Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 112-122    https://doi.org/10.1007/s11705-011-1144-6
RESEARCH ARTICLE
Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles
S. ROHANI(), T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG
Department of Chemical and Biochemical Engineering, The University of Western Ontario, London N6A 5B9, Canada
 Download: PDF(878 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photoconversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by-layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces.

Keywords TiO2 nanotube arrays and nanoparticles      anodization      bandgap modification      layer-by-layer deposition      oil-water separation     
Corresponding Author(s): ROHANI S.,Email:srohani@uwo.ca   
Issue Date: 05 March 2012
 Cite this article:   
S. ROHANI,T. ISIMJAN,A. MOHAMED, et al. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles[J]. Front Chem Sci Eng, 2012, 6(1): 112-122.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1144-6
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/112
Fig.1  Removal of the nanowires layer by sonication and fabrication of highly-ordered titanium nanotube arrays []
Fig.2  FE-SEM images of the surfaces of Ti samples anodized in glycerol-5 wt-% water-3 wt-% NHF solution at 30 V at 4 h. (a) Top view of as-prepared; (b) cross-section of as-prepared; (c) top view of annealed and sonicated; (d) cross-section of annealed and sonicated, and (e) higher magnification of top view of annealed and sonicated sample []
Fig.3  UV-Vis and XRD results of Fe-C-N-codoped TiO nanotubes []
Fig.4  Photo current (a) and photocurrent efficency diagrams (b) of TiO nanotubes []
Fig.5  Top view of SEM micrograph (a) unloaded TiO NTs; (b) Pt/ZIF-8 loaded TiO NTs; (c) larger magnitude of Pt/ZIF-8 loaded TiO NTs; (d) EDX results of Pt/ZIF-8 loaded TiO NTs []
Fig.6  UV absorption spectra of Pt/ZIF loaded TiO NTs and Pt/TiO NTs []
Fig.7  Schematic illustration of the coating process by means of layer by layer self assembly (LBL-SA) technique []
Fig.8  a) SEM images of a typical 10 layers of TiO nanoparticals coated on stainless steel meshes; (b) EDX results
Fig.9  Schematic diagram of the glass reactor equipped with a closed loop auto sampler connected to GC
Fig.10  Photocatalytic degradation of toluene on P25 photocatalyst mesh using cold cathode UV lamp (254 nm) as UV source
Fig.11  Photo degradation of phenol by Pt/ZIF loaded TiO NTs, Pt/TiO NTs
Fig.12  Schematic diagram of oil-water separation device 1 oil-water reservoir; 2 pump; 3 oil-water separation column; 4 water-collection column
Fig.13  SEM images of the coating mesh film prepared from a stainless steel mesh with an average pore diameter of about 150 μm (a) Large-area view of the coating mesh film; (b) enlarged view of the coating mesh film; (c) high-magnification images of the surface observed
Fig.14  Digital photograph (a) and optical image; (b) of water droplet on the mesh film
Oil content in the feed (v/v)1%5%10%50%
Oil content in the retentate0.001%0.014%0.013%0.011%
Oil removal percentage99.999%99.986%99.987%99.989%
Tab.1  Oil (toluene) removal percentage vs. the content of oil in the feed
1 Adams D M, Brus L, Chidsey C E D, Creager S, Creutz C, Kagan C R, Kamat P V, Lieberman M, Lindsay S, Marcus R A, Metzger R M, Michel-Beyerle M E, Miller J R, Newton M D, Rolison D R, Sankey O, Schanze K S, Yardley J, Zhu X. Charge transfer on the nanoscale: current status. Journal of Physical Chemistry. B , 2003, 107(28): 6668-6697
doi: 10.1021/jp0268462
2 Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry , 1996, 100(31): 13226-13239
doi: 10.1021/jp9535506
3 Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science , 1996, 271(5251): 933-937
doi: 10.1126/science.271.5251.933
4 Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews , 1995, 95(3): 735-758
doi: 10.1021/cr00035a013
5 Nakamura R, Ohashi N, Imanishi A, Osawa T, Matsumoto Y, Koinuma H, Nakato Y. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces. Journal of Physical Chemistry B , 2005, 109(5): 1648-1651
doi: 10.1021/jp044710t pmid:16851137
6 Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. Journal of Physical Chemistry. B , 2005, 109(35): 16579-16586
doi: 10.1021/jp051339g pmid:16853109
7 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature , 1972, 238(5358): 37-38
doi: 10.1038/238037a0 pmid:12635268
8 Paulose M, Mor G K, Varghese O K, Shankar K, Grimes C A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. Journal of Photochemistry and Photobiology. A, 2006, 178(1): 8-15
doi: 10.1016/j.jphotochem.2005.06.013
9 Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature , 1997, 388(6641): 431-432
doi: 10.1038/41233
10 Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length. Sensors Letters , 2006, 4(3): 334-339
doi: 10.1166/sl.2006.042
11 Ngamsinlapasasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology. A , 2004, 164(1-3): 145-151
doi: 10.1016/j.jphotochem.2003.11.016
12 Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir , 1996, 12(6): 1411-1413
doi: 10.1021/la9507803
13 Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials , 1997, 9(3): 857-862
doi: 10.1021/cm9605577
14 Zhang M, Brando Y, Wada K. Sol-gel template preparation of TiO2 nanotubues and nanorodes. Journal of Materials Science Letters , 2001, 20(2): 167-170
doi: 10.1023/A:1006739713220
15 Bavykin D V, Parmon V N, Lapkin A A, Walsh F C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry , 2004, 14(22): 3370-3377
doi: 10.1039/b406378c
16 Ou H H, Lo S L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology , 2007, 58(1): 179-191
doi: 10.1016/j.seppur.2007.07.017
17 Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis , 1999, 27(7): 629-637
doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
18 Frank A J, Kopidakis N. And de Lagemaat, J. V. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordination Chemistry Reviews , 2004, 248: 1165-1179
doi: 10.1016/j.ccr.2004.03.015
19 Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459
doi: 10.1038/nmat1387 pmid:15895100
20 Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Nano Letters , 2006, 6(2): 215-218
doi: 10.1021/nl052099j pmid:16464037
21 Cao F, Oskam G, Meyer G J, Searson P C. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. Journal of Physical Chemistry , 1996, 100(42): 17021-17027
doi: 10.1021/jp9616573
22 Vanmaekelbergh D, Vanmaekelbergh D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Physical Review Letters , 1996, 77(16): 3427-3430
doi: 10.1103/PhysRevLett.77.3427 pmid:10062217
23 Wahl A, Ulmann M, Carroy A, Augustynski J. Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes. Journal of the Chemical Society, Chemical Communications, 1994, 2277-2278
24 Santato C, Ulmann M, Augustynski J. Photoelectrochemical properties of nanostructured tungsten trioxide films. Journal of Physical Chemistry B , 2001, 105(5): 936-940
doi: 10.1021/jp002232q
25 Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society , 2003, 150(8): G488-G493
doi: 10.1149/1.1589763
26 Rao C N R, Govindaraj A. Nanotubes and Nanowires. Cambridge , UK: The Royal Society of Chemistry, 2005
27 Paulose M, Shankar K, Varghese O K, Mor G K, Grimes C A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics. D, Applied Physics , 2006, 39(12): 2498-2503
doi: 10.1088/0022-3727/39/12/005
28 Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters , 2006, 6(1): 24-28
doi: 10.1021/nl051807y pmid:16402781
29 Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy &. Environmental Sciences , 2011, 4: 1065-1086
30 Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research , 2001, 16(12): 3331-3334
doi: 10.1557/JMR.2001.0457
31 Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition , 2005, 44(14): 2100-2102
doi: 10.1002/anie.200462459 pmid:15736238
32 Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. Journal of the American Chemical Society , 2004, 126(15): 4782-4783
doi: 10.1021/ja0396753 pmid:15080674
33 Isimjan T T, Yang D Q, Rohani S, Ray A K. An innovative approach to synthesize highly-ordered TiO2 nanotubes. Journal of Nanoscience and Nanotechnology , 2011, 11(2): 1079-1083
doi: 10.1166/jnn.2011.3062 pmid:21456142
34 Cai Q, Yang L, Yu Y. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films , 2006, 515(4): 1802-1806
doi: 10.1016/j.tsf.2006.06.040
35 Wang H, Yip C T, Cheung K Y, Djurisic A B, Xie M H, Leung Y H,Chen W K.Titania-nanotube-array-based photovoltaic cells. Applied Physics Letters , 2006, 89: 023508,1-3
36 Deng L, Wang S, Liu D, Zhu B, Huang W, Wu S, Zhang S. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catalysis Letters , 2009, 129(3-4): 513-518
doi: 10.1007/s10562-008-9834-5
37 Zaleska A. Doped-TiO2: a review.Recent Patents on Engineering , 2008, 2(3): 157-164
doi: 10.2174/187221208786306289
38 Pedraza-Avela J A, López R, Martínez-Ortega F, Páez-Mozo E A, Gómez R. Effect of chromium doping on visible light absorption of nanosized titania sol-gel. Journal of Nano Research , 2009, 5: 95-104
doi: 10.4028/www.scientific.net/JNanoR.5.95
39 Lei L, Su Y, Zhou M, Zhang X, Chen X. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Materials Research Bulletin , 2007, 42(12): 2230-2236
doi: 10.1016/j.materresbull.2007.01.001
40 Isimjan T T, Ruby A E, Rohani S, Ray A K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes. Nanotechnology , 2010, 21(5): 055706
doi: 10.1088/0957-4484/21/5/055706 pmid:20023311
41 Isimjan T T, Kazemian H, Rohani S, Ray A K. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. Journal of Materials Chemistry , 2010, 20(45): 10241-10245
doi: 10.1039/c0jm02152k
42 Wang T, Isimjan T,Chen J,Rohani S. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties. Nanotechnology , 2011, 22(26): 265708/1-265708/7
[1] Merve İzmir, Batur Ercan. Anodization of titanium alloys for orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 28-45.
[2] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed