Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2022, Vol. 4 Issue (2) : 119-130    https://doi.org/10.1007/s42832-021-0082-6
RESEARCH ARTICLE
Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages
Renjun Zhou1,2, Hao Wang1,2, Dongdong Wei1,2, Shenzheng Zeng1,2, Dongwei Hou1,2, Shaoping Weng1,2, Jianguo He1,2(), Zhijian Huang1,2()
1. State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
2. Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(2825 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Positive microbial interaction dominating in sedimentary bacterial and eukaryotic communities.

• Homogeneous selection process governed the assemblage of both bacterial and eukaryotic communities.

• Bacterial and eukaryotic diversities were in the reverse correlations with microbial positive interaction.

Sedimentary bacterial and eukaryotic communities are major components of the aquatic ecosystem. Revealing the linkages between their community structure and interactions is crucial to understand the diversity and functions of aquatic and soil ecosystems. However, how their diversity and assembly contribute to their interactions on time scale is unclear. This study examined sedimentary bacterial and eukaryotic communities in shrimp culture ponds at different culture stages. The most abundant bacteria were Proteobacteria (38.27%), whereas the most abundant eukaryotes were Chytridiomycota (27.48%). Bacterial and eukaryotic diversities were correlated (P<0.05), implying the strong interactions between bacteria and eukaryotes. Results showed that the bacterial and eukaryotic communities became increasingly similar on a local scale along with the shrimp culture. Only the eukaryotic community significantly increased in similarity along with the shrimp culture (P<0.05), suggesting that the sedimentary eukaryotic community structure is sensitive under shrimp culture. Co-occurrence network modeling indicated that positive microbial interactions were dominant. The homogeneous selection was the major driver of community assembly. Bacterial diversity negatively correlated with operational taxonomic units and positive links in networks (P<0.05), whereas eukaryotic diversities positively correlated with positive links in networks (P<0.05). This study broadens our knowledge about sedimentary microbial diversity, community assembly, and interaction patterns on time scale, providing a reference for the sustainable management in aquaculture production.

Keywords Sediment      Shrimp culture      Bacteria      Eukaryotes      Microbial community     
Corresponding Author(s): Jianguo He,Zhijian Huang   
Online First Date: 27 April 2021    Issue Date: 07 March 2022
 Cite this article:   
Renjun Zhou,Hao Wang,Dongdong Wei, et al. Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages[J]. Soil Ecology Letters, 2022, 4(2): 119-130.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-021-0082-6
https://academic.hep.com.cn/sel/EN/Y2022/V4/I2/119
Fig.1  OTU number and top taxonomic of bacterial and eukaryotic community OTUs. Common and stage-unique OTU numbers in (A) bacteria and (B) eukaryotes at different culture stages. Top phyla annotated from (C) bacterial community and (D) eukaryotic community.
Fig.2  Alpha-diversity of bacterial and eukaryotic communities at different culture stages. The column bar consists of mean±standard deviation (sd).
Microbial diversity Coefficient P-value
Alpha Richness 0.316 0.003
Shannon 0.143 0.193
Simpson 0.136 0.218
Chao1 0.204 0.063
ACE 0.232 0.033
PD_whole_tree 0.215 0.049
Beta Bac-Euk 0.740 0.001
Tab.1  Spearman’s correlation between bacterial and eukaryotic diversities
Fig.3  Variations in sedimentary bacterial and eukaryotic communities at different shrimp culture stages. MNDS analyses of (A) bacterial communities and (B) eukaryotic communities at shrimp different culture stages. (C) Temporal distance decay analysis of bacterial and eukaryotic communities in shrimp culture. (D) Similarity analysis of bacterial and eukaryotic communities in different culture stages and central points. The deviation bar consists of mean±sd.
Fig.4  Network analyses of sedimentary microbial communities. (A) General co-occurrence network of microbial community. (B) Topological information of the microbial community co-occurrence network. Bacterial and eukaryotic OTUs are network nodes, black line means positive correlations, and red line means negative correlations.
Network properties Day02 Day13 Day21 Day31 Day42 Day51 Day58
Nodes Bac 443
(18.62%)
329
(13.91%)
323
(13.37%)
295
(11.80%)
247
(9.87%)
213
(8.55%)
330
(13.38%)
Euk 143
(35.31%)
132
(33.33%)
116
(28.09%)
127
(31.99%)
139
(34.66%)
111
(27.61%)
119
(30.91%)
Edges
(Positive)
Bac-Bac 1111
(57.99%)
585
(44.28%)
381
(46.24%)
472
(47.29%)
267
(33.42%)
188
(33.75%)
436
(46.19%)
Bac-Euk 640
(33.40%)
562
(42.54%)
307
(37.26%)
376
(37.68%)
324
(40.55%)
244
(43.81%)
370
(39.19%)
Euk-Euk 120
(6.26%)
145
(10.98%)
85
(10.32%)
122
(12.22%)
158
(19.77%)
88
(15.80%)
84
(8.90%)
Edges
(Negative)
Bac-Bac 25
(1.30%)
14
(1.06%)
30
(3.64%)
9
(0.90%)
26
(3.25%)
28
(5.03%)
21
(2.22%)
Bac-Euk 20
(1.04%)
12
(0.91%)
20
(2.43%)
12
(1.20%)
19
(2.38%)
7
(1.26%)
27
(2.86%)
Euk-Euk 0
(0%)
3
(0.23%)
1
(0.12%)
7
(0.70%)
5
(0.63%)
2
(0.36%)
6
(0.64%)
Tab.2  Topological information of sedimentary microbial network analyses at different shrimp culture stages.
Fig.5  Community assemblage analysis of sedimentary bacterial and eukaryotic communities at different shrimp culture stages. (A) Bacterial community assembly and (B) eukaryotic community assembly at different shrimp culture stages. The column bar consists of mean±sd.
Fig.6  Spearman correlation between sedimentary microbial network nodes, edges, and community diversities (alpha- and beta-diversities), assembly processes respectively in shrimp culture stages. “Bac” means bacteria, “Euk” means eukaryotes. The Spearman correlation P-values are interpreted as star symbol, * means P<0.05, ** means P<0.01.
1 M.J. Anderson, , 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
2 E.W. Beals, , 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Advances in Ecological Research 14, 1–55.
3 D. Berry, , S. Widder, , 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219.
https://doi.org/10.3389/fmicb.2014.00219 pmid: 24904535
4 D.A. Caron, , P.D. Countway, , A.C. Jones, , D.Y. Kim, , A. Schnetzer, , 2012. Marine protistan diversity. Annual Review of Marine Science 4, 467–493.
https://doi.org/10.1146/annurev-marine-120709-142802 pmid: 22457984
5 P.D. Countway, , R.J. Gast, , P. Savai, , D.A. Caron, , 2005. Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. Journal of Eukaryotic Microbiology 52, 95–106.
https://doi.org/10.1111/j.1550-7408.2005.05202006.x pmid: 15817114
6 R.C. Edgar, , 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461.
https://doi.org/10.1093/bioinformatics/btq461 pmid: 20709691
7 R.C. Edgar, , 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998.
https://doi.org/10.1038/nmeth.2604 pmid: 23955772
8 R.C. Edgar, , B.J. Haas, , J.C. Clemente, , C. Quince, , R. Knight, , 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 27, 2194–2200.
https://doi.org/10.1093/bioinformatics/btr381 pmid: 21700674
9 K.E. Eichstaedt, , K. Kovatch, , D.A. Maroof, , 2013. A less conservative method to adjust for familywise error rate in neuropsychological research: the Holm’s sequential Bonferroni procedure. NeuroRehabilitation 32, 693–696.
https://doi.org/10.3233/NRE-130893 pmid: 23648625
10 L. Fan, , Z. Wang, , M. Chen, , Y. Qu, , J. Li, , A. Zhou, , S. Xie, , F. Zeng, , J. Zou, , 2019. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of the Total Environment 657, 1194–1204.
https://doi.org/10.1016/j.scitotenv.2018.12.069 pmid: 30677886
11 P.V.A. Fine, , S.W. Kembel, , 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565.
https://doi.org/10.1111/j.1600-0587.2010.06548.x
12 G. Fu, , G. Saunders, , J. Stevens, , 2014. Holm multiple correction for large-scale gene-shape association mapping. BMC Genetics 15, S5.
https://doi.org/10.1186/1471-2156-15-S1-S5 pmid: 25079623
13 A. Godhe, , M.E. Asplund, , K. Härnström, , V. Saravanan, , A. Tyagi, , I. Karunasagar, , 2008. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Applied and Environmental Microbiology 74, 7174–7182.
https://doi.org/10.1128/AEM.01298-08 pmid: 18849462
14 W. Gong, , A. Marchetti, , 2019. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Frontiers in Marine Science 6, 6.
https://doi.org/10.3389/fmars.2019.00219
15 J.A. Hartigan, , M.A. Wong, , 1979. Algorithm AS 136: A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C, Applied Statistics 28, 100–108.
16 A.H. Holmes, , L.S. Moore, , A. Sundsfjord, , M. Steinbakk, , S. Regmi, , A. Karkey, , P.J. Guerin, , L.J. Piddock, , 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187.
https://doi.org/10.1016/S0140-6736(15)00473-0 pmid: 26603922
17 J.A. Hope, , J. Malarkey, , J.H. Baas, , J. Peakall, , D.R. Parsons, , A.J. Manning, , S.J. Bass, , I.D. Lichtman, , P.D. Thorne, , L. Ye, , D.M. Paterson, , 2020. Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography 65, 2403–2419.
https://doi.org/10.1002/lno.11461
18 D. Hou, , Z. Huang, , S. Zeng, , J. Liu, , D. Wei, , X. Deng, , S. Weng, , Z. He, , J. He, , 2017. Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Frontiers in Microbiology 8, 2359.
https://doi.org/10.3389/fmicb.2017.02359 pmid: 29238333
19 D. Hou, , Z. Huang, , S. Zeng, , J. Liu, , S. Weng, , J. He, , 2018. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. Journal of Applied Microbiology 125, 792–799.
https://doi.org/10.1111/jam.13919 pmid: 29777622
20 Z. Huang, , Y. Chen, , S. Weng, , L.U. Xiaofeng, , L. Zhong, , W. Fan, , X. Chen, , H. Zhang, , H.E. Jianguo, , 2016. Multiple bacteria species were involved in hepatopancreas necrosis syndrome (HPNS) of Litopenaeus vannamei. Acta Scientiarum Naturalium Universitatis Sunyatseni 55, 1–11.
21 Z. Huang, , S. Zeng, , J. Xiong, , D. Hou, , R. Zhou, , C. Xing, , D. Wei, , X. Deng, , L. Yu, , H. Wang, , Z. Deng, , S. Weng, , S. Kriengkrai, , D. Ning, , J. Zhou, , J. He, , 2020. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32.
https://doi.org/10.1186/s40168-020-00802-3 pmid: 32156316
22 S. Jiao, , Y. Yang, , Y. Xu, , J. Zhang, , Y. Lu, , 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal 14, 202–216.
https://doi.org/10.1038/s41396-019-0522-9 pmid: 31611655
23 S.W. Kembel, , P.D. Cowan, , M.R. Helmus, , W.K. Cornwell, , H. Morlon, , D.D. Ackerly, , S.P. Blomberg, , C.O. Webb, , 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464.
https://doi.org/10.1093/bioinformatics/btq166 pmid: 20395285
24 S.V. Khramenkov, , M.N. Kozlov, , M.V. Krevbona, , A.G. Drofeev, , E.A. Kazakova, , V.A. Grachev, , B.B. Kuznetsov, , D.Iu. Poliakov, , IuA. Nikolaev, , 2013. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue. Microbiology 82, 625–634.
https://doi.org/10.1134/S002626171305007X pmid: 25509401
25 B. Ma, , Y. Wang, , S. Ye, , S. Liu, , E. Stirling, , J.A. Gilbert, , K. Faust, , R. Knight, , J.K. Jansson, , C. Cardona, , L. Röttjers, , J. Xu, , 2020. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82.
https://doi.org/10.1186/s40168-020-00857-2 pmid: 32498714
26 T. Magoč, , S.L. Salzberg, , 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963.
https://doi.org/10.1093/bioinformatics/btr507 pmid: 21903629
27 I.S. Mikhailov, , Y.R. Zakharova, , Y.S. Bukin, , Y.P. Galachyants, , D.P. Petrova, , M.V. Sakirko, , Y.V. Likhoshway, , 2019. Co-occurrence networks among bacteria and microbial eukaryotes of lake baikal during a spring phytoplankton bloom. Microbial Ecology 77, 96–109.
https://doi.org/10.1007/s00248-018-1212-2 pmid: 29882155
28 D. Ning, , M. Yuan, , L. Wu, , Y. Zhang, , X. Guo, , X. Zhou, , Y. Yang, , A.P. Arkin, , M.K. Firestone, , J. Zhou, , 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications 11, 4717.
https://doi.org/10.1038/s41467-020-18560-z pmid: 32948774
29 L.M. Peoples, , E. Grammatopoulou, , M. Pombrol, , X. Xu, , O. Osuntokun, , J. Blanton, , E.E. Allen, , C.C. Nunnally, , J.C. Drazen, , D.J. Mayor, , D.H. Bartlett, , 2019. Microbial community diversity within sediments from two geographically separated hadal trenches. Frontiers in Microbiology 10, 347.
https://doi.org/10.3389/fmicb.2019.00347 pmid: 30930856
30 M. Quintela-Baluja, , M. Abouelnaga, , J. Romalde, , J.Q. Su, , Y. Yu, , M. Gomez-Lopez, , B. Smets, , Y.G. Zhu, , D.W. Graham, , 2019. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research 162, 347–357.
https://doi.org/10.1016/j.watres.2019.06.075 pmid: 31295654
31 S. Ramalingam, , V. Chandra, , 2018. Influence of live microbes on suspended sediment concentration in coastal ecosystem. Marine Geology 405, 108–113.
https://doi.org/10.1016/j.margeo.2018.08.007
32 J. Rousk, , E. Bååth, , P.C. Brookes, , C.L. Lauber, , C. Lozupone, , J.G. Caporaso, , R. Knight, , N. Fierer, , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351.
https://doi.org/10.1038/ismej.2010.58 pmid: 20445636
33 A.M. Saunders, , M. Albertsen, , J. Vollertsen, , P.H. Nielsen, , 2016. The activated sludge ecosystem contains a core community of abundant organisms. ISME Journal 10, 11–20.
https://doi.org/10.1038/ismej.2015.117 pmid: 26262816
34 Y. Shi, , M. Delgado-Baquerizo, , Y. Li, , Y. Yang, , Y.G. Zhu, , J. Peñuelas, , H. Chu, , 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International 142, 105869.
https://doi.org/10.1016/j.envint.2020.105869 pmid: 32593837
35 J.C. Stegen, , X. Lin, , J.K. Fredrickson, , X. Chen, , D.W. Kennedy, , C.J. Murray, , M.L. Rockhold, , A. Konopka, , 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal 7, 2069–2079.
https://doi.org/10.1038/ismej.2013.93 pmid: 23739053
36 J.C. Stegen, , X. Lin, , J.K. Fredrickson, , A.E. Konopka, , 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology 6, 370.
https://doi.org/10.3389/fmicb.2015.00370 pmid: 25983725
37 Z.Z. Su, , Y. Li, , L.Q. Pan, , F.F. Xue, , 2016. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water. Aquaculture (Amsterdam, Netherlands) 450, 17–22.
https://doi.org/10.1016/j.aquaculture.2015.07.001
38 L.T.H. Tan, , K.G. Chan, , L.H. Lee, , B.H. Goh, , 2016. Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in Microbiology 7, 79.
https://doi.org/10.3389/fmicb.2016.00079 pmid: 26903962
39 C. Tsirogiannis, , B. Sandel, , 2014. Computing the skewness of the phylogenetic mean pairwise distance in linear time. Algorithms for Molecular Biology; AMB 9, 15.
https://doi.org/10.1186/1748-7188-9-15 pmid: 25093036
40 D. Wei, , S. Zeng, , D. Hou, , R. Zhou, , C. Xing, , X. Deng, , L. Yu, , H. Wang, , Z. Deng, , S. Weng, , Z. Huang, , J. He, , 2020. Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages. Journal of Applied Microbiology, jam.14846.
https://doi.org/10.1111/jam.14846 pmid: 33021028
41 C.J. Wright, , L.H. Burns, , A.A. Jack, , C.R. Back, , L.C. Dutton, , A.H. Nobbs, , R.J. Lamont, , H.F. Jenkinson, , 2013. Microbial interactions in building of communities. Molecular Oral Microbiology 28, 83–101.
https://doi.org/10.1111/omi.12012 pmid: 23253299
42 L. Wu, , D. Ning, , B. Zhang, , Y. Li, , P. Zhang, , X. Shan, , Q. Zhang, , M.R. Brown, , Z. Li, , J.D. Van Nostrand, , F. Ling, , N. Xiao, , Y. Zhang, , J. Vierheilig, , G.F. Wells, , Y. Yang, , Y. Deng, , Q. Tu, , A. Wang, , T. Zhang, , Z. He, , J. Keller, , P.H. Nielsen, , P.J.J. Alvarez, , C.S. Criddle, , M. Wagner, , J.M. Tiedje, , Q. He, , T.P. Curtis, , D.A. Stahl, , L. Alvarez-Cohen, , B.E. Rittmann, , X. Wen, , J. Zhou, , C.S. Criddle, , Y. Deng, , C. Etchebehere, , A. Ford, , D. Frigon, , J. Sanabria, , J.S. Griffin, , A.Z. Gu, , M. Habagil, , L. Hale, , S.D. Hardeman, , M. Harmon, , H. Horn, , Z. Hu, , S. Jauffur, , D.R. Johnson, , J. Keller, , A. Keucken, , S. Kumari, , C.D. Leal, , L.A. Lebrun, , J. Lee, , M. Lee, , Z.M.P. Lee, , Y. Li, , Z. Li, , M. Li, , X. Li, , F. Ling, , Y. Liu, , R.G. Luthy, , L.C. Mendonça-Hagler, , F.G.R. de Menezes, , A.J. Meyers, , A. Mohebbi, , P.H. Nielsen, , D. Ning, , A. Oehmen, , A. Palmer, , P. Parameswaran, , J. Park, , D. Patsch, , V. Reginatto, , F.L. de los Reyes, , B.E. Rittmann, , A. Noyola, , S. Rossetti, , X. Shan, , J. Sidhu, , W.T. Sloan, , K. Smith, , O.V. de Sousa, , D.A. Stahl, , K. Stephens, , R. Tian, , J.M. Tiedje, , N.B. Tooker, , Q. Tu, , J.D. Van Nostrand, , D. De los Cobos Vasconcelos, , J. Vierheilig, , M. Wagner, , S. Wakelin, , A. Wang, , B. Wang, , J.E. Weaver, , G.F. Wells, , S. West, , P. Wilmes, , S.G. Woo, , L. Wu, , J.H. Wu, , L. Wu, , C. Xi, , N. Xiao, , M. Xu, , T. Yan, , Y. Yang, , , M. Yang, , M. Young, , H. Yue, , B. Zhang, , P. Zhang, , Q. Zhang, , Y. Zhang, , T. Zhang, , Q. Zhang, , W. Zhang, , Y. Zhang, , H. Zhou, , J. Zhou, , X. Wen, , T.P. Curtis, , Q. He, , Z. He, , M.R. Brown, , T. Zhang, , Z. He, , J. Keller, , P.H. Nielsen, , P.J.J. Alvarez, , C.S. Criddle, , M. Wagner, , J.M. Tiedje, , Q. He, , T.P. Curtis, , D.A. Stahl, , L. Alvarez-Cohen, , B.E. Rittmann, , X. Wen, , J. Zhou, , and the Global Water Microbiome Consortium, 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology 4, 1183–1195.
https://doi.org/10.1038/s41564-019-0426-5 pmid: 31086312
43 J. Xiong, , W. Dai, , Q. Qiu, , J. Zhu, , W. Yang, , C. Li, , 2018. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Molecular Ecology 27, 3686–3699.
https://doi.org/10.1111/mec.14822 pmid: 30070062
44 J. Xiong, , X. Li, , M. Yan, , J. Lu, , Q. Qiu, , J. Chen, , 2020. Comparable ecological processes govern the temporal succession of gut bacteria and microeukaryotes as shrimp aged. Microbial Ecology 80, 935–945.
https://doi.org/10.1007/s00248-020-01533-6 pmid: 32494840
45 L. Yue, , W. Kong, , M. Ji, , J. Liu, , R.M. Morgan-Kiss, , 2019. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Science of the Total Environment 696, 134001.
https://doi.org/10.1016/j.scitotenv.2019.134001 pmid: 31454602
46 S. Zeng, , Z. Huang, , D. Hou, , J. Liu, , S. Weng, , J. He, , 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ 5, e3986.
https://doi.org/10.7717/peerj.3986 pmid: 29134144
47 F. Zhang, , H. Zhang, , Y. Yuan, , D. Liu, , C.Y. Zhu, , D. Zheng, , G.H. Li, , Y.Q. Wei, , D. Sun, , 2020. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering 14, 14.
https://doi.org/10.1007/s11783-019-1207-3
48 T. Zhang, , M.F. Shao, , L. Ye, , 2012. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal 6, 1137–1147.
https://doi.org/10.1038/ismej.2011.188 pmid: 22170428
49 J. Zhou, , D. Ning, , 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002–e00017.
https://doi.org/10.1128/MMBR.00002-17 pmid: 29021219
50 R. Zhou, , S. Zeng, , D. Hou, , J. Liu, , S. Weng, , J. He, , Z. Huang, , 2019. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Journal of Environmental Sciences (China) 80, 248–256.
https://doi.org/10.1016/j.jes.2019.01.001 pmid: 30952342
51 R. Zhou, , S. Zeng, , D. Hou, , J. Liu, , S. Weng, , J. He, , Z. Huang, , 2020. Temporal variation of antibiotic resistance genes carried by culturable bacteria in the shrimp hepatopancreas and shrimp culture pond water. Ecotoxicology and Environmental Safety 199, 110738.
https://doi.org/10.1016/j.ecoenv.2020.110738 pmid: 32447139
52 F. Zhu, , R. Massana, , F. Not, , D. Marie, , D. Vaulot, , 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology 52, 79–92.
https://doi.org/10.1016/j.femsec.2004.10.006 pmid: 16329895
53 Y.G. Zhu, , Y. Zhao, , D. Zhu, , M. Gillings, , J. Penuelas, , Y.S. Ok, , A. Capon, , S. Banwart, , 2019. Soil biota, antimicrobial resistance and planetary health. Environment International 131, 105059.
https://doi.org/10.1016/j.envint.2019.105059 pmid: 31374443
[1] Peipei Xue, Alex B. McBratney, Budiman Minasny, Tony O'Donnell, Vanessa Pino, Mario Fajardo, Wartini Ng, Neil Wilson, Rosalind Deaker. Soil bacterial depth distribution controlled by soil orders and soil forms[J]. Soil Ecology Letters, 2022, 4(1): 57-68.
[2] Bo Maxwell Stevens, Derek Lee Sonderegger, Nancy Collins Johnson. Microbial community structure across grazing treatments and environmental gradients in the Serengeti[J]. Soil Ecology Letters, 2022, 4(1): 45-56.
[3] Yan Wang, Guowei Chen, Yifei Sun, Kun Zhu, Yan Jin, Baoguo Li, Gang Wang. Different agricultural practices specify bacterial community compositions in the soil rhizosphere and root zone[J]. Soil Ecology Letters, 2022, 4(1): 18-31.
[4] Alin Song, Zimin Li, Yulin Liao, Yongchao Liang, Enzhao Wang, Sai Wang, Xu Li, Jingjing Bi, Zhiyuan Si, Yanhong Lu, Jun Nie, Fenliang Fan. Soil bacterial communities interact with silicon fraction transformation and promote rice yield after long-term straw return[J]. Soil Ecology Letters, 2021, 3(4): 395-408.
[5] Gaofei Jiang, Ningqi Wang, Yaoyu Zhang, Zhen Wang, Yuling Zhang, Jiabao Yu, Yong Zhang, Zhong Wei, Yangchun Xu, Stefan Geisen, Ville-Petri Friman, Qirong Shen. The relative importance of soil moisture in predicting bacterial wilt disease occurrence[J]. Soil Ecology Letters, 2021, 3(4): 356-366.
[6] Ziheng Peng, Zhifeng Wang, Yu Liu, Tongyao Yang, Weimin Chen, Gehong Wei, Shuo Jiao. Soil phosphorus determines the distinct assembly strategies for abundant and rare bacterial communities during successional reforestation[J]. Soil Ecology Letters, 2021, 3(4): 342-355.
[7] Yifei Sun, Meiling Sun, Guowei Chen, Xin Chen, Baoguo Li, Gang Wang. Aggregate sizes regulate the microbial community patterns in sandy soil profile[J]. Soil Ecology Letters, 2021, 3(4): 313-327.
[8] Jingli Yu, Jingjing Xia, Qiaoli Ma, Chi Zhang, Ji Zhao, Xininigen Tanggood, Yunfeng Yang. Soil particle and moisture-related factors determine landward distribution of bacterial communities in a lateral riverside continuum of the Xilin River Basin[J]. Soil Ecology Letters, 2021, 3(4): 303-312.
[9] Xu Liu, Teng Yang, Yu Shi, Yichen Zhu, Mulin He, Yunke Zhao, Jonathan M. Adams, Haiyan Chu. Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain[J]. Soil Ecology Letters, 2021, 3(4): 290-302.
[10] Chen Zhu, Ning Ling, Ling Li, Xiaoyu Liu, Michaela A. Dippold, Xuhui Zhang, Shiwei Guo, Yakov Kuzyakov, Qirong Shen. Compositional variations of active autotrophic bacteria in paddy soils with elevated CO2 and temperature[J]. Soil Ecology Letters, 2020, 2(4): 295-307.
[11] Gabriela Montes de Oca-Vásquez, Frank Solano-Campos, Bernal Azofeifa-Bolaños, Amelia Paniagua-Vasquez, José Vega-Baudrit, Antonio Ruiz-Navarro, Rubén López-Mondéjar, Felipe Bastida. Microhabitat heterogeneity associated with Vanilla spp. and its influences on the microbial community of leaf litter and soil[J]. Soil Ecology Letters, 2020, 2(3): 195-208.
[12] Junjie Du, Qixing Zhou, Jianhu Wu, Guifeng Li, Guoqin Li, Yongning Wu. Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure[J]. Soil Ecology Letters, 2020, 2(3): 176-179.
[13] Ajmal Khan, Weidong Kong, Mukan Ji, Linyan Yue, Yue Xie, Jinbo Liu, Baiqing Xu. Disparity in soil bacterial community succession along a short time-scale deglaciation chronosequence on the Tibetan Plateau[J]. Soil Ecology Letters, 2020, 2(2): 83-92.
[14] Eva Högfors-Rönnholm, Stephan Christel, Tom Lillhonga, Sten Engblom, Peter Österholm, Mark Dopson. Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil[J]. Soil Ecology Letters, 2020, 2(2): 120-130.
[15] Xinqiang Liang, Fayong Li, Sheng Wang, Guifen Hua, Miaomiao He, Guangming Tian, Sangar Khan, Ravin Poudel, Karen A. Garrett. A rice variety with a high straw biomass retained nitrogen and phosphorus without affecting soil bacterial species[J]. Soil Ecology Letters, 2020, 2(2): 131-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed