Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (2) : 230208    https://doi.org/10.1007/s42832-023-0208-0
REVIEW
No tillage increases soil microarthropod (Acari and Collembola) abundance at the global scale
Yulin Liu1,2, Lihong Song3, Donghui Wu1,2, Zihan Ai1,2, Qian Xu1, Xin Sun2,4,5(), Liang Chang1,2()
1. State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Agriculture, Guizhou University, Guiyang 550025, China
4. Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
5. Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
 Download: PDF(1257 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Conservation tillage increases soil microarthropod abundance at the global scale.

● The effect of conservative tillage on microarthropods is soil texture-dependent.

● This positive effect of conservation tillage is particularly evident in nutrient-poor soil areas.

● In temperate humid regions, however, this positive effect of conservation tillage is limited.

● The effect of conservative tillage on microarthropods varies with fauna group and climate regions.

Conservation tillage is crucial for preserving soil structure and fertility. However, the effects of no tillage on the abundance of soil microarthropods (Acari and Collembola) remain unclear, with contrasting results reported. To assess the global impact of no tillage, we compiled a data set consisting of 59 publications, from which we extracted 167 observations for microarthropod abundance, 193 observations for Acari abundance, and 176 observations for Collembola abundance. Our findings revealed significant increases in soil microarthropods (27.1%), Acari (22.1%), and Collembola (32.3%) compared to conventional tillage under no tillage. The impact varied with soil texture, precipitation, and soil nutrient availability. Furthermore, to assess the impact of reduced tillage, we extracted 46 observations for microarthropod abundance, 64 observations for Acari abundance, and 27 observations for Collembola abundance. Reduced tillage also showed positive effects, with a 28.4% increase in soil microarthropods and a 53.7% increase in Acari compared to conventional tillage. Our research demonstrates the beneficial effects of no tillage and reduced tillage on soil microarthropod abundance. However, the positive effect of conservation tillage on soil microarthropods differed in magnitude Collembola and Acari. Conservation tillage should be encouraged, particularly in regions with poor soil nutrients and high precipitation, to prevent further decline in soil microarthropod abundance.

Keywords no tillage      soil microarthropod      Acari      Collembola      meta-analysis     
Corresponding Author(s): Xin Sun,Liang Chang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 22 November 2023
 Cite this article:   
Yulin Liu,Lihong Song,Donghui Wu, et al. No tillage increases soil microarthropod (Acari and Collembola) abundance at the global scale[J]. Soil Ecology Letters, 2024, 6(2): 230208.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-023-0208-0
https://academic.hep.com.cn/sel/EN/Y2024/V6/I2/230208
ArticlesLatitudeLongitudeArticlesLatitudeLongitudeArticlesLatitudeLongitude
1?37.78?122.222131.7273.984143.0210.60
2?34.28138.782233.96?83.384243.32124.23
3?33.28?63.902333.96?83.384343.54?80.25
4?30.00?53.502433.96?83.384443.62?120.35
5?29.96?49.422535.00114.404544.31?85.60
6?26.78?49.102635.02114.534645.1342.06
7?22.23?54.822735.02114.534745.4410.99
8?20.86?42.802835.38?78.084845.4410.99
9?20.38?41.052936.0348.994945.63?122.67
10?18.06?49.513037.72140.385046.37?76.41
11?11.86?55.373138.54?76.085146.31?63.38
1212.20125.553239.00?76.495247.43126.63
1320.85?42.803339.32?5.325347.43126.63
1423.62104.353439.96116.235447.43126.63
1525.45?50.553540.25?8.325551.1017.13
1626.3592.833640.41?82.9156120.2034.24
1729.30330.853741.7115.9557?30.33149.78
1829.8076.923841.871.155836.1797.31
1929.8076.923942.88143.885938.3875.58
2029.96?90.074042.93120.68
Tab.1  Geographical location of the 59 articles (or source) included in the meta-analysis.
Fig.1  Effects of no tillage and reduced tillage practices on microarthropod, Acari, and Collembola abundance: A Meta-analysis of weighted-mean effect sizes and 95% confidence intervals. NT and RT represent no tillage and reduced tillage, respectively. The grey dashed line represents the null effect (0); the small black squares denote weighted effect sizes with values outside the brackets; the lines extending from the small black squares indicate 95% confidence intervals with values enclosed in brackets.
Fig.2  Impact of soil texture on microarthropod, Acari, and Collembola abundance in no tillage and reduced tillage soils. The comparison between no tillage (NT) and reduced tillage (RT) is illustrated on the left and right, respectively; A and B represent soil microarthropods; C and D represent soil Acari; E and F represent soil Collembola.
Fig.3  Variation in effect sizes of microarthropod abundance in no tillage soils across different environmental factors. A to D indicate, respectively, the effect of precipitation of driest month, annual precipitation, soil pH and available P on the effect size of microarthropod abundance in no tillage soils.
Fig.4  Effect size of Acari abundance in no tillage soils under different annual precipitation and precipitation of driest month. A indicates annual precipitation, B indicates precipitation of driest month.
Fig.5  Effect size of Collembola abundance in no tillage soils under different soil organic matter and soil total N. A indicates soil organic matter, B indicates soil total N.
1 D., Anderson, K., Burnham, 2004. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science and Business Media. Springer New York, NY
2 J., Arroyo, C., Iturrondobeitia, 2006. Differences in the diversity of oribatid mite communities in forests and agrosystems lands. European Journal of Soil Biology42, 259–269.
https://doi.org/10.1016/j.ejsobi.2006.01.002
3 P., Barberi, B., Lo Cascio, 2001. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Research41, 325–340.
https://doi.org/10.1046/j.1365-3180.2001.00241.x
4 J.C., Bedano, M.P., Cantú, M.E., Doucet, 2006. Soil springtails (Hexapoda: Collembola), symphylans and pauropods (Arthropoda: Myriapoda) under different management systems in agroecosystems of the subhumid Pampa (Argentina). European Journal of Soil Biology42, 107–119.
https://doi.org/10.1016/j.ejsobi.2005.11.004
5 S.A.B., Belmonte, C.L., Luisella, R.J.S., Stahel, E.B., Bonifacio, V.N., Novello, E., Zanini, K.L.S., Steenwerth, 2018. Effect of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregate stability in a vineyard. Pedosphere28, 288–298.
https://doi.org/10.1016/S1002-0160(18)60015-3
6 A., Benítez-López, R., Alkemade, A., Schipper, D., Ingram, P., Verweij, J., Eikelboom, M., Huijbregts, 2017. The impact of hunting on tropical mammal and bird populations. Science356, 180–183.
https://doi.org/10.1126/science.aaj1891
7 B., Betancur-Corredor, B., Lang, D.J., Russell, 2022. Reducing tillage intensity benefits the soil micro-and mesofauna in a global meta-analysis. European Journal of Soil Science,73, e13321.
https://doi.org/10.1111/ejss.13321
8 B., Betancur-Corredor, B., Lang, D.J., Russell, 2023. Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. Biology and Fertility of Soils59, 1–16.
https://doi.org/10.1007/s00374-022-01677-2
9 A., Beylich, H.R., Oberholzer, S., Schrader, H., Höper, B.M., Wilke, 2010. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil & Tillage Research109, 133–143.
https://doi.org/10.1016/j.still.2010.05.010
10 E.C., Booher, C.M., Greenwood, J.A., Hattey, 2012. Effects of soil amendments on soil microarthropods in continuous maize in western Oklahoma. Southwestern Entomologist37, 23–30.
https://doi.org/10.3958/059.037.0103
11 M.G., Borgognone, A., Basile, 2017. Long-term effects of different tillage systems on soil properties and food production. Agronomy for Sustainable Development34, 24.
12 E., Bulte, A., Hector, A., Larigauderie, 2005. ecoSERVICES: assessing the impacts of biodiversity changes on ecosystem functioning and services. Diversitas Report3, 40.
13 V., Calcagno, C., de Mazancourt, 2010. glmulti: an R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software34, 1–29.
https://doi.org/10.18637/jss.v034.i12
14 M., Chatelain, S.M., Drobniak, M., Szulkin, 2020. The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecology Letters23, 381–398.
https://doi.org/10.1111/ele.13426
15 P., Chivenge, H., Murwira, K., Giller, P., Mapfumo, J., Six, 2007. Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil & Tillage Research94, 328–337.
https://doi.org/10.1016/j.still.2006.08.006
16 B.B., Corredor, B., Lang, D. Russell, , 2022. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. 16 March 2022, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1438491/v1.
17 S.F.M., Coulibaly, M., Aubert, N., Brunet, F., Bureau, M., Legras, M., Chauvat, 2022. Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil & Tillage Research215, 105191–110519.
https://doi.org/10.1016/j.still.2021.105191
18 H.H., Disque, K.A., Hamby, A., Dubey, C., Taylor, G.P., Dively, 2019. Effects of clothianidin-treated seed on the arthropod community in a mid-Atlantic no-till corn agroecosystem. Pest Management Science75, 969–978.
https://doi.org/10.1002/ps.5201
19 A., Domínguez, J.C., Bedano, A.R., Becker, 2010. Negative effects of no-till on soil macrofauna and litter decomposition in Argentina as compared with natural grasslands. Soil & Tillage Research110, 51–59.
https://doi.org/10.1016/j.still.2010.06.008
20 T.R., Dubie, C.M., Greenwood, C., Godsey, M.E., Payton, 2011. Effects of tillage on soil microarthropods in winter wheat. Southwestern Entomologist36, 11–20.
https://doi.org/10.3958/059.036.0102
21 M., Egger, G.D., Smith, M., Schneider, C., Minder, 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Research Ed.)315, 629–634.
https://doi.org/10.1136/bmj.315.7109.629
22 W., Ehlers, W., Claupein, 2017. Approaches toward conservation tillage in Germany. Conservation tillage in temperate agroecosystems. CRC Press, pp. 141–165
23 C., Fiera, W., Ulrich, D., Popescu, J., Buchholz, P., Querner, C.I., Bunea, P., Strauss, T., Bauer, S., Kratschmer, S., Winter, J.G., Zaller, 2020. Tillage intensity and herbicide application influence surface-active springtail (Collembola) communities in Romanian vineyards. Agriculture, Ecosystems & Environment300, 107006.
https://doi.org/10.1016/j.agee.2020.107006
24 J., Filser, 2002. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia46, 234–245.
25 J., Filser, R., Wittmann, A., Lang, 2000. Response types in Collembola towards copper in the microenvironment. Environmental Pollution107, 71–78.
https://doi.org/10.1016/S0269-7491(99)00130-X
26 A., Fiorini, R., Boselli, S.C., Maris, S., Santelli, F., Ardenti, F., Capra, V., Tabaglio, 2020. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture, Ecosystems & Environment296, 106926.
https://doi.org/10.1016/j.agee.2020.106926
27 C., Gardi, L., Montanarella, D., Arrouays, A., Bispo, P., Lemanceau, C., Jolivet, C., Mulder, L., Ranjard, J., Römbke, M., Rutgers, C., Menta, 2009. Soil biodiversity monitoring in Europe: ongoing activities and challenges. European Journal of Soil Science60, 807–819.
https://doi.org/10.1111/j.1365-2389.2009.01177.x
28 R.C., Graham, C.J., Drake, E.L., Judd, 1994. Morphology and function of antennal sensilla of the springtail, Onychiurus armatus. International Journal of Insect Morphology & Embryology23, 245–258.
29 L.V., Hedges, J., Gurevitch, P.S., Curtis, 1999. The meta‐analysis of response ratios in experimental ecology. Ecology80, 1150–1156.
https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
30 P.R., Hobbs, K., Sayre, R., Gupta, 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences363, 543–555.
https://doi.org/10.1098/rstb.2007.2169
31 J.M., Holland, 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment103, 1–25.
https://doi.org/10.1016/j.agee.2003.12.018
32 J., Hu, S., Zhou, L., Tie, X., Liu, X., Liu, A., Zhao, J., Lai, L., Xiao, C., You, C., Huang, 2022. Effects of nitrogen addition on soil faunal abundance: A global meta‐analysis. Global Ecology and Biogeography31, 1655–1666.
https://doi.org/10.1111/geb.13528
33 C., Jerez-Valle, P.A., García, M., Campos, F., Pascual, 2014. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Applied Soil Ecology76, 42–51.
https://doi.org/10.1016/j.apsoil.2013.12.007
34 A.B., Jernigan, K., Wickings, C.L., Mohler, B.A., Caldwell, C.J., Pelzer, S., Wayman, M.R., Ryan, 2020. Legacy effects of contrasting organic grain cropping systems on soil health indicators, soil invertebrates, weeds, and crop yield. Agricultural Systems177, 102719.
https://doi.org/10.1016/j.agsy.2019.102719
35 Y., Jiang, H., Xie, Z., Chen, 2021. Relationship between the amounts of surface corn stover mulch and soil mesofauna assemblage varies with the season in cultivated areas of northeastern China. Soil & Tillage Research213, 105091.
https://doi.org/10.1016/j.still.2021.105091
36 S., Kaneda, N., Kaneko, 2008. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. Biology and Fertility of Soils44, 435–442.
https://doi.org/10.1007/s00374-007-0222-x
37 P., Kardol, W.N., Reynolds, R.J., Norby, A.T., Classen, 2011. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology47, 37–44.
https://doi.org/10.1016/j.apsoil.2010.11.001
38 W., Karg, 1982. Untersuchungen über Habitatansprüche, geographische Verbreitung und Entstehung von Raubmilbengattungen der Cohors Gamasina für ihre Nutzung als Bioindikatoren. Pedobiologia24, 241–247 (in German).
https://doi.org/10.1016/S0031-4056(23)05886-9
39 A., Kassam, T., Friedrich, R., Derpsch, 2010. Conservation agriculture in the 21st century: A paradigm of sustainable agriculture. European Congress on Conservation Agriculture, pp. 4–6
40 A., Kassam, T., Friedrich, F., Shaxson, J., Pretty, 2009. The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability7, 292–320.
https://doi.org/10.3763/ijas.2009.0477
41 E.J., Kladivko, 2001. Tillage systems and soil ecology. Soil & Tillage Research61, 61–76.
https://doi.org/10.1016/S0167-1987(01)00179-9
42 M., Kracht, S., Schrader, 1997. Collembola und Acari in verdichtetem Ackerboden unter verschiedenen Bodenbearbeitungssystemen. Braunschweiger Naturkundliche Schriften5, 425–440.
43 M.J., Lajeunesse, 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology92, 2049–2055.
https://doi.org/10.1890/11-0423.1
44 Y., Li, D., Song, S., Liang, P., Dang, X., Qin, Y., Liao, K.H., Siddique, 2020. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil & Tillage Research204, 104721.
https://doi.org/10.1016/j.still.2020.104721
45 C., Lissa, 2017. MetaForest: Exploring heterogeneity in meta-analysis using random forests. PsyArXiv, 29 Sept. 2017. Web
46 R., Liu, Y., Chai, F., Zhu, 2013. Effect of long-term cultivation on soil arthropod community in sandy farmland. Journal of Agricultural Science and Technology15, 144–151.
47 J.S., Machado, L.C.I.O., Filho, J.C.P., Santos, A.T., Paulino, D., Baretta, 2019. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotropic,19, e20180618.
https://doi.org/10.1590/1676-0611-bn-2018-0618
48 C., Menta, F.D., Conti, C.L., Fondon, F., Staffilani, S., Remelli, 2020. Soil arthropod responses in agroecosystem: implications of different management and cropping systems. Agronomy (Basel)10, 982.
https://doi.org/10.3390/agronomy10070982
49 M.A., Minor, T.A., Volk, R.A., Norton, 2004. Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Applied Soil Ecology25, 181–192.
https://doi.org/10.1016/j.apsoil.2003.10.002
50 M., Mirzaei-Pashami, A., Saboori, J., Nozari, K., Afsahi, 2020. Relative abundance of oribatid mites (Sarcoptiformes: Oribatida) in two tillage systems of irrigated and rain-fed wheat farms of Khodabandeh County, Iran. Persian Journal of Acarology9, 341–352.
51 J.R., Mitchell, G.P., Sutton, R.A., Burrows, 2017. Biomechanical properties of the springtail furcula: structural adaptations to maximize jumping performance. Journal of Experimental Biology220, 2766–2775.
52 A., Morugán-Coronado, P., Pérez-Rodríguez, E., Insolia, D., Soto-Gómez, D., Fernández-Calvino, R., Zornoza, 2022. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture. Agriculture, Ecosystems & Environment329, 107867.
https://doi.org/10.1016/j.agee.2022.107867
53 M., Murvanidze, L., Mumladze, N., Todria, M., Salakaia, M., Maraun, 2019. Effect of ploughing and pesticide application on oribatid mite communities. International Journal of Acarology45, 181–188.
https://doi.org/10.1080/01647954.2019.1572222
54 N., Nadia Vignozzi, A., Elio Agnelli, G., Brandi, E., Gagnarli, D., Goggioli, A., Lagomarsino, S., Pellegrini, S., Simoncini, S., Simoni, G., Valboa, G., Caruso, R., Gucci, 2019. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Applied Soil Ecology134, 64–76.
https://doi.org/10.1016/j.apsoil.2018.10.014
55 Y, C., Oseto, Marcella, Boles, 1987. A survey of the microarthropod populations under conventional tillage and no-tillage systems. Farm Research 44, 5
56 M., Rahgozar, K.H., Irani-Nejad, M.R., Zargaran, A., Saboori, 2019. Biodiversity and species richness of oribatid mites (Acari: Oribatida) in orchards of East Azerbaijan province, Iran. Persian Journal of Acarology8, 147–159.
57 E., Rebek, D., Hogg, D., Young, 2002. Effect of four cropping systems on the abundance and diversity of epedaphic springtails (Hexapoda: Parainsecta: Collembola) in southern Wisconsin. Environmental Entomology31, 37–46.
https://doi.org/10.1603/0046-225X-31.1.37
58 K., Reilly, M., Cavigelli, K., Szlavecz, 2023. Agricultural management practices impact soil properties more than soil microarthropods. European Journal of Soil Biology117, 103516.
https://doi.org/10.1016/j.ejsobi.2023.103516
59 G.G., Rieff, T., Natal-da-Luz, M., Renaud, H.M.V.S., Azevedo-Pereira, F., Chichorro, R.M., Schmelz, E.L.S., Sá, J.P., Sousa, 2020. Impact of no-tillage versus conventional maize plantation on soil mesofauna with and without the use of a lambda-cyhalothrin based insecticide: A terrestrial model ecosystem experiment. Applied Soil Ecology147, 103381.
https://doi.org/10.1016/j.apsoil.2019.103381
60 A., Rożen, Ł., Sobczyk, K., Liszka, J., Weiner, 2010. Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Applied Soil Ecology45, 160–167.
https://doi.org/10.1016/j.apsoil.2010.03.008
61 M.A.B.S., Santos, L.C.I.O.F., Oliveira Filho, P.N.P., Pompeo, D.C.O., Ortiz, Á.L., Mafra, O.K., Filho, D.B., Baretta, 2018. Morphological diversity of springtails in land use systems. Revista Brasileira de Ciência do Solo42, e0170277.
https://doi.org/10.1590/18069657rbcs20170277
62 T.B., Sapkota, 2012. Conservation Tillage Impact on Soil Aggregation, Organic Matter Turnover and Biodiversity. In: Lichtfouse, E., ed. Organic Fertilisation, Soil Quality and Human Health. Springer, Dordrecht. pp. 141–160
63 S., Schrader, M., Lingnau, 1997. Influence of soil tillage and soil compaction on microarthropods in agricultural land. Pedobiologia41, 202–209.
64 S., Seitz, P., Goebes, V.L., Puerta, E.I.P., Pereira, R., Wittwer, J., Six, M.G., van Der Heijden, T., Scholten, 2019. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development39, 1–10.
https://doi.org/10.1007/s13593-018-0545-z
65 F.M., Sékou, 2017. Effect of different crop management practices on soil Collembola assemblages: A 4-year follow-up. Applied Soil Ecology119, 354–366.
https://doi.org/10.1016/j.apsoil.2017.06.013
66 H., Siepel, 1996. The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodiversity Letters3, 26–34.
https://doi.org/10.2307/2999707
67 R.S., Singh, M.S., Sherawat, A.S., Singh, 2018. Effect of tillage and crop residue management on soil physical properties. Journal of Soil Salinity and Water Quality10, 200–206.
68 P., Smith, J.I., House, M., Bustamante, J., Sobocka, R., Harper, G., Pan, P.C., West, J.M., Clark, T., Adhya, C., Rumpel, K., Paustian, P., Kuikman, M.F., Cotrufo, J.A., Elliott, R., McDowell, R.I., Griffiths, S., Asakawa, A., Bondeau, A.K., Jain, J., Meersmans, T.A., Pugh, 2016. Global change pressures on soils from land use and management. Glob Chang Biology22, 1008–1028.
https://doi.org/10.1111/gcb.13068
69 T., Spedding, C., Hamel, G., Mehuys, C., Madramootoo, 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology & Biochemistry36, 499–512.
https://doi.org/10.1016/j.soilbio.2003.10.026
70 B., Speidel, 1992. Effective care of the newborn infant. Archives of Disease in Childhood67, 1415–1416.
71 C., Terrer, R.P., Phillips, B.A., Hungate, J., Rosende, J., Pett-Ridge, M.E., Craig, K.J., van Groenigen, T.F., Keenan, B.N., Sulman, B.D., Stocker, P.B., Reich, A.F.A., Pellegrini, E., Pendall, H., Zhang, R.D., Evans, Y., Carrillo, J.B., Fisher, K., Van Sundert, S., Vicca, R.B., Jackson, 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature591, 599–603.
https://doi.org/10.1038/s41586-021-03306-8
72 P., Tittonell, 2014. Ecological intensification of agriculture—sustainable by nature. Current Opinion in Environmental Sustainability8, 53–61.
https://doi.org/10.1016/j.cosust.2014.08.006
73 A.M., Treonis, E.E., Austin, J.S., Buyer, J.E., Maul, L., Spicer, I.A., Zasada, 2010. Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology46, 103–110.
https://doi.org/10.1016/j.apsoil.2010.06.017
74 M.A., Tsiafouli, E., Thébault, S.P., Sgardelis, P.C., de Ruiter, W.H., van der Putten, K., Birkhofer, L., Hemerik, F.T., de Vries, R.D., Bardgett, M.V., Brady, L., Bjornlund, H.B., Jørgensen, S., Christensen, T.D., Hertefeldt, S., Hotes, W.H., Gera Hol, J., Frouz, M., Liiri, S.R., Mortimer, H., Setälä, J., Tzanopoulos, K., Uteseny, V., Pižl, J., Stary, V., Wolters, K., Hedlund, 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.
https://doi.org/10.1111/gcb.12752
75 C., van Capelle, S., Schrader, J., Brunotte, 2012. Tillage-induced changes in the functional diversity of soil biota–A review with a focus on German data. European Journal of Soil Biology50, 165–181.
https://doi.org/10.1016/j.ejsobi.2012.02.005
76 N., Verhulst, B., Govaerts, E., Verachtert, A., Castellanos-Navarrete, M., Mezzalama, P., Wall, J., Deckers, K.D., Sayre, 2010. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems. In: Lar, R., Stewart, B.A., eds. Food Security and Soil Quality. CRC Press, Boca Raton. pp. 137–208
77 W., Viechtbauer, 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software36, 1–48.
https://doi.org/10.18637/jss.v036.i03
78 C., Wang, Y., Zhang, X., Xu, H., Jia, X., Sun, X., Zhou, 2019. Competition between two dominant soil mesofauna groups: Springtails (Collembola) and Oribatid mites (Oribatida) under different resource availability. Applied Soil Ecology139, 68–76.
79 X., Xin, W., Yang, Q., Zhu, X., Zhang, A., Zhu, J.J.S.U., Zhang, 2018. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use and Management34, 286–296.
https://doi.org/10.1111/sum.12412
80 R., Yin, I., Gruss, N., Eisenhauer, P., Kardol, M.P., Thakur, A., Schmidt, Z., Xu, J., Siebert, C., Zhang, G.L.J.S.B., Wu, M., Schädler, 2019. Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology & Biochemistry138, 107598.
https://doi.org/10.1016/j.soilbio.2019.107598
81 R., Yin, P., Kardol, M.P., Thakur, I., Gruss, G.L., Wu, N., Eisenhauer, M.J.S.B., Schädler, 2020. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biology & Biochemistry147, 107847.
https://doi.org/10.1016/j.soilbio.2020.107847
82 D., Yu, J., Yao, X., Chen, J., Sun, Y., Wei, Y., Cheng, F., Hu, M., Liu, 2022. Ecological intensification alters the trait-based responses of soil microarthropods to extreme precipitation in agroecosystem. Geoderma422, 115956.
https://doi.org/10.1016/j.geoderma.2022.115956
83 L., Zhan, 2013. Diversity and Influencing Factor of Meso-soil Animal under Farm Land of Black Soil. PhD dissertation, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences
84 S., Zhang, L., Chang, N.B., McLaughlin, S., Cui, H., Wu, D., Wu, W., Liang, A., Liang, 2021. Complex soil food web enhances the association between N mineralization and soybean yield - a model study from long-term application of a conservation tillage system in a black soil of Northeast China. Soil (Göttingen)7, 71–82.
https://doi.org/10.5194/soil-7-71-2021
85 X., Zhu, L., Chang, J., Li, J., Liu, L., Feng, D., Wu, 2018. Interactions between earthworms and mesofauna affect CO2 and N2O emissions from soils under long-term conservation tillage. Geoderma: An International. Journal of Soil Science332, 153–160.
[1] SEL-00208-OF-LC_suppl_1 Download
[1] Zhe-Lun Liu, Dong Zhu, Yi-Fei Wang, Yong-Guan Zhu, Min Qiao. Collembolans maintain a core microbiome responding to diverse soil ecosystems[J]. Soil Ecology Letters, 2024, 6(1): 230195-.
[2] Xiaofeng Luo, Linglong Zhu, Guoliang Xu, Jiaen Zhang, Jianlong Xu, Shiqin Yu, Xiaohua Chen. Effects of acid deposition on the avoidance behavior of Folsomia candida (Collembola, Isotomidae)[J]. Soil Ecology Letters, 2022, 4(2): 164-170.
[3] Xin Sun, Louis Deharveng, Anne Bedos, Liang Chang, Stefan Scheu, Donghui Wu. Changes in diversity and body size of Onychiurinae (Collembola: Onychiuridae) along an altitudinal gradient in Changbai Mountain, China[J]. Soil Ecology Letters, 2020, 2(3): 230-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed