Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2022, Vol. 4 Issue (4) : 435-443    https://doi.org/10.1007/s42832-021-0125-z
RESEARCH ARTICLE
Biological transfer of silver under silver nanoparticle exposure and nitrogen transfer via a collembolan-predatory mite food-chain and ecotoxicity of silver sulfide
Simin Li1,2, Zhu Li1, Xin Ke3, Longhua Wu1(), Peter Christie1
1. CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
 Download: PDF(401 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• AgNPs transferred and accumulated though soil animal food chain.

• Ÿ AgNPs trophic transfer disturbed nutrient element N transfer.

• Ag accumulated in body tissue, but no biomagnification effects.

• Ag2S was harmful to F. candida on survival and reproduction.

The development of nanotechnology has accelerated the use of silver nanoparticles (AgNPs) in household chemicals and the accumulation of Ag in sewage treatment systems. The application of sewage sludge products to soils raises concerns over the safety of Ag in the function and biogeochemical cycles of the soil belowground ecosystem. Here, we assess the potential risk of the accumulation and transfer of Ag under AgNPs exposure and its effects on the trophic transfer of nitrogen (N) through a soil animal food chain (Folsomia candidaHypoaspis aculeifer). The formation of stable silver sulfide (Ag2S) was also studied via a single species test using F. candida. Concentrations of Ag in F. candida increased with increasing AgNPs concentration, as did those in the predator H. aculeifer, but the Ag bioaccumulation factors of both animals were<1. Folsomia candida body tissue 15N abundance declined markedly compared with that of H. aculeifer. Silver sulfide did have adverse effects on the survival and reproduction of F. candida. The Ag concentrations of F. candida increased with increasing Ag2S concentration in sludge-treated soils. Silver sulfide showed ecotoxicity to the collembolan, therefore ecotoxicity resulting from the transformation and fate of AgNPs in soils needs to be considered before biosolid products are applied to agricultural soils.

Keywords AgNPs      Ag2S      15N      soil animals      food chain     
Corresponding Author(s): Longhua Wu   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 18 February 2022    Issue Date: 25 October 2022
 Cite this article:   
Simin Li,Zhu Li,Xin Ke, et al. Biological transfer of silver under silver nanoparticle exposure and nitrogen transfer via a collembolan-predatory mite food-chain and ecotoxicity of silver sulfide[J]. Soil Ecology Letters, 2022, 4(4): 435-443.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-021-0125-z
https://academic.hep.com.cn/sel/EN/Y2022/V4/I4/435
Fig.1  Silver concentrations in body tissues of F. candida (A) and H. aculeifer (B) on plate dietary exposure test. Results expressed as mean ± standard error (SE), n = 3. Lowercase letters indicate the differences between different treatment means.
Fig.2  Atom % 15N in body tissues of F. candida and H. aculeifer on plate dietary exposure test. Results expressed as mean ± standard error (SE), n = 3. Lowercase letters indicate the differences between different treatment means.
Fig.3  Number of adults (A) and juveniles (B) in spiked soil after 28 d of exposure. Results expressed as mean±standard error (SE), n = 4. Lowercase letters indicate the differences between different treatment means.
Fig.4  Body length of adults and juveniles in spiked soil after 28 d of exposure. Results expressed as mean±standard error (SE), n = 4. Lowercase letters indicate the differences between different treatment means.
Fig.5  Silver concentrations in adult and juvenile body tissues in spiked soil after 28 d of exposure. Results expressed as mean ± standard error (SE), n = 4. Lowercase letters indicate the differences between different treatment means.
Exposure treatment BAF
F. candida H. aculeifer
AgNPs 100 0.093a 0.23a
AgNPs 200 0.083ab 0.23a
AgNPs 400 0.063bc 0.22a
AgNPs 600 0.056c 0.19a
Tab.1  BAF values for the transfer of Ag to F. candida and H. aculeifer.
1 Q. Abbas, , , G.J. Liu, B. Yousaf, , M.U. Ali, , H. Ullah, , R. Ahmed, , 2019. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environmental Pollution 250, 728–736.
https://doi.org/10.1016/j.envpol.2019.04.083
2 M.M. Ardestani, , F. Oduber, , C.A.M. van Gestel, , 2014. A combined toxicokinetics and toxicodynamics approach to assess the effect of porewater composition on cadmium bioavailability to Folsomia Candida. Environmental Toxicology and Chemistry 33, 1570–157.
https://doi.org/10.1002/etc.2585
3 E. Baatrup, , , M. Bayley, J.A. Axelsen, , 2005. Predation of the mite Hypoaspis aculeifer on the springtail Folsomia fimetaria and the influence of sex, size, starvation, and poisoning. Entomologia Experimentalis et Applicata 118, 61–70.
https://doi.org/10.1111/j.1570-7458.2006.00357.x
4 R.C. Bicho, , , T. Ribeiro, N.P. Rodrigues, , J.J. Scott-Fordsmand, , M.J.B. Amorim, , 2016. Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. Journal of Hazardous Materials 318, 608–614.
https://doi.org/10.1016/j.jhazmat.2016.07.040
5 S.A. Blaser, , , M. Scheringer, M. MacLeod, , K. Hungerbühler, , 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano functionalized plastics and textiles. Science of the Total Environment 390, 396–409.
https://doi.org/10.1016/j.scitotenv.2007.10.010
6 P. Courtois, , , A. Rorat, S. Lemiere, , R. Guyoneaud, , E. Attard, , C. Levard, , , F. Vandenbulcke, 2019. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environmental Pollution 253, 578–598.
https://doi.org/10.1016/j.envpol.2019.07.053
7 W.C. Dai, , , X. Ke, Z. Li, , M. Gao, , L.H. Wu, , P. Christie, , , Y.M. Luo, 2018. Antioxidant enzyme activities of Folsomia candida and avoidance of soil metal contamination. Environmental Science and Pollution Research International 25, 2889–2898.
https://doi.org/10.1007/s11356-017-0489-x
8 F. Dang, , , Y.Z. Chen, Y.N. Huang, , H. Hintelmann, , Y.B. Si, , D.M. Zhou, , 2019. Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique. Environmental Science & Technology 53, 3802–3810.
https://doi.org/10.1021/acs.est.8b06135
9 C. Ek, , , A.M. Karlson, S. Hansson, , A. Garbaras, , E. Gorokhova, , 2015. Stable isotope composition in Daphnia is modulated by growth, temperature, and toxic exposure: implications for trophic magnification factor assessment. Environmental Science & Technology 49, 6934–6942.
https://doi.org/10.1021/acs.est.5b00270
10 M.T. Fountain, , , S.P. Hopkin, 2005. Folsomia candida (Collembola): a “standard” soil arthropod. Annual Review of Entomology 50, 201–222.
https://doi.org/10.1146/annurev.ento.50.071803.130331
11 D. He, , , S. Garg, Z.M. Wang, , L.X. Li, , H.Y. Rong, , X.M. Ma, , , G.Y. Li, T.C. An, , T.D. Waite, , 2019. Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. Environmental Science. Nano 6, 1674–1687.
https://doi.org/10.1039/C9EN00138G
12 S.P. Hopkin, , 1990. Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Functional Ecology 4, 321–327.
https://doi.org/10.2307/2389593
13 P. Huguier, , , N. Manier, O.J. Owojori, , P. Bauda, , P. Pandard, , J. Römbke, , 2015. The use of soil mites in ecotoxicology: A review. Ecotoxicology (London, England) 24, 1–18.
https://doi.org/10.1007/s10646-014-1363-y
14 K. Hund-Rinke, , , W. Kördel, 2003. Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicology and Environmental Safety 56, 52–62.
https://doi.org/10.1016/S0147-6513(03)00050-2
15 H. Ju, , , D. Zhu, M. Qiao, , 2019. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviours of the soil springtail, Folsomia candida. Environ Mental Pollution 247, 890–897.
https://doi.org/10.1016/j.envpol.2019.01.097
16 R. Kaegi, , , A. Voegelin, B. Sinnet, , S. Zuleeg, , H. Hagendorfer, , M. Burkhardt, , H. Siegrist, , 2011. Behaviour of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science & Technology 45, 3902–3908.
https://doi.org/10.1021/es1041892
17 S. Kampe, , , R. Kaegi, K. Schlich, , C. Wasmuth, , H. Hollert, , C. Schlechtriem, , 2018. Silver nanoparticles in sewage sludge: Bioavailability of sulfurized silver to the terrestrial isopod Porcellio scaber. Environmental Toxicology and Chemistry 37, 1606–1613.
https://doi.org/10.1002/etc.4102
18 X. Ke, , , S. Scheu, 2008. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi). Oecologia 157, 603–617.
https://doi.org/10.1007/s00442-008-1106-y
19 M. Kraas, , , K. Schlich, B. Knopf, , F. Wege, , R. Kagi, , K. Terytze, , , K. Hund-Rinke, 2017. Long-term effects of sulfurized silver nanoparticles in sewage sludge on soil microflora. Environmental Toxicology and Chemistry 36, 3305–3313.
https://doi.org/10.1002/etc.3904
20 J.R. Kramer, , , G. Benoit, K.C. Bowles, , 2002. Environmental Chemistry of Silver. In: Andren, A., Bober, T., eds. Silver in the Environment: Transport, Fate and Effects. Society of Environmental Toxicology and Chemistry, Pensacola, pp.1–25.
21 C. Kula, , , J. Römbke, 1998. Testing organic matter decomposition within risk assessment of plant protection products. Environmental Science and Pollution Research International 5, 55–60.
https://doi.org/10.1007/BF02986376
22 I.J. Kwak, , , Y.J. An, 2016. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola). Journal of Hazardous Materials 315, 110–116.
https://doi.org/10.1016/j.jhazmat.2016.05.005
23 M. Li, , , P. Wang, F. Dang, , D.M. Zhou, , 2017. The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environmental Science: Nano 4, 919–928.
https://doi.org/10.1039/C6EN00682E
24 S.M. Li, , , M.Y. Jia, Z. Li, , X. Ke, , L.H. Wu, , P. Christie, , 2020a. Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. Ecotoxicology and Environmental Safety 207, 111218.
https://doi.org/10.1016/j.ecoenv.2020.111218
25 S.M. Li, , , J. Li, Z. Li, , X. Ke, , L.H. Wu, , P. Christie, , 2021. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. Science of the Total Environment 788, 147793.
https://doi.org/10.1016/j.scitotenv.2021.147793
26 S.M. Li, , , Z. Li, J. Li, , X. Ke, , L.H. Wu, , Y.M. Luo, , , P. Christie, 2020b. Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environmental Pollution 260, 114017.
https://doi.org/10.1016/j.envpol.2020.114017
27 K. Lock, , , C.R. Janssen, 2003. Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Chemosphere 53, 851–856.
https://doi.org/10.1016/S0045-6535(03)00593-9
28 R. Ma, , , C. Levard, J.D. Judy, , J.M. Unrine, , M. Durenkamp, , B. Martin, , , B. Jefferson, G.V. Lowry, , 2014. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science & Technology 48, 104–112.
https://doi.org/10.1021/es403646x
29 L.A. Mendes, , , V.L. Maria, , J.J. Scott-Fordsmand, M.J.B. Amorim, , 2015. Ag nanoparticles (Ag NM300K) in the terrestrial environment: Effects at population and cellular level in Folsomia candida (Collembola). International Journal of Environmental Research and Public Health 12, 12530–12542.
https://doi.org/10.3390/ijerph121012530
30 N.C. Mueller, , , B. Nowack, 2008. Exposure modelling of engineered nanoparticles in the environment. Environmental Science & Technology 42, 4447–4453.
https://doi.org/10.1021/es7029637
31 H. Nakanishi, , , A. Mori, K. Takeda, , H. Tanaka, , N. Kobayashi, , K. Tanoi, , , T. Yamakawa, S. Mori, , 2015. Discovery of radioactive silver (Ag-110m) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant. Proceedings of the Japan Academy: Series B, Physical and Biological Sciences 91, 160–174.
https://doi.org/10.2183/pjab.91.160
32 OECD, 2008. Guidelines for the Testing of Chemicals No. 226, Predatory Mite (Hypoaspis Aculeifer) Reproduction Test in Soil. Organisation for Economic Cooperation and Development, Paris, France.
33 OECD, 2009. Guidelines for the Testing of Chemicals No. 232, Collembolan Reproduction Test in Soil. Organisation for Economic Cooperation and Development, Paris, France.
34 B. Pey, , , J. Nahmani, A. Auclerc, , Y. Capowiez, , D. Cluzeau, , J. Cortet, , , T. Decaens, L. Deharveng, , F. Dubs, , S. Joimel, , C. Briard, , , F. Grumiaux, M.A. Laporte, , A. Pasquet, , C. Pelosi, , C. Pernin, , , J.F. Ponge, S. Salmon, , L. Santorufo, , M. Hedde, , 2014. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology 15, 194–206.
https://doi.org/10.1016/j.baae.2014.03.007
35 R. Scheifler, , , G.D. Vaufleury, , M.L. Toussaint, P.M. Badot, , 2002. Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens. Chemosphere 48, 571–579.
https://doi.org/10.1016/S0045-6535(02)00116-9
36 K. Schlich, , , M. Hoppe, M. Kraas, , J. Schubert, , M. Chanana, , K. Hund-Rinke, , 2018. Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants. Environmental Pollution 242, 1850–1859.
https://doi.org/10.1016/j.envpol.2018.07.082
37 K. Schlich, , , T. Klawonn, K. Terytze, , K. Hund-Rinke, , 2013. Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environmental Toxicology and Chemistry 32, 181–188.
https://doi.org/10.1002/etc.2030
38 P.L. Shaw-Allen, , C.S. Romanek, , , A.L. Bryan, H. Brant, , C.H. Jagoe, , 2005. Shifts in relative tissue δ15N values in snowy egret nestlings with Dietary Mercury Exposure: a marker for increased protein degradation. Environmental Science & Technology 39, 4226–4233.
https://doi.org/10.1021/es0483950
39 P. Sillapawattana, , M.C.H. Gruhlke, , A. Schaffer, , 2016. Effect of silver nanoparticles on the standard soil arthropod Folsomia candida (Collembola) and the eukaryote model organism Saccharomyces cerevisiae. Environmental Sciences Europe 28, 2–12.
https://doi.org/10.1186/s12302-016-0095-4
40 S. Staaden, , , A. Milcu, M. Rohlfs, , S. Scheu, , 2010. Fungal toxins affect the fitness and stable isotope fractionation of Collembola. Soil Biology & Biochemistry 42, 1766–1773.
https://doi.org/10.1016/j.soilbio.2010.06.014
41 P.S. Tourinho, , C.A.M. van Gestel, , , S. Lofts, A.M.V.M. Soares, , S. Loureiro, , 2013. Influence of soil pH on the toxicity of Zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus. Environmental Toxicology and Chemistry 32, 2808–2815.
https://doi.org/10.1002/etc.2369
42 P.L. Waalewijn-Kool, , K. Klein, , , R.M. Fornies, , C.A.M. van Gestel, 2014. Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida. Ecotoxicology (London, England) 23, 1629–1637.
https://doi.org/10.1007/s10646-014-1302-y
43 P. Wang, , , E. Lombi, N.W. Menzies, , F.J. Zhao, , P.M. Kopittke, , 2018. Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environmental Science. Nano 5, 2463–2774.
https://doi.org/10.1039/C8EN00486B
44 P. Wang, , , E. Lombi, S.K. Sun, , K.G. Scheckel, , A. Malysheva, , B.A. McKenna, , , N.W. Menzies, F.J. Zhao, , P.M. Kopittke, , 2017. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano 4, 448–460.
https://doi.org/10.1039/C6EN00489J
45 L.H. Wu, , , L. Yang, Z.Y. Wang, , M.M. Cheng, , Z. Li, , W.X. Liu, , , T.T. Ma, P. Christie, , Y.M. Luo, , 2018. Uptake of silver by brown rice and wheat in soils repeatedly amended with biosolids. Science of the Total Environment 612, 94–102.
https://doi.org/10.1016/j.scitotenv.2017.08.183
46 L.L. Zhang, , C.A.M. van Gestel, , 2017. The toxicity of different lead salts to Enchytraeus crypticus in relation to bioavailability in soil. Environmental Toxicology and Chemistry 36, 2083–2091.
https://doi.org/10.1002/etc.3738
47 D. Zhu, , , Q.F. Bi, Q. Xiang, , Q.L. Chen, , P. Christie, , X. Ke, , , L.H. Wu, Y.G. Zhu, , 2018. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution 235, 150–154.
https://doi.org/10.1016/j.envpol.2017.12.058
48 D. Zhu, , , X. Ke, L.H. Wu, , P. Christie, , Y.M. Luo, , 2016. Biological transfer of dietary cadmium in relation to nitrogen transfer and N-15 fractionation in a soil collembolan-predatory mite food chain. Soil Biology & Biochemistry 101, 207–216.
https://doi.org/10.1016/j.soilbio.2016.07.026
[1] SEL-00125-OF-LHW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed