https://doi.org/10.15252/msb.20199401
 |  
															| 134 | M., Crowther, A. Wipat, (2022). A network approach to genetic circuit designs. ACS Synth. Biol., 11: 3058–3066 https://doi.org/10.1021/acssynbio.2c00255
 |  
															| 135 | A. lez, (2019). Benefits of using genomic insulators flanking transgenes to increase expression and avoid positional effects. Sci. Rep., 9: 8474 https://doi.org/10.1038/s41598-019-44836-6
 |  
															| 136 | H., Puchta, J., Jiang, K. Wang, (2022). Updates on gene editing and its applications. Plant Physiol., 188: 1725–1730 https://doi.org/10.1093/plphys/kiac032
 |  
															| 137 | B. M., Neill, K. L., Mikkelson, N. M., Gutierrez, J. L., Cunningham, K. L., Wolff, S. J., Szyjka, C. B., Yohn, K. E. Redding, M. Mendez, (2012). An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res., 40: 2782–2792 https://doi.org/10.1093/nar/gkr1008
 |  
															| 138 | Y., Shao, N., Lu, Z., Wu, C., Cai, S., Wang, L. L., Zhang, F., Zhou, S., Xiao, L., Liu, X. Zeng, et al.. (2018). Creating a functional single-chromosome yeast. Nature, 560: 331–335 https://doi.org/10.1038/s41586-018-0382-x
 |  
															| 139 | M. Tomita, (2001). Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol., 19: 205–210 https://doi.org/10.1016/S0167-7799(01)01636-5
 |  
															| 140 | J. R., Karr, J. C., Sanghvi, D. N., Macklin, M. V., Gutschow, J. M., Jacobs, B. Bolival, N., Assad-Garcia, J. I. Glass, M. Covert, (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150: 389–401 https://doi.org/10.1016/j.cell.2012.05.044
 |  
															| 141 | D. N., Macklin, T. A., Ahn-Horst, H., Choi, N. A., Ruggero, J., Carrera, J. C., Mason, G., Sun, E., Agmon, M. M., DeFelice, I. Maayan, et al.. (2020). Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science, 369: eaav3751 https://doi.org/10.1126/science.aav3751
 |  
															| 142 | M., Maritan, L., Autin, J., Karr, M. W., Covert, A. J. Olson, D. Goodsell, (2022). Building structural models of a whole mycoplasma cell. J. Mol. Biol., 434: 167351 https://doi.org/10.1016/j.jmb.2021.167351
 |  
															| 143 | H., Lu, E. J. Kerkhoven, (2022). Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol., 40: 291–305 https://doi.org/10.1016/j.tibtech.2021.06.010
 |  
															| 144 | D. A., Beard, M. L., Neal, N., Tabesh-Saleki, C. T., Thompson, J. B., Bassingthwaighte, M. Shimoyama, B. Carlson, (2012). Multiscale modeling and data integration in the virtual physiological rat project. Ann. Biomed. Eng., 40: 2365–2378 https://doi.org/10.1007/s10439-012-0611-7
 |  
															| 145 | A., Marshall-Colon, S. P., Long, D. K., Allen, G., Allen, D. A., Beard, B., Benes, S., von Caemmerer, A. J., Christensen, D. J., Cox, J. C. Hart, et al.. (2017). Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform. Front. Plant Sci., 8: 786 https://doi.org/10.3389/fpls.2017.00786
 |  
															| 146 | X. G., Zhu, J. P., Lynch, D. S., LeBauer, A. J., Millar, M. Stitt, S. Long, (2016). Plants in silico: why, why now and what?—an integrative platform for plant systems biology research. Plant Cell Environ., 39: 1049–1057 https://doi.org/10.1111/pce.12673
 |  
															| 147 | H., Zheng, P. Y., Ho, M., Jiang, B., Tang, W., Liu, D., Li, X., Yu, N. E., Kleckner, A. Amir, (2016). Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc. Natl. Acad. Sci. USA, 113: 15000–15005 https://doi.org/10.1073/pnas.1617932114
 |  
															| 148 | P., Du, H., Zhao, H., Zhang, R., Wang, J., Huang, Y., Tian, X., Luo, X., Luo, M., Wang, Y. Xiang, et al.. (2020). De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. Nat. Commun., 11: 4226 https://doi.org/10.1038/s41467-020-17993-w
 |  
															| 149 | A., Milias-Argeitis, M., Rullan, S. K., Aoki, P. Buchmann, (2016). Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun., 7: 12546 https://doi.org/10.1038/ncomms12546
 |  
															| 150 | E. J., Olson, L. A., Hartsough, B. P., Landry, R. Shroff, J. Tabor, (2014). Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods, 11: 449–455 https://doi.org/10.1038/nmeth.2884
 |  
															| 151 | A., Carignano, D. H., Chen, C., Mallory, R. C., Wright, G. Seelig, (2022). Modular, robust, and extendible multicellular circuit design in yeast. eLife, 11: e74540 https://doi.org/10.7554/eLife.74540
 |  
															| 152 | M. W., Dorrity, C. M., Alexandre, M. O., Hamm, A. L., Vigil, S., Fields, C. Queitsch, J. Cuperus, (2021). The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun., 12: 3334 https://doi.org/10.1038/s41467-021-23675-y
 |  
															| 153 | A., Farmer, S., Thibivilliers, K. H., Ryu, J. Schiefelbein, (2021). Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant, 14: 372–383 https://doi.org/10.1016/j.molp.2021.01.001
 |  
															| 154 | E., Okubo-Kurihara, A., Ali, M., Hiramoto, Y., Kurihara, Y., Abouleila, E. M., Abdelazem, T., Kawai, Y., Makita, M., Kawashima, T. Esaki, et al.. (2022). Tracking metabolites at single-cell resolution reveals metabolic dynamics during plant mitosis. Plant Physiol., 189: 459–464 https://doi.org/10.1093/plphys/kiac093
 |  
															| 155 | A. P., Marand, Z., Chen, A. Gallavotti, R. Schmitz, (2021). A cis-regulatory atlas in maize at single-cell resolution. Cell, 184: 3041–3055.e21 https://doi.org/10.1016/j.cell.2021.04.014
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |