Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 179-183    https://doi.org/10.1007/s11705-012-1273-6
RESEARCH ARTICLE
Mutagenesis and selective breeding of a high producing ?-poly-L-lysine strain
Tian WANG, Shiru JIA(), Zhilei TAN, Yujie DAI, Shuai SONG, Guoliang WANG
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
 Download: PDF(117 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

?-Poly-L-lysine (?-PL) is an L-lysine linear homopolymer, which is produced by bacteria belonging to the Streptomycetaceae family and by ergot fungi. However, the production of ?-PL by the wild bacteria strain is very low, which limits its utilization. In most bacteria including the Streptomyces genus, L-lysine is a precursor of ?-PL and is biosynthesized by the L-aspartate pathway. Aspartokinase (Ask) is the first key enzyme in this pathway and is subject to complex regulation such as the feedback inhibition by the end product amino acids. In addition, phosphoenolpyruvate carboxykinase is feedback-regulated by L-aspartate. To reduce these feedback inhibitions and to improve ?-PL productivity, resistant mutants were produced using sulfaguanidine (SG) + glycine+ L-lysine+ DL-3-hydroxynorvaline (AHV) as selective markers. Using the interaction between ?-PL and the charged dye in the solid culture medium, hundreds of colonies were simultaneously screened in a quick and effective manner. Finally, one ?-PL-producing strain, Streptomyces diastatochromogenes L9, was selected. The productivity of this strain during flask fermentation was 0.77 g/L, which was 15% higher than that of the original strain. Moreover, its fermentation performance and genetic characteristics were very stable.

Keywords ?-poly-L-lysine      plasma      AHV      Streptomyces diastatochromogenes      fermentation     
Corresponding Author(s): JIA Shiru,Email:jiashiru@tust.edu.cn   
Issue Date: 05 June 2012
 Cite this article:   
Tian WANG,Shiru JIA,Zhilei TAN, et al. Mutagenesis and selective breeding of a high producing ?-poly-L-lysine strain[J]. Front Chem Sci Eng, 2012, 6(2): 179-183.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1273-6
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/179
Fig.1  Detection of secreted -PL on the M3G agar plate embedded with methylene blue
NumberColonial morphologypHRG a) /(g·L-1)?-PL /(g·L-1)
K2White, strawhat-shaped3.3±0.0237.50.680±0.009
K6White, split into several sections3.3±0.0237.50.707±0.012
K9White, irregular shape3.4±0.1038.50.732±0.012
K21White, having risings in the center3.4±0.0340.00.719±0.006
K22White, strawhat-shaped3.4±0.0946.50.713±0.023
K23White, having two risings in the center3.4±0.0239.50.703±0.023
K26White, strawhat-shaped3.5±0.0539.00.685±0.030
K27White, having risings in the center and fold basement3.3±0.0636.50.724±0.023
L7White, strawhat-shaped3.4±0.0437.50.609±0.019
L9White, having several risings in the center3.4±0.0338.50.772±0.016
L13White, strawhat-shaped3.4±0.0343.50.683±0.000
L14White, strawhat-shaped3.3±0.0439.00.692±0.012
L30White, having several risings in the center and flat basement3.2±0.0536.00.719±0.033
L35White, having several risings in the center and flat basement3.4±0.0438.50.719±0.006
T9White, rounded, small and having risings3.4±0.0337.00.653±0.033
Cbγ4White, strawhat-shaped3.6±0.0346.00.674±0.014
Tab.1  Fermentation results and colonial morphology
Generation12345
Biomass /(g·L-1)5.1±0.35.2±0.55.5±0.35.4±0.75.3±0.6
pH3.4±0.033.4±0.63.5±0.053.5±0.13.6±0.1
RG /(g·L-1)40.0±1.039±0.542±1.039±1.038±0.5
?-PL /(g·L-1)0.750±0.0150.733±0.0310.741±0.0170.747±0.0230.720±0.033
Growth a)+++++
Tab.2  The stability of high-producing mutant strain L9
1 Shima S, Sakai H. Polylysine produced by Streptomyces. Agricultural and Biological Chemistry , 1977, 41(9): 1807-1809
doi: 10.1271/bbb1961.41.1807
2 Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett J W Jr. Use of ADME studies to confirm the safety of ?-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology , 2003, 37(2): 328-340
doi: 10.1016/S0273-2300(03)00029-1 pmid:12726761
3 Tsujita T, Takaichi H, Takaku T, Aoyama S, Hiraki J. Antiobesity action of ?-polylysine, a potent inhibitor of pancreatic lipase. Journal of Lipid Research , 2006, 47(8): 1852-1858
doi: 10.1194/jlr.M600168-JLR200 pmid:16723640
4 Yoshida T, Nagasawa T. ?-Poly-L-lysine: microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology , 2003, 62(1): 21-26
doi: 10.1007/s00253-003-1312-9 pmid:12728342
5 Shih I L, Shen M H, Van Y T. Microbial synthesis of poly(?-lysine) and its various applications. Bioresource Technology , 2006, 97(9): 1148-1159
doi: 10.1016/j.biortech.2004.08.012 pmid:16551535
6 Jun H, Masakazu H, Hiroshi M, Yoshikazu I. Improved ?-poly-L-Lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi , 1998, 76: 487-493
7 Kahar P, Iwata T, Hiraki J, Park E Y, Okabe M. Enhancement of ?-polylysine production by Streptomyces albulus strain 410 using pH control. Journal of Bioscience and Bioengineering , 2001, 91(2): 190-194
pmid:16232973
8 Nishikawa M, Ogawa K. Distribution of microbes producing antimicrobial ?-poly-L-lysine polymers in soil microflora determined by a novel method. Applied and Environmental Microbiology , 2002, 68(7): 3575-3581
doi: 10.1128/AEM.68.7.3575-3581.2002 pmid:12089045
9 Hirohara H, Takehara M, Saimura M, Ikezaki A, Miyamoto M. Biosynthesis of poly(?-L-lysine)s in two newly isolated strains of Streptomyces sp. Applied Microbiology and Biotechnology , 2006, 73(2): 321-331
doi: 10.1007/s00253-006-0479-2 pmid:16957897
10 Takehara M, Hibino A, Saimura M, Hirohara H. High-yield production of short chain length poly(?-L-lysine) consisting of 5-20 residues by Streptomyces aureofaciens, and its antimicrobial activity. Biotechnology Letters , 2010, 32(9): 1299-1303
doi: 10.1007/s10529-010-0294-9 pmid:20464451
11 Nishikawa M, Kobayashi K. Streptomyces roseoverticillatus produces two different poly(amino acid)s: lariat-shaped gamma-poly(L-glutamic acid) and epsilon-poly(L-lysine). Microbiology-Sgm , 2009, 155(Pt 9): 2988-2993
doi: 10.1099/mic.0.029694-0 pmid:19542003
12 Jia S, Xu C, Tan Z, Cao W, Ou H, He X, Deng Z. Isolation characterization of a new ?-poly-L-lysine-producing strain TUST-2. Acta Microbiologica Sinica , 2010, 50(2): 191-196 (in Chinese )
pmid:20387461
13 Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H. epsilon-Poly-L: -lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Applied Microbiology and Biotechnology , 2007, 76(4): 873-882
doi: 10.1007/s00253-007-1052-3 pmid:17611754
14 Cao W, Tan Z, Yuan G, Jia S. Improvement of the assay method for ?-polylysine. Journal of Tianjin University of Science & Technology , 2007, 22: 9-11 (in Chinese)
15 Kawai T, Kubota T, Hiraki J, Izumi Y. Biosynthesis of ?-poly-L-lysine in a cell-free system of Streptomyces albulus. Biochemical and Biophysical Research Communications , 2003, 311(3): 635-640
doi: 10.1016/j.bbrc.2003.10.033 pmid:14623318
16 Kahar P, Kobayashi K, Iwata T, Hiraki J, Kojima M, Okabe M. Production of ?-polylysine in an airlift bioreactor (ABR). Journal of Bioscience and Bioengineering , 2002, 93(3): 274-280
pmid:16233200
17 Hirohara H, Saimura M, Takehara M, Miyamoto M, Ikezaki A. Substantially monodispersed poly(?-L-lysine)s frequently occurred in newly isolated strains of Streptomyces sp. Applied Microbiology and Biotechnology , 2007, 76(5): 1009-1016
doi: 10.1007/s00253-007-1082-x pmid:17701409
[1] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[2] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[3] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[4] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[5] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[6] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[7] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
[8] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[9] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[10] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[11] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[12] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[13] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
[14] Anna Khlyustova, Cédric Labay, Zdenko Machala, Maria-Pau Ginebra, Cristina Canal. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 238-252.
[15] Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source[J]. Front. Chem. Sci. Eng., 2019, 13(2): 324-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed