Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (1) : 230192    https://doi.org/10.1007/s42832-023-0192-4
RESEARCH ARTICLE
Divergent responses of growth rate and antioxidative system of ten Bacillus strains to acid stresses
Xiaoran Shan1, Jiayi Chen1, Jiaen Zhang1,2(), Ziqiang Liu1, Shufang Chen1, Hui Wei1,2()
1. Key Laboratory of Agro-Environment in the Tropics of Ministry of Agriculture and Rural Affairs, Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
2. Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
 Download: PDF(3426 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Response of growth rate and antioxidative system of ten Bacillus strains to acid stresses was assayed.

● Strong acid treatment significantly decreased the growth rate of the strains.

● Acid stresses increased the GPX activity and GSSG content of the tested strains.

● Divergent changes occurred in ROS and antioxidative system (SOD, CAT, GR, MDA and GSH).

Environmental changes including soil acidification exert obvious stresses on soil ecosystems and influence soil microorganisms. In this study, ten microbial strains were incubated under different acid treatments to investigate responses of microbial growth and antioxidative system to acid stress. All the strains belong to Bacillus genus, but exhibit distinct ecological functions. We observed that these microbial strains had obviously different pH tolerance threshold, in spite of the close phylogenetic classification among strains. Acid stresses exerted significant effects on microbial antioxidative system, including superoxide dismutase (SOD), catalase (CAT) and glutathione transferring enzymes (GPX and GR) and reactants (GSH and GSSH), but the effects were strain specific. Furthermore, we found acid stress effects on total variances of the investigated microbial antioxidative system along the first two principal components (PCs). Activities of CAT and SOD contributed substantially to PC1 that reflected obvious acid effects on NC7 and ZC4, and closely related to intracellular malondialdehyde content. The GSSG activities and GSH/GSSG contributed greatly to PC2 that unveiled acid stress effects on most of the microbial strains. Our results highlight substantially heterogeneous responses of microbial strains to acid stress and support that phylogenetic closeness does not imply functional similarity of soil microorganisms under environmental changes.

Keywords soil acidification      microbial strain      acid tolerance capacity      microbial growth      oxidative stress      antioxidative system     
Corresponding Author(s): Jiaen Zhang,Hui Wei   
Issue Date: 10 December 2023
 Cite this article:   
Xiaoran Shan,Jiayi Chen,Jiaen Zhang, et al. Divergent responses of growth rate and antioxidative system of ten Bacillus strains to acid stresses[J]. Soil Ecology Letters, 2024, 6(1): 230192.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-023-0192-4
https://academic.hep.com.cn/sel/EN/Y2024/V6/I1/230192
Fig.1  Growth rate of the ten tested Bacillus strains under acid treatments. In each panel, different lowercase letters indicate significant differences among the acid treatments at p < 0.05.
Fig.2  Reactive oxygen species (ROS) of the ten tested Bacillus strains under acid treatments. In the figure, Acid1 represents a relatively weak acid treatment of pH 5.5, while Acid2 represents a very strong acid treatment of pH 5.0 (for strains GL6, JD, and NC2) or 4.5 (for the other strains), with the control of pH 7.0. In each panel, different lowercase letters indicate significant differences among the acid treatments at p < 0.05.
TreatmentGL6FQ1J5NC7NC8JDNC2QY5ZC3ZC4
SODControl0.63 (0.011)b0.35 (0.018)b0.32 (0.023)b0.83 (0.038)ab1.59 (0.026)a0.32 (0.0025)ab0.23 (0.026)c1.06 (0.18)ab0.25 (0.0052)b1.87 (0.085)a
Acid11.04 (0.0051)a0.43 (0.025)a0.44 (0.021)a0.76 (0.024)b1.02 (0.11)b0.31 (0.0058)b0.50 (0.018)a0.60 (0.14)b0.34 (0.010)a1.22 (0.089)c
Acid20.83 (0.15)ab0.0030 (0.0020)c0.22 (0.019)c1.84 (0.090)a0.78 (0.049)c0.39 (0.0027)a0.44 (0.014)b1.55 (0.037)a0.32 (0.0039)ab1.46 (0.026)b
CATControl1.48 (0.18)a0.55 (0.026)b0.86 (0.081)a0.33 (0.066)b1.52 (0.10)0.93 (0.072)a0.49 (0.11)b0.51 (0.052)b0.35 (0.037)b3.81 (0.51)a
Acid11.31 (0.093)a0.99 (0.081)a0.58 (0.13)b0.25 (0.028)b1.25 (0.15)0.33 (0.046)c1.21 (0.12)a0.61 (0.038)b0.52 (0.10)a1.36 (0.27)b
Acid20.68 (0.15)b1.23 (0.15)a0.41 (0.031)b3.51 (0.58)a1.25 (0.036)0.71 (0.082)b1.31 (0.093)a0.81 (0.039)a0.28 (0.023)b0.60 (0.13)b
GPXControl0.18 (0.0015)b0.23 (0.013)b0.24 (0.0015)b0.20 (0.0079)b0.31 (0.0039)ab0.22 (0.0084)c0.22 (0.0030)c0.28 (0.0020)b0.25 (0.010)b0.26 (0.010)b
Acid10.21 (0.019)ab0.26 (0.0043)a0.24 (0.00062)ab0.28 (0.00062)ab0.28 (0.0065)b0.29 (0.0046)a0.23 (0.0015)b0.27 (0.0047)c0.25 (0.0042)b0.31 (0.0053)a
Acid20.24 (0.0013)a0.25 (0.0011)a0.28 (0.0063)a0.32 (0.011)a0.31 (0.0066)a0.25 (0.0022)b0.26 (0.0011)a0.29 (0.0025)a0.27 (0.0040)a0.29 (0.0079)a
GRControl0.058 (0.0092)b0.17 (0.0092)ab0.093 (0.014)0.087 (0.0035)b0.085 (0.0095)b0.12 (0.042)0.14 (0.0059)a0.12 (0.0092)a0.20 (0.013)a0.088 (0.0040)ab
Acid10.073 (0.0099)ab0.16 (0.010)b0.093 (0.0038)0.10 (0.0038)ab0.11 (0.0096)ab0.13 (0.051)0.11 (0.0061)b0.084 (0.0071)b0.15 (0.023)ab0.069 (0.0043)b
Acid20.11 (0.025)a0.19 (0.0060)a0.075 (0.0038)0.18 (0.020)a0.19 (0.0041)a0.25 (0.072)0.085 (0.032)ab0.10 (0.0034)ab0.080 (0.0069)b0.11 (0.0047)a
Tab.1  Effects of acid treatments on the antioxidative enzymes of different microbial strains.
TreatmentGL6FQ1J5NC7NC8JDNC2QY5ZC3ZC4
MDAControl0.16 (0.0086)c0.062 (0.0031)b0.089 (0.013)b0.15 (0.016)b0.20 (0.017)0.065 (0.0033)b0.056 (0.0024)c0.15 (0.0095)b0.058 (0.0028)ab0.45 (0.030)a
Acid10.25 (0.00062)b0.075 (0.0069)b0.074 (0.0057)b0.16 (0.0015)b0.19 (0.014)0.067 (0.0031)ab0.069 (0.0059)b0.12 (0.0093)b0.065 (0.0038)a0.33 (0.019)b
Acid20.36 (0.0040)a0.13 (0.0098)a0.12 (0.012)a0.62 (0.033)a0.14 (0.0013)0.074 (0.0038)a0.099 (0.0022)a0.20 (0.018)a0.053 (0.00076)b0.22 (0.013)c
GSHControl4.60 (0.50)4.16 (0.12)b3.38 (0.22)c3.54 (0.31)c3.72 (0.072)b3.97 (0.12)c5.79 (0.84)a5.22 (0.21)3.87 (0.18)ab3.92 (0.20)b
Acid15.23 (0.52)4.59 (0.15)ab3.83 (0.048)b4.21 (0.18)b3.56 (0.12)b4.42 (0.17)b4.05 (0.22)b4.85 (0.12)4.46 (0.35)a4.46 (0.14)ab
Acid23.93 (0.50)5.87 (1.09)a4.41 (0.18)a5.08 (0.099)a4.37 (0.11)a5.51 (0.19)a4.32 (0.16)b5.33 (0.38)3.47 (0.19)b5.25 (0.58)a
GSSGControl0.37 (0.0084)0.27 (0.056)b0.57 (0.028)b0.36 (0.045)c0.39 (0.030)c0.36 (0.015)0.26 (0.074)b0.36 (0.015)b0.46 (0.12)b0.21 (0.028)b
Acid10.37 (0.0087)0.41 (0.054)b0.46 (0.081)b0.51 (0.039)b0.52 (0.047)b0.36 (0.017)0.27 (0.071)b0.41 (0.015)b0.45 (0.059)b0.27 (0.027)b
Acid20.77 (0.046)0.85 (0.13)a0.86 (0.056)a0.79 (0.041)a0.74 (0.055)a0.63 (0.016)0.49 (0.022)a0.67 (0.030)a0.76 (0.098)a0.42 (0.041)a
GSH/GSSGControl12.36 (1.35)a15.28 (0.46)a5.97 (0.39)b9.75 (0.85)a9.67 (0.19)a10.96 (0.33)b22.62 (3.28)a14.53 (0.59)a8.37 (0.40)b18.43 (0.96)a
Acid114.08 (1.40)a11.33 (0.36)ab8.42 (0.11)a8.28 (0.36)b6.81 (0.24)b12.12 (0.48)a14.82 (0.81)b11.88 (0.29)b10.02 (0.79)a16.30 (0.50)ab
Acid25.14 (0.65)b6.93 (1.29)b5.16 (0.21)c6.41 (0.12)c5.94 (0.15)c8.82 (0.30)c8.85 (0.34)c7.98 (0.56)c4.56 (0.25)c12.42 (1.37)b
Tab.2  Effects of acid treatments on the intracellular components of different microbial strains.
Fig.3  Result visualization of principal component analysis on the antioxidative system under acid treatments. In the figure, Acid1 represents a relatively weak acid treatment of pH 5.5, while acid2 represents a very strong acid treatment of pH 5.0 (for strains GL6, JD, and NC2) or 4.5 (for the other strains), with the control of pH 7.0. In panel A, different shapes indicate different microbial strains, while different colors indicate the acid treatments in all the three panels. In each of panels B and C, different lowercase or upper letters indicate significant differences among the acid treatments at p < 0.05. The abbreviations SOD, CAT, GR, GPX, MDA, GSH and GSSG stand for superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, malondialdehyde, reduced glutathione, and oxidized glutathione, respectively.
1 J., Aguirre, M., Rios-Momberg, D., Hewitt, W., Hansberg, 2005. Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology13, 111–118.
https://doi.org/10.1016/j.tim.2005.01.007
2 A.J., Alpert, H.F., Gilbert, 1985. Detection of oxidized and reduced glutathione with a recycling postcolumn reaction. Analytical Biochemistry144, 553–562.
https://doi.org/10.1016/0003-2697(85)90153-8
3 R.G., Alscher, N., Erturk, L.S., Heath, 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany53, 1331–1341.
https://doi.org/10.1093/jexbot/53.372.1331
4 M., Bahram, F., Hildebrand, S.K., Forslund, J.L., Anderson, N.A., Soudzilovskaia, P.M., Bodegom, J., Bengtsson-Palme, S., Anslan, L.P., Coelho, H., Harend, J., Huerta-Cepas, M.H., Medema, M.R., Maltz, S., Mundra, P.A., Olsson, M., Pent, S., Polme, S., Sunagawa, M., Ryberg, L., Tedersoo, P., Bork, 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.
https://doi.org/10.1038/s41586-018-0386-6
5 S.R., Branson, J.R., Broadbent, C.E., Carpenter, 2021. Internal pH and acid anion accumulation in Listeria monocytogenes and Escherichia coli exposed to lactic or acetic acids at mildly acidic pH. Frontiers in Microbiology12, 803271.
https://doi.org/10.3389/fmicb.2021.803271
6 J.M., Bruno-Bárcena, M.A., Azcárate-Peril, H.M., Hassan, 2010. Role of antioxidant enzymes in bacterial resistance to organic acids. Applied and Environmental Microbiology76, 2747–2753.
https://doi.org/10.1128/AEM.02718-09
7 N., Chowdhury, G., Goswami, R.C., Boro, M., Barooah, 2021. A pH-Dependent gene expression enables Bacillus amyloliquefaciens MBNC to adapt to acid stress. Current Microbiology78, 3104–3114.
https://doi.org/10.1007/s00284-021-02573-y
8 T.W., Crowther, J., van den Hoogen, J., Wan, M.A., Mayes, A.D., Keiser, L., Mo, C., Averill, D.S., Maynard, 2019. The global soil community and its influence on biogeochemistry. Science365, eaav0550.
https://doi.org/10.1126/science.aav0550
9 H., Dai, B., Wu, B., Chen, B., Ma, C., Chu, 2022. Diel fluctuation of extracellular reactive oxygen species production in the rhizosphere of rice. Environmental Science & Technology56, 9075–9082.
https://doi.org/10.1021/acs.est.2c00005
10 M., Delgado-Baquerizo, D.J., Eldridge, V., Ochoa, B., Gozalo, B.K., Singh, F.T., Maestre, 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters20, 1295–1305.
https://doi.org/10.1111/ele.12826
11 N., Fierer, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.
https://doi.org/10.1038/nrmicro.2017.87
12 S.S., Gill, N., Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry48, 909–930.
https://doi.org/10.1016/j.plaphy.2010.08.016
13 N., Guan, L., Liu, 2020. Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology104, 51–65.
https://doi.org/10.1007/s00253-019-10226-1
14 S., Guan, 1986. Soil enzymes and the analytical methods. China Agriculture Press, Beijing
15 J.H., Guo, X., Liu, Y., Zhang, J.L., Shen, W.X., Han, W.F., Zhang, P., Christie, K.W.T., Goulding, P.M., Vitousek, F., Zhang, 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.
https://doi.org/10.1126/science.1182570
16 L., Hallbäcken, C.O., Tamm, 1986. Changes in soil acidity from 1927 to 1982–1984 in a forest area of south-west Sweden. Scandinavian Journal of Forest Research1, 219–232.
https://doi.org/10.1080/02827588609382413
17 T., Hao, X., Liu, Q., Zhu, M., Zeng, X., Chen, L., Yang, J., Shen, X., Shi, F., Zhang, W., de Vries, 2022. Quantifying drivers of soil acidification in three Chinese cropping systems. Soil & Tillage Research215, 105230.
https://doi.org/10.1016/j.still.2021.105230
18 Z.U., Hassan, R., Al Thani, M., Alsafran, Q., Migheli, S., Jaoua, 2021. Selection of Bacillus spp. with decontamination potential on multiple Fusarium mycotoxins. Food Control127, 108119.
https://doi.org/10.1016/j.foodcont.2021.108119
19 D.J., Jamieson, 1998. Oxidative stress responses of the Yeast Saccharomyces cereisiae. Yeast (Chichester, England)14, 1511–1527.
https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
20 L.E., Jensen, L., Kragulund, O., Nybroe, 1998. Expression of a nitrogen regulated lux gene fusion in Pseudomonas fluorescens DF57 studied in pure culture and in soil. FEMS Microbiology Ecology25, 23–32.
https://doi.org/10.1111/j.1574-6941.1998.tb00457.x
21 S.G., Joshi, M., Cooper, A., Yost, M., Paff, U.K., Ercan, G., Fridman, G., Friedman, A., Fridman, A.D., Brooks, 2011. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy55, 1053–1062.
https://doi.org/10.1128/AAC.01002-10
22 T., Komives, G., Gullner, Z., Király, 1998. Role of glutathione and glutathione-related enzymes in response of plants to environmental stress. Annals of the New York Academy of Sciences851, 251–258.
https://doi.org/10.1111/j.1749-6632.1998.tb09000.x
23 P., Lund, A., Tramonti, D., De Biase, 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews38, 1091–1125.
https://doi.org/10.1111/1574-6976.12076
24 Y., Luo, S., Vilain, B., Voigt, D., Albrecht, M., Hecker, V.S., Brozel, 2007. Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiology Letters271, 40–47.
https://doi.org/10.1111/j.1574-6968.2007.00692.x
25 D., Markewitz, D.D., Richter, H.L., Allen, J.B., Urrego, 1998. Three decades of observed soil acidification in the Calhoun Experimental Forest: Has acid rain made a difference?. Soil Science Society of America Journal62, 1428–1439.
https://doi.org/10.2136/sssaj1998.03615995006200050040x
26 R., Mittler, 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science7, 405–410.
https://doi.org/10.1016/S1360-1385(02)02312-9
27 J.F., Nilsson, L.G., Castellani, W.O., Draghi, E.G., Mogro, D., Wibberg, A., Winkler, L.H., Hansen, A., Schluter, A., Puhler, J., Kalinowski, G.A., Torres Tejerizo, M., Pistorio, 2021. Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiology Ecology97, fiaa235.
https://doi.org/10.1093/femsec/fiaa235
28 G., Noctor, L., Gomez, H., Vanacker, C.H., Foyer, 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany53, 1283–1304.
https://doi.org/10.1093/jexbot/53.372.1283
29 N., Nunan, H., Schmidt, X., Raynaud, 2020. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences375, 20190249.
https://doi.org/10.1098/rstb.2019.0249
30 C.W.I., Owens, R.V., Belcher, 1965. A colorimetric micro-method for the determination of glutathione. Biochemical Journal94, 705–711.
https://doi.org/10.1042/bj0940705
31 Jr., Quivey ., R.G R., Faustoferri, K., Monahan, R., Marquis, 2000. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiology Letters189, 89–92.
https://doi.org/10.1111/j.1574-6968.2000.tb09211.x
32 J., Puissant, B., Jones, T., Goodall, D., Mang, A., Blaud, H.S., Gweon, A., Malik, D.L., Jones, I.M., Clark, P.R., Hirsch, R., Griffiths, 2019. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biology and Biochemistry138, 107601.
https://doi.org/10.1016/j.soilbio.2019.107601
33 S., Raza, N., Miao, P., Wang, X., Ju, Z., Chen, J., Zhou, Y., Kuzyakov, 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology26, 3738–3751.
https://doi.org/10.1111/gcb.15101
34 J., Rousk, E., Baath, P.C., Brookes, C.L., Lauber, C., Lozupone, J.G., Caporaso, R., Knight, N., Fierer, 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal4, 1340–1351.
https://doi.org/10.1038/ismej.2010.58
35 L.D., Tullio, D.F., Gomes, L.P., Silva, M., Hungria, J.S.S., Batista, 2019. Proteomic analysis of Rhizobium freirei PRF 81(T) reveals the key role of central metabolic pathways in acid tolerance. Applied Soil Ecology135, 98–103.
https://doi.org/10.1016/j.apsoil.2018.11.014
36 T., Vetrovsky, P., Kohout, M., Kopecky, A., Machac, M., Man, B.D., Bahnmann, V., Brabcova, J., Choi, L., Meszarosova, Z.R., Human, C., Lepinay, S., Llado, R., Lopez-Mondejar, T., Martinovic, T., Masinova, D., Morais, D., Navratilova, I., Odriozola, M., Stursova, K., Svec, V., Tlaskal, M., Urbanova, J., Wan, L., Zifcakova, A., Howe, J., Ladau, K.G., Peay, D., Storch, J., Wild, P., Baldrian, 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications10, 5142.
https://doi.org/10.1038/s41467-019-13164-8
37 Y., Wang, J., Li, J., Wang, Z., Li, 2010. Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidative system. Plant Growth Regulation61, 195–204.
https://doi.org/10.1007/s10725-010-9470-0
38 H., Wei, X., Shan, L., Wu, J., Zhang, M., Saleem, J., Yang, Z., Liu, X., Chen, 2023. Microbial cell membrane properties and intracellular metabolism regulate individual level microbial responses to acid stress. Soil Biology & Biochemistry177, 108883.
https://doi.org/10.1016/j.soilbio.2022.108883
39 G., Wingsle, J.E., Hallgren, 1993. Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activties in Scots pine needles. Journal of Experimental Botany44, 463–470.
https://doi.org/10.1093/jxb/44.2.463
40 C.C., Winterbourn, 2008. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology4, 278–286.
https://doi.org/10.1038/nchembio.85
41 C., Wu, J., Huang, R., Zhou, 2014. Progress in engineering acid stress resistance of lactic acid bacteria. Applied Microbiology and Biotechnology98, 1055–1063.
https://doi.org/10.1007/s00253-013-5435-3
42 X.Y., Wu, A., von Tiedmeann, 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L. ) exposed to ozone. Environmental Pollution116, 37–47.
https://doi.org/10.1016/S0269-7491(01)00174-9
43 Y., Xu, Z., Zhao, W., Tong, Y., Ding, B., Liu, Y., Shi, J., Wang, S., Sun, M., Liu, Y., Wang, Q., Qi, M., Xian, G., Zhao, 2020. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nature Communications11, 1496.
https://doi.org/10.1038/s41467-020-15350-5
44 P., Yan, L., Wu, D., Wang, J., Fu, C., Shen, X., Li, L., Zhang, L., Zhang, L., Fan, H., Wenyan, 2020. Soil acidification in Chinese tea plantations. Science of the Total Environment715, 136963.
https://doi.org/10.1016/j.scitotenv.2020.136963
45 Y., Yang, C., Ji, W., Ma, S., Wang, S., Wang, W., Han, A., Mohammat, D., Robinson, P., Smith, 2012. Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology18, 2292–2300.
https://doi.org/10.1111/j.1365-2486.2012.02694.x
46 J., Yin, H., Chen, P., Duan, K., Zhu, N., Li, Y., Ma, Y., Xu, J., Guo, R., Liu, Q., Chen, 2023. Soil microbial communities as potential regulators of N2O sources in highly acidic soils. Soil Ecology Letters5, 230178.
https://doi.org/10.1007/s42832-023-0178-2
47 Y., Yoon, H., Lee, S., Lee, S., Kim, K.H., Choi, 2015. Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Research International72, 25–36.
https://doi.org/10.1016/j.foodres.2015.03.016
48 Z., Yu, H.Y.H., Chen, E.B., Searle, J., Sardans, P., Ciais, J., Peñuelas, Z., Huang, 2020. Whole soil acidification and base cation reduction across subtropical China. Geoderma361, 114107.
https://doi.org/10.1016/j.geoderma.2019.114107
49 H., Zhang, Y., Huang, S., An, Q., Zeng, B., Wang, X., Bai, Q., Huang, 2023. Decay stages and meteorological factors affect microbial community during leaf litter in situ decomposition. Soil Ecology Letters5, 220160.
https://doi.org/10.1007/s42832-022-0160-4
50 Z., Zhou, C., Wang, Y., Luo, 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications11, 3072.
https://doi.org/10.1038/s41467-020-16881-7
[1] SEL-00192-OF-HW_suppl_1 Download
[1] Ruibo Sun, Daozhong Wang, Zhibin Guo, Keke Hua, Xisheng Guo, Yan Chen, Binbin Liu, Haiyan Chu. Combined application of organic manure and chemical fertilizers stabilizes soil N-cycling microflora[J]. Soil Ecology Letters, 2023, 5(3): 220165-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed