Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (2) : 95-108    https://doi.org/10.1007/s40484-020-0203-8
REVIEW
Applications of probability and statistics in cancer genomics
Xiaotu Ma(), Sasi Arunachalam, Yanling Liu
Department of Computational Biology, and Cancer Biology Program, Comprehensive Cancer Center, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
 Download: PDF(1402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: The past decade has witnessed a rapid progress in our understanding of the genetics of cancer and its progression. Probabilistic and statistical modeling played a pivotal role in the discovery of general patterns from cancer genomics datasets and continue to be of central importance for personalized medicine.

Results: In this review we introduce cancer genomics from a probabilistic and statistical perspective. We start from (1) functional classification of genes into oncogenes and tumor suppressor genes, then (2) demonstrate the importance of comprehensive analysis of different mutation types for individual cancer genomes, followed by (3) tumor purity analysis, which in turn leads to (4) the concept of ploidy and clonality, that is next connected to (5) tumor evolution under treatment pressure, which yields insights into cancer drug resistance. We also discuss future challenges including the non-coding genomic regions, integrative analysis of genomics and epigenomics, as well as early cancer detection.

Conclusion: We believe probabilistic and statistical modeling will continue to play important roles for novel discoveries in the field of cancer genomics and personalized medicine.

Keywords cancer genomics      sequence analysis      probability and statistics     
Corresponding Author(s): Xiaotu Ma   
Online First Date: 29 April 2020    Issue Date: 13 July 2020
 Cite this article:   
Xiaotu Ma,Sasi Arunachalam,Yanling Liu. Applications of probability and statistics in cancer genomics[J]. Quant. Biol., 2020, 8(2): 95-108.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0203-8
https://academic.hep.com.cn/qb/EN/Y2020/V8/I2/95
Fig.1  Mutation types.
Fig.2  Cancer driver genes.
Fig.3  Mutation frequency of drivers and power consideration for gene discovery.
Fig.4  Tumor purity and tumor-in-normal contamination. (A) Statistical model. A biopsy sample can have tumor purity ranging from 0% to 100%. An ideal scenario is to have 0% CCF in the normal sample and 100% CCF in the tumor sample. However, in practice the normal sample can have small fraction of cancer cells and the tumor sample may contain normal cells as well. (B) Statistical detection of true somatic mutation can be compromised by tumor-in-normal-contamination. (C) Assessing potential tumor-in-normal contamination by genotyping chimeric reads (where DNA sequence from one locus (black lines) is fused to another locus (blue lines)) in normal sample ascertained from copy number variation or structural variation.
Fig.5  A mathematical model of ploidy, clonality, and tumor purity. (A) Example scenarios of copy gain/loss (differentiating paternal (blue) or maternal (green)). Mutant allele fraction (MAF) of the marker (solid dot) is illustrated for each scenario. (B) Example showing calculation of expected allele fraction (eAF) of somatic mutation (red star) from a tumor with purity p. (C) Example showing calculation of expected allele fraction of germline polymorphism (black dot) from a tumor with purity p. (D) Expected allele fraction of somatic mutation as a function of tumor purity and selected local ploidy. Gain_1 wildtype: the mutation allele has 1 copy while the wildtype has two copies; Gain_1 mutant: the mutant allele has two copies while the wildtype has 1 copy; Loss 1 copy: only 1 mutant copy exists; CN-LOH: only 2 mutant copies exist; Diploid: 1 mutant and 1 wildtype copy.
Fig.6  Inferring mutational timing in melanoma cell line COLO829. In this cell line, it is known that chr1q (from 150M to 249M) has four copies from the same parental origin due to loss of heterozygosity and re-duplication. (A) Mutant allele fraction of somatic mutations in this region formed three clusters consistently supported by four sequencing efforts (GSC, Tgen, Pleasance, and Illumina): Early, Middle, and Late, which are defined by aggregating read counts from all four sequencing efforts (B). (C) Proposed model of mutational timing during tumorigenesis of COLO829. One of the two parental alleles of 1q was lost (for simplicity, assuming paternal allele was lost), and the remaining allele acquired 492 mutations (triangle) before its first duplication. Afterwards, 411 mutations (square) were acquired in one of the two copies of 1q before the second duplication event, following which additional 62 mutations (circle) were acquired in one of the four copies of 1q before diagnosis.
Fig.7  Intra-tumor Heterogeneity. (A) Modeling clonal evolution. The population size of a given subclone is a function of its growth rate and its age. For example, subclone #4 has a small diagnosis fraction due to lower growth rate than subclone #2 and #3. (B) Common clonal evolution patterns in relapsed ALL. Upon diagnosis, intensive treatment will be applied so that the overall tumor burden will reduce. Predominant diagnosis subclone (blue) was eradicated by treatment; while a minor subclone (orange) that also carries the ancestral mutations (green) can survive treatment and seed relapse. New mutations (red), such as NT5C2 and PRPS1, can be acquired and lead to drug resistance.
Fig.8  Detecting low frequency mutations. (A) Potential applications of low frequency mutation detection. (B) Sequencing cost analysis. Data (accessed Nov 1, 2019) from www.genome.gov/sequencingcostsdata. (C) Reported error rate of next generation sequencing technology in past decade. Pubmed ID of corresponding literatures listed.
Fig.9  Integrating cancer genomics with epigenomics data. (A) Mutation status of MYCN and ATRX, two primary driver genes for neuroblastoma, from 136 cases. Dark gray: MYCN or ATRX mutant; black: MYCN and ATRX double-mutant (in which ATRX has mutation T1582fs). MYCN and ATRX mutant samples has a trend of mutual exclusivity, though statistical significance is not reached (P=0.12, two-sided Fisher’s exact test). (B) The MYCN and ATRX double-mutant sample is from a female patient with both alleles of chrX intact in the tumor (blue and green represent the two parental alleles, respectively). Since only the wildtype ATRX allele is expressed, it is hypothesized that the T1582fs mutation happened on the allele with X-inactivation (gray solid dots), and therefore carries no function, so that it is still biologically compatible with MYCN high amplification. As a result, the updated P value of 0.02 has reached statistical significance for the mutual exclusivity.
1 P. C. Nowell, (2007) Discovery of the Philadelphia chromosome: a personal perspective. J. Clin. Invest., 117, 2033–2035
https://doi.org/10.1172/JCI31771. pmid: 17671636
2 P. H. D. Nowell, (1960) A minute chromosome in human chronic granulocytic leukemia. Science, 132, 1497
3 F. Sanger, and A. R. Coulson, (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol., 94, 441–448
https://doi.org/10.1016/0022-2836(75)90213-2. pmid: 1100841
4 R. A. Weinberg, (1991) Tumor suppressor genes. Science, 254, 1138–1146
https://doi.org/10.1126/science.1659741. pmid: 1659741
5 J. R. Downing, , R. K. Wilson, , J. Zhang, , E. R. Mardis, , C. H. Pui, , L. Ding, , T. J. Ley, and W. E. Evans, (2012) The Pediatric Cancer Genome Project. Nat. Genet., 44, 619–622
https://doi.org/10.1038/ng.2287. pmid: 22641210
6 Cancer Genome Atlas Research Network. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068
https://doi.org/10.1038/nature07385. pmid: 18772890
7 X. Ma, , Y. Liu, , Y. Liu, , L. B. Alexandrov, , M. N. Edmonson, , C. Gawad, , X. Zhou, , Y. Li, , M. C. Rusch, , J. Easton, , et al. (2018) Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 555, 371–376
https://doi.org/10.1038/nature25795. pmid: 29489755
8 S. N. Gröbner, , B. C. Worst, , J. Weischenfeldt, , I. Buchhalter, , K. Kleinheinz, , V. A. Rudneva, , P. D. Johann, , G. P. Balasubramanian, , M. Segura-Wang, , S. Brabetz, , et al. (2018) The landscape of genomic alterations across childhood cancers. Nature, 555, 321–327
https://doi.org/10.1038/nature25480. pmid: 29489754
9 M. S. Lawrence, , P. Stojanov, , C. H. Mermel, , J. T. Robinson, , L. A. Garraway, , T. R. Golub, , M. Meyerson, , S. B. Gabriel, , E. S. Lander, and G. Getz, (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505, 495–501
https://doi.org/10.1038/nature12912. pmid: 24390350
10 K. A. Hoadley, , C. Yau, , D. M. Wolf, , A. D. Cherniack,, D. Tamborero, , S. Ng, , M. D. M. Leiserson,, B. Niu, , M. D. McLellan, , V. Uzunangelov,, et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158, 929–944
https://doi.org/10.1016/j.cell.2014.06.049. pmid: 25109877
11 T. I. Zack, , S. E. Schumacher,, S. L. Carter, , A. D. Cherniack, , G. Saksena,, B. Tabak, , M. S. Lawrence, , C. Z. Zhang, , J. Wala, , C. H. Mermel, , et al. (2013) Pan-cancer patterns of somatic copy number alteration. Nat. Genet., 45, 1134–1140
https://doi.org/10.1038/ng.2760. pmid: 24071852
12 M. Rusch, , J. Nakitandwe,, S. Shurtleff, , S. Newman, , Z. Zhang, , M. N. Edmonson, , M. Parker, , Y. Jiao, , X. Ma, , Y. Liu,, et al. (2018) Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun., 9, 3962
https://doi.org/10.1038/s41467-018-06485-7. pmid: 30262806
13 E. Crowley, , F. Di Nicolantonio,, F. Loupakis, and A. Bardelli, (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol., 10, 472–484
https://doi.org/10.1038/nrclinonc.2013.110. pmid: 23836314
14 J. D. Cohen, , L. Li, , Y. Wang, , C. Thoburn,, B. Afsari, , L. Danilova, , C. Douville, , A. A. Javed, , F. Wong, , A. Mattox, , et al. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 359, 926–930
https://doi.org/10.1126/science.aar3247. pmid: 29348365
15 C. Tomasetti, , B. Vogelstein, and G. Parmigiani, (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. USA, 110, 1999–2004
https://doi.org/10.1073/pnas.1221068110. pmid: 23345422
16 T. A. Kunkel, and D. A. Erie, (2015) Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet., 49, 291–313
https://doi.org/10.1146/annurev-genet-112414-054722. pmid: 26436461
17 L. A. Forsberg, , D. Gisselsson, and J. P. Dumanski, (2017) Mosaicism in health and disease—clones picking up speed. Nat. Rev. Genet., 18, 128–142
https://doi.org/10.1038/nrg.2016.145. pmid: 27941868
18 E. Bianconi, , A. Piovesan, , F. Facchin, , A. Beraudi, , R. Casadei, , F. Frabetti, , L. Vitale, , M. C. Pelleri, , S. Tassani, , F. Piva, , et al. (2013) An estimation of the number of cells in the human body. Ann. Hum. Biol., 40, 463–471
https://doi.org/10.3109/03014460.2013.807878. pmid: 23829164
19 C. M. Testa, and J. Jankovic, (2019) Huntington disease: A quarter century of progress since the gene discovery. J. Neurol. Sci., 396, 52–68
https://doi.org/10.1016/j.jns.2018.09.022. pmid: 30419368
20 J. Zhang, , M. F. Walsh, , G. Wu, , M. N. Edmonson, , T. A. Gruber, , J. Easton, , D. Hedges, , X. Ma, , X. Zhou, , D. A. Yergeau,, et al. (2015) Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med., 373, 2336–2346
https://doi.org/10.1056/NEJMoa1508054. pmid: 26580448
21 B. Vogelstein, , N. Papadopoulos,, V. E. Velculescu, , S. Zhou, , L. A. Diaz, Jr and K. W. Kinzler, (2013) Cancer genome landscapes. Science, 339, 1546–1558
https://doi.org/10.1126/science.1235122. pmid: 23539594
22 S. Pounds, , C. Cheng, , S. Li, , Z. Liu, , J. Zhang, and C. Mullighan, (2013) A genomic random interval model for statistical analysis of genomic lesion data. Bioinformatics, 29, 2088–2095
https://doi.org/10.1093/bioinformatics/btt372. pmid: 23842812
23 M. S. Lawrence, , P. Stojanov, , P. Polak, , G. V. Kryukov, , K. Cibulskis,, A. Sivachenko, , S. L. Carter, , C. Stewart, , C. H. Mermel, , S. A. Roberts, , et al. (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499, 214–218
https://doi.org/10.1038/nature12213. pmid: 23770567
24 N. D. Dees, , Q. Zhang, , C. Kandoth, , M. C. Wendl, , W. Schierding,, D. C. Koboldt, , T. B. Mooney, , M. B. Callaway, , D. Dooling, , E. R. Mardis, , et al. (2012) MuSiC: identifying mutational significance in cancer genomes. Genome Res., 22, 1589–1598
https://doi.org/10.1101/gr.134635.111. pmid: 22759861
25 T. Soussi, and K. G. Wiman, (2015) TP53: an oncogene in disguise. Cell Death Differ., 22, 1239–1249
https://doi.org/10.1038/cdd.2015.53. pmid: 26024390
26 International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945
https://doi.org/10.1038/nature03001. pmid: 15496913
27 Cancer Genome Atlas Research Network. (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489, 519–525
https://doi.org/10.1038/nature11404. pmid: 22960745
28 M. S. Lawrence, , P. Stojanov, , P. Polak, , G. V. Kryukov, , K. Cibulskis,, A. Sivachenko, , S. L. Carter, , C. Stewart, , C. H. Mermel, , S. A. Roberts, , et al. (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499, 214–218
https://doi.org/10.1038/nature12213. pmid: 23770567
29 X. Ma, , M. Edmonson, , D. Yergeau, , D. M. Muzny, , O. A. Hampton, , M. Rusch, , G. Song, , J. Easton, , R. C. Harvey, , D. A. Wheeler, , et al. (2015) Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun., 6, 6604
https://doi.org/10.1038/ncomms7604. pmid: 25790293
30 S. Nik-Zainal, , L. B. Alexandrov,, D. C. Wedge, , P. Van Loo, , C. D. Greenman, , K. Raine, , D. Jones, , J. Hinton, , J. Marshall, , L. A. Stebbings, , et al. (2012) Mutational processes molding the genomes of 21 breast cancers. Cell, 149, 979–993
https://doi.org/10.1016/j.cell.2012.04.024. pmid: 22608084
31 S. T. Sherry, , M. H. Ward, , M. Kholodov, , J. Baker, , L. Phan, , E. M. Smigielski, and K. Sirotkin, (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311
https://doi.org/10.1093/nar/29.1.308. pmid: 11125122
32 M. Griffith, , C. A. Miller, , O. L. Griffith, , K. Krysiak, , Z. L. Skidmore, , A. Ramu, , J. R. Walker, , H. X. Dang, , L. Trani, , D. E. Larson,, et al. (2015) Optimizing cancer genome sequencing and analysis. Cell Syst., 1, 210–223
https://doi.org/10.1016/j.cels.2015.08.015. pmid: 26645048
33 K. E. Sundling, and A. C. Lowe, (2019) Circulating tumor cells: overview and opportunities in cytology. Adv. Anat. Pathol., 26, 56–63
https://doi.org/10.1097/PAP.0000000000000217. pmid: 30325755
34 P. M. Kakadia, , N. Van de Water,, P. J. Browett, and S. K. Bohlander, (2018) Efficient identification of somatic mutations in acute myeloid leukaemia using whole exome sequencing of fingernail derived DNA as germline control. Sci. Rep., 8, 13751
https://doi.org/10.1038/s41598-018-31503-5. pmid: 30213991
35 K. Mrózek, , N. A. Heerema, and C. D. Bloomfield, (2004) Cytogenetics in acute leukemia. Blood Rev., 18, 115–136
https://doi.org/10.1016/S0268-960X(03)00040-7. pmid: 15010150
36 D. W. Craig, , S. Nasser, , R. Corbett, , S. K. Chan, , L. Murray, , C. Legendre, , W. Tembe, , J. Adkins, , N. Kim, , S. Wong, , et al. (2016) A somatic reference standard for cancer genome sequencing. Sci. Rep., 6, 24607
https://doi.org/10.1038/srep24607. pmid: 27094764
37 B. Li, , S. W. Brady, , X. Ma, , S. Shen, , Y. Zhang, , Y. Li, , K. Szlachta, , L. Dong, , Y. Liu, , F. Yang,, et al. (2019) Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood, 135, 41–55
pmid: 31697823.
38 S. W. Brady, , X. Ma, , A. Bahrami, , G. Satas,, G. Wu, , S. Newman, , M. Rusch, , D. K. Putnam, , H. L. Mulder, , D. A. Yergeau, , et al. (2019) The clonal evolution of metastatic osteosarcoma as shaped by cisplatin treatment. Mol. Cancer Res., 17, 895–906
https://doi.org/10.1158/1541-7786.MCR-18-0620. pmid: 30651371
39 B. Li, , H. Li, , Y. Bai, , R. Kirschner-Schwabe,, J. J. Yang, , Y. Chen, , G. Lu, , G. Tzoneva, , X. Ma,, T. Wu, , et al. (2015) Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med., 21, 563–571
https://doi.org/10.1038/nm.3840. pmid: 25962120
40 J. J. Salk, , M. W. Schmitt, and L. A. Loeb, (2018) Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet., 19, 269–285
https://doi.org/10.1038/nrg.2017.117. pmid: 29576615
41 S. Goodwin, , J. D. McPherson, and W. R. McCombie, (2016) Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet., 17, 333–351
https://doi.org/10.1038/nrg.2016.49. pmid: 27184599
42 E. R. Mardis, (2013) Next-generation sequencing platforms. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 6, 287–303
https://doi.org/10.1146/annurev-anchem-062012-092628. pmid: 23560931
43 T. C. Glenn, (2011) Field guide to next-generation DNA sequencers. Mol. Ecol. Resour., 11, 759–769
https://doi.org/10.1111/j.1755-0998.2011.03024.x. pmid: 21592312
44 D. T. Cheng, , T. N. Mitchell, , A. Zehir, , R. H. Shah, , R. Benayed, , A. Syed, , R. Chandramohan, , Z. Y. Liu,, H. H. Won, , S. N. Scott, , et al. (2015) Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn., 17, 251–264
https://doi.org/10.1016/j.jmoldx.2014.12.006. pmid: 25801821
45 X. Ma, , Y. Shao, , L. Tian, , D. A. Flasch,, H. L. Mulder, , M. N. Edmonson, , Y. Liu, , X. Chen, , S. Newman,, J. Nakitandwe, , et al. (2019) Analysis of error profiles in deep next-generation sequencing data. Genome Biol., 20, 50
https://doi.org/10.1186/s13059-019-1659-6. pmid: 30867008
46 A. L. Young, , G. A. Challen, , B. M. Birmann, and T. E. Druley, (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun., 7, 12484
https://doi.org/10.1038/ncomms12484. pmid: 27546487
47 P. Ulz, , E. Heitzer, , J. B. Geigl, and M. R. Speicher, (2017) Patient monitoring through liquid biopsies using circulating tumor DNA. Int. J. Cancer, 141, 887–896
https://doi.org/10.1002/ijc.30759. pmid: 28470712
48 M. E. Figueroa, , S. Lugthart, , Y. Li, , C. Erpelinck-Verschueren, , X. Deng, , P. J. Christos, , E. Schifano, , J. Booth, , W. van Putten,, L. Skrabanek, , et al. (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell, 17, 13–27
https://doi.org/10.1016/j.ccr.2009.11.020. pmid: 20060365
49 X. Ma, , Y. W. Wang, , M. Q. Zhang, and A. F. Gazdar, (2013) DNA methylation data analysis and its application to cancer research. Epigenomics, 5, 301–316
https://doi.org/10.2217/epi.13.26. pmid: 23750645
50 M. Zeineldin,, S. Federico,, X. Chen,, B. Xu,, E. Stewart,, A. Naranjo,, M.D. Hogarty,, M.A Dyer,. (2020) MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat. Commun., 11, 913
51 I. Iacobucci, , Y. Li, , K. G. Roberts, , S. M. Dobson, , J. C. Kim, , D. Payne-Turner, , R. C. Harvey, , M. Valentine,, K. McCastlain, , J. Easton, , et al. (2016) Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell, 29, 186–200
https://doi.org/10.1016/j.ccell.2015.12.013. pmid: 26859458
52 J. Zhang, , K. McCastlain,, H. Yoshihara, , B. Xu, , Y. Chang, , M. L. Churchman, , G. Wu, , Y. Li, , L. Wei, , I. Iacobucci,, et al. (2016) Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet., 48, 1481–1489
https://doi.org/10.1038/ng.3691. pmid: 27776115
53 M. R. Mansour, , B. J. Abraham, , L. Anders, , A. Berezovskaya, , A. Gutierrez,, A. D. Durbin, , J. Etchin, , L. Lawton, , S. E. Sallan, , L. B. Silverman, , et al. (2014) Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 346, 1373–1377
https://doi.org/10.1126/science.1259037. pmid: 25394790
54 F. W. Huang, , E. Hodis, , M. J. Xu, , G. V. Kryukov, , L. Chin, and L. A. Garraway, (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959
https://doi.org/10.1126/science.1229259. pmid: 23348506
55 H. Zhang, , X. Si, , X. Ji, , R. Fan,, J. Liu, , K. Chen, , D. Wang, and C. Gao, (2018) Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol., 36, 894–898
https://doi.org/10.1038/nbt.4202. pmid: 30080209
56 L. B. Alexandrov, , S. Nik-Zainal,, D. C. Wedge, , P. J. Campbell, and M. R. Stratton, (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Reports, 3, 246–259
https://doi.org/10.1016/j.celrep.2012.12.008. pmid: 23318258
57 L. B. Alexandrov, , S. Nik-Zainal,, D. C. Wedge, , S. A. Aparicio, , S. Behjati, , A. V. Biankin, , G. R. Bignell, , N. Bolli, , A. Borg, , A. L. Børresen-Dale, , et al. (2013) Signatures of mutational processes in human cancer. Nature, 500, 415–421
https://doi.org/10.1038/nature12477. pmid: 23945592
58 A. W. T. Ng, , S. L. Poon, , M. N. Huang, , J. Q. Lim, , A. Boot, , W. Yu, , Y. Suzuki,, S. Thangaraju, , C. C. Y. Ng, , P. Tan, , et al. (2017) Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med., 9, eaan6446
https://doi.org/10.1126/scitranslmed.aan6446. pmid: 29046434
59 D. E. Brash, (2015) UV signature mutations. Photochem. Photobiol., 91, 15–26
https://doi.org/10.1111/php.12377. pmid: 25354245
60 M. Petljak,, L.B. Alexandrov,, J.S. Brammeld,, S. Price,, D.C. Wedge,, S. Grossmann,, K.J. Dawson,, Y.S. Ju,, F. Iorio,, J.M.C. Tubio,, et al. (2019) Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell, 176, 1282–1294
61 K. Ye, , J. Wang, , R. Jayasinghe, , E. W. Lameijer, , J. F. McMichael,, J. Ning, , M. D. McLellan, , M. Xie, , S. Cao, , V. Yellapantula,, et al. (2016) Systematic discovery of complex insertions and deletions in human cancers. Nat. Med., 22, 97–104
https://doi.org/10.1038/nm.4002. pmid: 26657142
62 J. L. Wiemels, , B. C. Leonard, , Y. Wang, , M. R. Segal, , S. P. Hunger, , M. T. Smith, , V. Crouse, , X. Ma, , P. A. Buffler, and S. R. Pine, (2002) Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA, 99, 15101–15106
https://doi.org/10.1073/pnas.222481199. pmid: 12415113
[1] Henry Linder, Yuping Zhang. A pan-cancer integrative pathway analysis of multi-omics data[J]. Quant. Biol., 2020, 8(2): 130-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed