Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 310-331    https://doi.org/10.1007/s11458-011-0251-8
REVIEW ARTICLE
Self-consistent field theory and its applications in polymer systems
Dadong YAN1,2(), Tongchuan SUO2, Xinghua ZHANG1,2, Xingkun MAN2, Bing MIAO2
1. Department of Physics, Beijing Normal University, Beijing 100875, China; 2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(751 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review article addresses the widely used self-consistent field theory (SCFT) in interacting polymer systems. The theoretical framework and numerical method of solving the self-consistent equations are presented. In this paper, different structures of polymer can be considered, such as homopolymer, block copolymer, polydisperse polymer and charged polymer. Several systems, micro/macro phase separation, interface, self-assembly, are presented as examples to demonstrate its applications in details. Besides, the fluctuation effects are considered. The first order is Gaussian fluctuation theory, which can be used to determine the stability of the mean-field solution and predict the kinetics of unstable structure. The derivation and applications of Gaussian fluctuation theory are presented as well.

Keywords self-consistent field theory (SCFT)      Gaussian fluctuation theory      self-assembly      adsorption      depletion      polyelectrolyte      confinement     
Corresponding Author(s): YAN Dadong,Email:yandd@bnu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Dadong YAN,Tongchuan SUO,Xinghua ZHANG, et al. Self-consistent field theory and its applications in polymer systems[J]. Front Chem Chin, 2011, 6(4): 310-331.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0251-8
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/310
Fig.1  Polymer segments distributions belong to tail, loop, and free part. The parameters are taken as =1000, , = 0.4 and / = 10.
Fig.2  Average tail length, , as a function of normalized particle radius, /, at different bulk concentrations of , 0.04, 0.1, 0.5, and 0.95, respectively. =1000; = 0.2.
Fig.3  The depletion potential (a, b) and depleted amount (c, d) between two spheres as a function of the separation in dilute (a, c) and semidilute (b, d) solutions. The parameters are taken as = 0.5, = 100, and / = 10.
Fig.4  Effect of surface curvature on the scaling law. and are obtained for fixed = 0.025 and =0.1, respectively. and decrease as increases when <2. As goes larger than 2, and nearly do not change with and approach the fixed values of the planar surface, i.e., 2/3. The insert is the dependence of . increases as increases and quickly converges to the result of the planar surface as goes larger than 2. ( is used as the Kuhn length here instead of .)
Fig.5  The dependence of the reduced critical radius, /. ( is the Kuhn length here.) The critical line separates the adsorption regime from the depletion regime for = 0.025 and = 0.1.
Fig.6  Cylindrical radius, (in unit of Kuhn length, ), dependence of the charge inversion ratio, /, in the Coulombic interaction dominated regime with = 0, = 0.1, = 0.5, = 0.1 and = 0. The insert is the detail for the crossover point of . Only moderate charge inversion (/ ≈ -2×10) happens in this case.
Fig.7  Charge inversion ratio, /, as a function of cylindrical radius, , (in unit of Kuhn length ) with = 0.1, = 0.025, =0.1, and = 0.1 for different short-range non-Coulombic interactions, . When <2, the magnitude of / increases with decreasing , and strong charge inversion / = -1.9 and -5.2 have been obtained in large surface curvature (=1) for = - 0.3 and -0.5, respectively. When >2, / nearly does change with .
Fig.8  Volume fractions of species A at the centers of critical nuclei, (0) as functions of for different polydispersity. For a given , higher polydispersity (small ) leads to lower (0). The parameters are taken as , =.
Fig.9  Volume fraction contributions of the polydisperse A species as functions of chain lengths, (/), for different polydispersity parameters (a) in homogeneous bulk, and (b) at the centers of critical nuclei. The parameters are taken as =2.5, , and =. Higher polydispersity leads to larger / for the peak position of (,0).
Fig.10  Two-dimensional phase diagram as a function of and for a diblock copolymer solution with =0.1, =0.2 and (a) =0.5, =200; (b) =0.5, =150; (c) =0.3, =150; (d) =0.18, =150. The ordered phases are denoted as follows: L=lamellae, H=hexagonally packed cylinders, G=gyroid, S=body-centered cubic spheres, S=face-centered cubic spheres. Dis=disordered phase. The subscript of each symbol refers to the core composition. The boundary between the regions of L+H and G in (d) should be considered just as a guide to the eye.
Fig.11  Ordered phases obtained using the generic spectrum approach for model linear ABC triblock copolymers with = = 35 and = 15. Blue, green, and red represent domains rich in A, B, and C blocks, respectively. Reproduced from Ref. [], Copyright ? 2008 American Physical Society.
Fig.12  Phase diagram of a model linear ABC triblock copolymer with = = 35 and = 15. Dotted lines are phase boundaries that are not determined exactly. Reproduced from Ref. [], Copyright ? 2008 American Physical Society.
Fig.13  Size dependence of the spinodal point () for the symmetric ( = 0.5) diblock copolymer melts confined between two parallel slabs with a distance of . The solid line represents the physical spinodal point determined from the most unstable mode with = 0. The dotted line obtained from the Gaussian fluctuation theory and the dashed line obtained from the Landau-Brazovskii model illustrate the zero point induced by the second-lowest fluctuation mode with = 1.
Fig.14  Size dependence of the spinodal point () for the symmetric ( = 0.5) diblock copolymer melts confined in a spherical pore with the radius of. The solid line and the dashed line are obtained from the Gaussian fluctuation theory and the Landau-Brazovskii model, respectively.
Fig.15  The order parameter, , as a function of for the symmetric diblock copolymer melts confined between two slabs with preferential surfaces of different surface strengths of and the separation distance =10. The solid, dashed, dotted and dash-dotted lines correspond to the cases of = 0, 0.1, 1 and 2, respectively.
Fig.16  The evolution of the order parameter, , with for = 3 = 9.6 and = 0.1. The jump of the order parameter happens around = 13.
Fig.17  The evolution of the spatial density distribution of block B, , with . = 9.6 and = 0.1.
1 de Gennes, P. G., Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979
2 Edwards, S. F., Proc. Phys. Soc. 1965, 85, 613–624
doi: 10.1088/0370-1328/85/4/301
3 Zhang, P.; Zhang, X.; Li, B.; Wang, Q., Soft Matter 2011, 7, 4461–4471
doi: 10.1039/c0sm01333a
4 Helfand, E.; Tagami, Y., Polym. Lett. 1971, 9, 741–746
doi: 10.1002/pol.1971.110091006
5 Helfand, E., J. Chem. Phys. 1975, 62, 999–1005
doi: 10.1063/1.430517
6 Shi, A. C., Self-consistent field theory of block copolymers. In: Hamley I. W., ed. Developments in Block Copolymer Science and Technology . New York: John Wiley and Sons, Ltd.: 2004, 265–293
7 Netz, R. R.; Schick, M., Macromolecules 1998, 31, 5105–5122
doi: 10.1021/ma9717505 pmid:9680451
8 Suo, T.; Yan, D.; Yang, S.; Shi, A.C., Macromolecules 2009, 42, 6791–6798
doi: 10.1021/ma900939u
9 Müller, M.; Schmid, F., Adv. Polym. Sci. 2005, 185, 1–58
doi: 10.1007/b136794
10 Yang, S.; Yan, D.; Tan, H., , Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 74, 041808–1–10
11 Matsen, M. W.; Schick, M., Phys. Rev. Lett. 1994, 72, 2660–2663
doi: 10.1103/PhysRevLett.72.2660 pmid:10055940
12 Fredrickson, G. H., The Equilibrium Theory of Inhomogeneous Polymers, CLARENDON PRESS, OXFORD, 2006
13 Ceniceros, H. D.; Fredrickson, G. H., Model. Simul. (Anaheim) 2004, 2, 452–474
14 Thompson, R. B.; Rasmussen, K. ?.; Lookman, T., J. Chem. Phys. 2004, 120, 31–34
doi: 10.1063/1.1629673 pmid:15267258
15 Matsen, M. W., Eur Phys J E Soft Matter 2009, 30, 361–369
doi: 10.1140/epje/i2009-10534-3 pmid:19957006
16 Yang, S.; Yan, D.; Shi, A. C., Macromolecules 2006, 39, 4168–4174
doi: 10.1021/ma060014a
17 Yang, S.; Tan, H.; Yan, D., , Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 75, 061803–1–7
18 Man, X.; Yang, S.; Yan, D.; Shi, A.C., Macromolecules 2008, 41, 5451–5456
doi: 10.1021/ma8003482
19 Man, X.; Yan, D., Macromolecules 2010, 43, 2582–2588
doi: 10.1021/ma9022263
20 Qi, S.; Yan, D., J. Chem. Phys. 2008, 129, 204902
doi: 10.1063/1.3020355 pmid:19045876
21 Wood, S. M.; Wang, Z. G., J. Chem. Phys. 2002, 116, 2289–2300
doi: 10.1063/1.1429956
22 Guo, Z. J.; Zhang, G.; Qiu, F.; Zhang, H.; Yang, Y.; Shi, A. C., Phys. Rev. Lett. 2008, 101, 028301
doi: 10.1103/PhysRevLett.101.028301 pmid:18764231
23 Tyler, C. A.; Morse, D. C., Phys. Rev. Lett. 2005, 94, 208302
doi: 10.1103/PhysRevLett.94.208302 pmid:16090293
24 Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H., Macromolecules 2007, 40, 4399–4402
doi: 10.1021/ma070739u
25 Miao, B.; Wickham, R. A., J. Chem. Phys. 2008, 128, 054902
doi: 10.1063/1.2827472 pmid:18266460
26 Shi, A-C.; Noolandi, J.; Desai, R. C., Macromolecules 1996, 29, 6487–6504; Shi, A. C.; Noolandi, J.; Desai, R. C., Macromolecules 1997, 30, 3242–3255
doi: 10.1021/ma9617375
27 Miao, B.; Yan, D.; Han, C. C.; Shi, A. C., J. Chem. Phys. 2006, 124, 144902
doi: 10.1063/1.2187492 pmid:16626240
28 Miao, B.; Yan, D.; Wickham, R. A.; Shi, A. C., Polymer 2007, 48, 4278–4287
doi: 10.1016/j.polymer.2007.05.045
29 Li, W.; Wickham, R. A.; Garbary, R. A., Macromolecules 2006, 39, 806–811
doi: 10.1021/ma052151y
30 Li, W.; Wickham, R. A., Macromolecules 2006, 39, 8492–8498
doi: 10.1021/ma061630+
31 Chen, P.; Liang, H.; Shi, A. C., Macromolecules 2008, 41, 8938–8943
doi: 10.1021/ma800443h
32 Yu, B.; Sun, P.; Chen, T.; Jin, Q.; Ding, D.; Li, B.; Shi, A. C., Phys. Rev. Lett. 2006, 96, 138306
doi: 10.1103/PhysRevLett.96.138306 pmid:16626240
33 Kim, E.; Ahn, H.; Ryu, D. Y.; Kim, J.; Cho, J., Macromolecules 2009, 42, 8385–8391
doi: 10.1021/ma901399v
[1] Rong CHEN, Dinghai HUANG. Preparation of polymer nanoparticles, and the effect of nanoconfinement on glass transition, structural relaxation and crystallization[J]. Front Chem Chin, 2011, 6(4): 332-340.
[2] S. NITHIYANANTHAM, L. PALANIAPPAN, D. Raja. Ultrasonic study of adsorption in polysaccharide (starch) metabolism[J]. Front Chem Chin, 2011, 6(2): 147-152.
[3] Li LI, Fangjing CAI, Xuemei SUN, Huisheng PENG, . Self-assembly of bridged silsesquioxanes incorporated with conjugated organic functionalities[J]. Front. Chem. China, 2010, 5(3): 277-287.
[4] Tianmin SHU, Junchen WU, Ying ZOU, Keyin LIU, Liqing CHEN, Tao YI, . Zn 2+ cation triggers self-assembly of cyclen into a stable metallogel[J]. Front. Chem. China, 2010, 5(2): 184-192.
[5] Jianming CHEN, Qikai LI, Lingyi MENG, Zhigang SHUAI, . Theoretical study on self-assembly in organic materials[J]. Front. Chem. China, 2010, 5(1): 2-10.
[6] Yanyan WANG, Bin LIU, . Conjugated polyelectrolyte amplified fluorescent assays with probe functionalized silica nanoparticles for chemical and biological sensing[J]. Front. Chem. China, 2009, 4(4): 325-334.
[7] Jijun WANG, Yinjie SUN, Huihui LI, Shouke YAN, Yun HUANG, Erqiang CHEN, . Well-defined micropatterns of polymers prepared by controlled crystallization process[J]. Front. Chem. China, 2009, 4(4): 383-389.
[8] Lina YU, Dongfeng WANG, Weisheng HU, Haiyan LI, Minmin TANG. Study on the preparation and adsorption thermodynamics of chitosan microsphere resins[J]. Front Chem Chin, 2009, 4(2): 160-167.
[9] ZOU Peng, PAN Caiyuan. Synthesis and self-assembly of reactive H-shaped block copolymers[J]. Front. Chem. China, 2008, 3(4): 480-484.
[10] LIU Pengyan, LIU Lei, ZHANG Li, JIANG Ning, LIU Zhanli, WANG Yun. Synthesis and characterization of molecularly imprinted polymers for recognition of ciprofloxacin[J]. Front. Chem. China, 2008, 3(4): 378-383.
[11] YAN Xuejia, DENG Yonghong, WANG Xiaogong. Effect of dipping solution pH values on electrostatic layer-by-layer self-assembly of side-chain azo polyelectrolyte[J]. Front. Chem. China, 2008, 3(2): 218-223.
[12] PAN Haihua, WU Tao, TANG Ruikang, TAO Jinhui. Molecular simulation of water behaviors on crystal faces of hydroxyapatite[J]. Front. Chem. China, 2007, 2(2): 156-163.
[13] Zhang Youwei, Jiang Ming. New approaches to stimuli-responsive polymeric micelles and hollow spheres[J]. Front. Chem. China, 2006, 1(4): 364-368.
[14] Tuo Xinlin, Chen Di, Wang Xiaogong. Preparation of azo polyelectrolyte self-assembled multilayers by using N, N-dimethylformamide/H2O mixtures as solvents[J]. Front. Chem. China, 2006, 1(3): 329-333.
[15] Jiang Xinyu, Zhou Jinhua, Zhou Chunshan. Study on Adsorption and Separation of Naringin with Macroporous Resin[J]. Front. Chem. China, 2006, 1(1): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed