|
|
Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages |
Renjun Zhou1,2, Hao Wang1,2, Dongdong Wei1,2, Shenzheng Zeng1,2, Dongwei Hou1,2, Shaoping Weng1,2, Jianguo He1,2( ), Zhijian Huang1,2( ) |
1. State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China 2. Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract • Positive microbial interaction dominating in sedimentary bacterial and eukaryotic communities. • Homogeneous selection process governed the assemblage of both bacterial and eukaryotic communities. • Bacterial and eukaryotic diversities were in the reverse correlations with microbial positive interaction.
Sedimentary bacterial and eukaryotic communities are major components of the aquatic ecosystem. Revealing the linkages between their community structure and interactions is crucial to understand the diversity and functions of aquatic and soil ecosystems. However, how their diversity and assembly contribute to their interactions on time scale is unclear. This study examined sedimentary bacterial and eukaryotic communities in shrimp culture ponds at different culture stages. The most abundant bacteria were Proteobacteria (38.27%), whereas the most abundant eukaryotes were Chytridiomycota (27.48%). Bacterial and eukaryotic diversities were correlated (P<0.05), implying the strong interactions between bacteria and eukaryotes. Results showed that the bacterial and eukaryotic communities became increasingly similar on a local scale along with the shrimp culture. Only the eukaryotic community significantly increased in similarity along with the shrimp culture (P<0.05), suggesting that the sedimentary eukaryotic community structure is sensitive under shrimp culture. Co-occurrence network modeling indicated that positive microbial interactions were dominant. The homogeneous selection was the major driver of community assembly. Bacterial diversity negatively correlated with operational taxonomic units and positive links in networks (P<0.05), whereas eukaryotic diversities positively correlated with positive links in networks (P<0.05). This study broadens our knowledge about sedimentary microbial diversity, community assembly, and interaction patterns on time scale, providing a reference for the sustainable management in aquaculture production.
|
Keywords
Sediment
Shrimp culture
Bacteria
Eukaryotes
Microbial community
|
Corresponding Author(s):
Jianguo He,Zhijian Huang
|
Online First Date: 27 April 2021
Issue Date: 07 March 2022
|
|
1 |
M.J. Anderson, , 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
|
2 |
E.W. Beals, , 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Advances in Ecological Research 14, 1–55.
|
3 |
D. Berry, , S. Widder, , 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219.
https://doi.org/10.3389/fmicb.2014.00219
pmid: 24904535
|
4 |
D.A. Caron, , P.D. Countway, , A.C. Jones, , D.Y. Kim, , A. Schnetzer, , 2012. Marine protistan diversity. Annual Review of Marine Science 4, 467–493.
https://doi.org/10.1146/annurev-marine-120709-142802
pmid: 22457984
|
5 |
P.D. Countway, , R.J. Gast, , P. Savai, , D.A. Caron, , 2005. Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. Journal of Eukaryotic Microbiology 52, 95–106.
https://doi.org/10.1111/j.1550-7408.2005.05202006.x
pmid: 15817114
|
6 |
R.C. Edgar, , 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461.
https://doi.org/10.1093/bioinformatics/btq461
pmid: 20709691
|
7 |
R.C. Edgar, , 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998.
https://doi.org/10.1038/nmeth.2604
pmid: 23955772
|
8 |
R.C. Edgar, , B.J. Haas, , J.C. Clemente, , C. Quince, , R. Knight, , 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 27, 2194–2200.
https://doi.org/10.1093/bioinformatics/btr381
pmid: 21700674
|
9 |
K.E. Eichstaedt, , K. Kovatch, , D.A. Maroof, , 2013. A less conservative method to adjust for familywise error rate in neuropsychological research: the Holm’s sequential Bonferroni procedure. NeuroRehabilitation 32, 693–696.
https://doi.org/10.3233/NRE-130893
pmid: 23648625
|
10 |
L. Fan, , Z. Wang, , M. Chen, , Y. Qu, , J. Li, , A. Zhou, , S. Xie, , F. Zeng, , J. Zou, , 2019. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of the Total Environment 657, 1194–1204.
https://doi.org/10.1016/j.scitotenv.2018.12.069
pmid: 30677886
|
11 |
P.V.A. Fine, , S.W. Kembel, , 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565.
https://doi.org/10.1111/j.1600-0587.2010.06548.x
|
12 |
G. Fu, , G. Saunders, , J. Stevens, , 2014. Holm multiple correction for large-scale gene-shape association mapping. BMC Genetics 15, S5.
https://doi.org/10.1186/1471-2156-15-S1-S5
pmid: 25079623
|
13 |
A. Godhe, , M.E. Asplund, , K. Härnström, , V. Saravanan, , A. Tyagi, , I. Karunasagar, , 2008. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Applied and Environmental Microbiology 74, 7174–7182.
https://doi.org/10.1128/AEM.01298-08
pmid: 18849462
|
14 |
W. Gong, , A. Marchetti, , 2019. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Frontiers in Marine Science 6, 6.
https://doi.org/10.3389/fmars.2019.00219
|
15 |
J.A. Hartigan, , M.A. Wong, , 1979. Algorithm AS 136: A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C, Applied Statistics 28, 100–108.
|
16 |
A.H. Holmes, , L.S. Moore, , A. Sundsfjord, , M. Steinbakk, , S. Regmi, , A. Karkey, , P.J. Guerin, , L.J. Piddock, , 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187.
https://doi.org/10.1016/S0140-6736(15)00473-0
pmid: 26603922
|
17 |
J.A. Hope, , J. Malarkey, , J.H. Baas, , J. Peakall, , D.R. Parsons, , A.J. Manning, , S.J. Bass, , I.D. Lichtman, , P.D. Thorne, , L. Ye, , D.M. Paterson, , 2020. Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography 65, 2403–2419.
https://doi.org/10.1002/lno.11461
|
18 |
D. Hou, , Z. Huang, , S. Zeng, , J. Liu, , D. Wei, , X. Deng, , S. Weng, , Z. He, , J. He, , 2017. Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Frontiers in Microbiology 8, 2359.
https://doi.org/10.3389/fmicb.2017.02359
pmid: 29238333
|
19 |
D. Hou, , Z. Huang, , S. Zeng, , J. Liu, , S. Weng, , J. He, , 2018. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. Journal of Applied Microbiology 125, 792–799.
https://doi.org/10.1111/jam.13919
pmid: 29777622
|
20 |
Z. Huang, , Y. Chen, , S. Weng, , L.U. Xiaofeng, , L. Zhong, , W. Fan, , X. Chen, , H. Zhang, , H.E. Jianguo, , 2016. Multiple bacteria species were involved in hepatopancreas necrosis syndrome (HPNS) of Litopenaeus vannamei. Acta Scientiarum Naturalium Universitatis Sunyatseni 55, 1–11.
|
21 |
Z. Huang, , S. Zeng, , J. Xiong, , D. Hou, , R. Zhou, , C. Xing, , D. Wei, , X. Deng, , L. Yu, , H. Wang, , Z. Deng, , S. Weng, , S. Kriengkrai, , D. Ning, , J. Zhou, , J. He, , 2020. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32.
https://doi.org/10.1186/s40168-020-00802-3
pmid: 32156316
|
22 |
S. Jiao, , Y. Yang, , Y. Xu, , J. Zhang, , Y. Lu, , 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal 14, 202–216.
https://doi.org/10.1038/s41396-019-0522-9
pmid: 31611655
|
23 |
S.W. Kembel, , P.D. Cowan, , M.R. Helmus, , W.K. Cornwell, , H. Morlon, , D.D. Ackerly, , S.P. Blomberg, , C.O. Webb, , 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464.
https://doi.org/10.1093/bioinformatics/btq166
pmid: 20395285
|
24 |
S.V. Khramenkov, , M.N. Kozlov, , M.V. Krevbona, , A.G. Drofeev, , E.A. Kazakova, , V.A. Grachev, , B.B. Kuznetsov, , D.Iu. Poliakov, , IuA. Nikolaev, , 2013. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue. Microbiology 82, 625–634.
https://doi.org/10.1134/S002626171305007X
pmid: 25509401
|
25 |
B. Ma, , Y. Wang, , S. Ye, , S. Liu, , E. Stirling, , J.A. Gilbert, , K. Faust, , R. Knight, , J.K. Jansson, , C. Cardona, , L. Röttjers, , J. Xu, , 2020. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82.
https://doi.org/10.1186/s40168-020-00857-2
pmid: 32498714
|
26 |
T. Magoč, , S.L. Salzberg, , 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963.
https://doi.org/10.1093/bioinformatics/btr507
pmid: 21903629
|
27 |
I.S. Mikhailov, , Y.R. Zakharova, , Y.S. Bukin, , Y.P. Galachyants, , D.P. Petrova, , M.V. Sakirko, , Y.V. Likhoshway, , 2019. Co-occurrence networks among bacteria and microbial eukaryotes of lake baikal during a spring phytoplankton bloom. Microbial Ecology 77, 96–109.
https://doi.org/10.1007/s00248-018-1212-2
pmid: 29882155
|
28 |
D. Ning, , M. Yuan, , L. Wu, , Y. Zhang, , X. Guo, , X. Zhou, , Y. Yang, , A.P. Arkin, , M.K. Firestone, , J. Zhou, , 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications 11, 4717.
https://doi.org/10.1038/s41467-020-18560-z
pmid: 32948774
|
29 |
L.M. Peoples, , E. Grammatopoulou, , M. Pombrol, , X. Xu, , O. Osuntokun, , J. Blanton, , E.E. Allen, , C.C. Nunnally, , J.C. Drazen, , D.J. Mayor, , D.H. Bartlett, , 2019. Microbial community diversity within sediments from two geographically separated hadal trenches. Frontiers in Microbiology 10, 347.
https://doi.org/10.3389/fmicb.2019.00347
pmid: 30930856
|
30 |
M. Quintela-Baluja, , M. Abouelnaga, , J. Romalde, , J.Q. Su, , Y. Yu, , M. Gomez-Lopez, , B. Smets, , Y.G. Zhu, , D.W. Graham, , 2019. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research 162, 347–357.
https://doi.org/10.1016/j.watres.2019.06.075
pmid: 31295654
|
31 |
S. Ramalingam, , V. Chandra, , 2018. Influence of live microbes on suspended sediment concentration in coastal ecosystem. Marine Geology 405, 108–113.
https://doi.org/10.1016/j.margeo.2018.08.007
|
32 |
J. Rousk, , E. Bååth, , P.C. Brookes, , C.L. Lauber, , C. Lozupone, , J.G. Caporaso, , R. Knight, , N. Fierer, , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351.
https://doi.org/10.1038/ismej.2010.58
pmid: 20445636
|
33 |
A.M. Saunders, , M. Albertsen, , J. Vollertsen, , P.H. Nielsen, , 2016. The activated sludge ecosystem contains a core community of abundant organisms. ISME Journal 10, 11–20.
https://doi.org/10.1038/ismej.2015.117
pmid: 26262816
|
34 |
Y. Shi, , M. Delgado-Baquerizo, , Y. Li, , Y. Yang, , Y.G. Zhu, , J. Peñuelas, , H. Chu, , 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International 142, 105869.
https://doi.org/10.1016/j.envint.2020.105869
pmid: 32593837
|
35 |
J.C. Stegen, , X. Lin, , J.K. Fredrickson, , X. Chen, , D.W. Kennedy, , C.J. Murray, , M.L. Rockhold, , A. Konopka, , 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal 7, 2069–2079.
https://doi.org/10.1038/ismej.2013.93
pmid: 23739053
|
36 |
J.C. Stegen, , X. Lin, , J.K. Fredrickson, , A.E. Konopka, , 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology 6, 370.
https://doi.org/10.3389/fmicb.2015.00370
pmid: 25983725
|
37 |
Z.Z. Su, , Y. Li, , L.Q. Pan, , F.F. Xue, , 2016. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water. Aquaculture (Amsterdam, Netherlands) 450, 17–22.
https://doi.org/10.1016/j.aquaculture.2015.07.001
|
38 |
L.T.H. Tan, , K.G. Chan, , L.H. Lee, , B.H. Goh, , 2016. Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in Microbiology 7, 79.
https://doi.org/10.3389/fmicb.2016.00079
pmid: 26903962
|
39 |
C. Tsirogiannis, , B. Sandel, , 2014. Computing the skewness of the phylogenetic mean pairwise distance in linear time. Algorithms for Molecular Biology; AMB 9, 15.
https://doi.org/10.1186/1748-7188-9-15
pmid: 25093036
|
40 |
D. Wei, , S. Zeng, , D. Hou, , R. Zhou, , C. Xing, , X. Deng, , L. Yu, , H. Wang, , Z. Deng, , S. Weng, , Z. Huang, , J. He, , 2020. Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages. Journal of Applied Microbiology, jam.14846.
https://doi.org/10.1111/jam.14846
pmid: 33021028
|
41 |
C.J. Wright, , L.H. Burns, , A.A. Jack, , C.R. Back, , L.C. Dutton, , A.H. Nobbs, , R.J. Lamont, , H.F. Jenkinson, , 2013. Microbial interactions in building of communities. Molecular Oral Microbiology 28, 83–101.
https://doi.org/10.1111/omi.12012
pmid: 23253299
|
42 |
L. Wu, , D. Ning, , B. Zhang, , Y. Li, , P. Zhang, , X. Shan, , Q. Zhang, , M.R. Brown, , Z. Li, , J.D. Van Nostrand, , F. Ling, , N. Xiao, , Y. Zhang, , J. Vierheilig, , G.F. Wells, , Y. Yang, , Y. Deng, , Q. Tu, , A. Wang, , T. Zhang, , Z. He, , J. Keller, , P.H. Nielsen, , P.J.J. Alvarez, , C.S. Criddle, , M. Wagner, , J.M. Tiedje, , Q. He, , T.P. Curtis, , D.A. Stahl, , L. Alvarez-Cohen, , B.E. Rittmann, , X. Wen, , J. Zhou, , C.S. Criddle, , Y. Deng, , C. Etchebehere, , A. Ford, , D. Frigon, , J. Sanabria, , J.S. Griffin, , A.Z. Gu, , M. Habagil, , L. Hale, , S.D. Hardeman, , M. Harmon, , H. Horn, , Z. Hu, , S. Jauffur, , D.R. Johnson, , J. Keller, , A. Keucken, , S. Kumari, , C.D. Leal, , L.A. Lebrun, , J. Lee, , M. Lee, , Z.M.P. Lee, , Y. Li, , Z. Li, , M. Li, , X. Li, , F. Ling, , Y. Liu, , R.G. Luthy, , L.C. Mendonça-Hagler, , F.G.R. de Menezes, , A.J. Meyers, , A. Mohebbi, , P.H. Nielsen, , D. Ning, , A. Oehmen, , A. Palmer, , P. Parameswaran, , J. Park, , D. Patsch, , V. Reginatto, , F.L. de los Reyes, , B.E. Rittmann, , A. Noyola, , S. Rossetti, , X. Shan, , J. Sidhu, , W.T. Sloan, , K. Smith, , O.V. de Sousa, , D.A. Stahl, , K. Stephens, , R. Tian, , J.M. Tiedje, , N.B. Tooker, , Q. Tu, , J.D. Van Nostrand, , D. De los Cobos Vasconcelos, , J. Vierheilig, , M. Wagner, , S. Wakelin, , A. Wang, , B. Wang, , J.E. Weaver, , G.F. Wells, , S. West, , P. Wilmes, , S.G. Woo, , L. Wu, , J.H. Wu, , L. Wu, , C. Xi, , N. Xiao, , M. Xu, , T. Yan, , Y. Yang, , , M. Yang, , M. Young, , H. Yue, , B. Zhang, , P. Zhang, , Q. Zhang, , Y. Zhang, , T. Zhang, , Q. Zhang, , W. Zhang, , Y. Zhang, , H. Zhou, , J. Zhou, , X. Wen, , T.P. Curtis, , Q. He, , Z. He, , M.R. Brown, , T. Zhang, , Z. He, , J. Keller, , P.H. Nielsen, , P.J.J. Alvarez, , C.S. Criddle, , M. Wagner, , J.M. Tiedje, , Q. He, , T.P. Curtis, , D.A. Stahl, , L. Alvarez-Cohen, , B.E. Rittmann, , X. Wen, , J. Zhou, , and the Global Water Microbiome Consortium, 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology 4, 1183–1195.
https://doi.org/10.1038/s41564-019-0426-5
pmid: 31086312
|
43 |
J. Xiong, , W. Dai, , Q. Qiu, , J. Zhu, , W. Yang, , C. Li, , 2018. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Molecular Ecology 27, 3686–3699.
https://doi.org/10.1111/mec.14822
pmid: 30070062
|
44 |
J. Xiong, , X. Li, , M. Yan, , J. Lu, , Q. Qiu, , J. Chen, , 2020. Comparable ecological processes govern the temporal succession of gut bacteria and microeukaryotes as shrimp aged. Microbial Ecology 80, 935–945.
https://doi.org/10.1007/s00248-020-01533-6
pmid: 32494840
|
45 |
L. Yue, , W. Kong, , M. Ji, , J. Liu, , R.M. Morgan-Kiss, , 2019. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Science of the Total Environment 696, 134001.
https://doi.org/10.1016/j.scitotenv.2019.134001
pmid: 31454602
|
46 |
S. Zeng, , Z. Huang, , D. Hou, , J. Liu, , S. Weng, , J. He, , 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ 5, e3986.
https://doi.org/10.7717/peerj.3986
pmid: 29134144
|
47 |
F. Zhang, , H. Zhang, , Y. Yuan, , D. Liu, , C.Y. Zhu, , D. Zheng, , G.H. Li, , Y.Q. Wei, , D. Sun, , 2020. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering 14, 14.
https://doi.org/10.1007/s11783-019-1207-3
|
48 |
T. Zhang, , M.F. Shao, , L. Ye, , 2012. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal 6, 1137–1147.
https://doi.org/10.1038/ismej.2011.188
pmid: 22170428
|
49 |
J. Zhou, , D. Ning, , 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002–e00017.
https://doi.org/10.1128/MMBR.00002-17
pmid: 29021219
|
50 |
R. Zhou, , S. Zeng, , D. Hou, , J. Liu, , S. Weng, , J. He, , Z. Huang, , 2019. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Journal of Environmental Sciences (China) 80, 248–256.
https://doi.org/10.1016/j.jes.2019.01.001
pmid: 30952342
|
51 |
R. Zhou, , S. Zeng, , D. Hou, , J. Liu, , S. Weng, , J. He, , Z. Huang, , 2020. Temporal variation of antibiotic resistance genes carried by culturable bacteria in the shrimp hepatopancreas and shrimp culture pond water. Ecotoxicology and Environmental Safety 199, 110738.
https://doi.org/10.1016/j.ecoenv.2020.110738
pmid: 32447139
|
52 |
F. Zhu, , R. Massana, , F. Not, , D. Marie, , D. Vaulot, , 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology 52, 79–92.
https://doi.org/10.1016/j.femsec.2004.10.006
pmid: 16329895
|
53 |
Y.G. Zhu, , Y. Zhao, , D. Zhu, , M. Gillings, , J. Penuelas, , Y.S. Ok, , A. Capon, , S. Banwart, , 2019. Soil biota, antimicrobial resistance and planetary health. Environment International 131, 105059.
https://doi.org/10.1016/j.envint.2019.105059
pmid: 31374443
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|