Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 126-131    https://doi.org/10.1007/s11705-012-1279-0
RESEARCH ARTICLE
Strengthening mechanisms in carbon nanotube reinforced bioglass composites
Jing ZHANG1(), Chengchang JIA2, Zhizhong JIA2, Jillian LADEGARD3, Yanhong GU3, Junhui NIE2
1. Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; 2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
 Download: PDF(280 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.

Keywords 45S5Bioglass      multi-wall carbon nanotubes      biocomposite      mechanical properties      sintering     
Corresponding Author(s): ZHANG Jing,Email:jz29@iupui.edu   
Issue Date: 05 June 2012
 Cite this article:   
Jing ZHANG,Chengchang JIA,Zhizhong JIA, et al. Strengthening mechanisms in carbon nanotube reinforced bioglass composites[J]. Front Chem Sci Eng, 2012, 6(2): 126-131.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1279-0
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/126
Fig.1  Images of starting materials. (a) SEM image of 45S5Bioglass powder; (b) TEM image of MWCNTs: the one on the lower left side is a single MWCN, and the one on the top and right sides is MWCN bundles
MaterialsRelative densitya /%Flexural strength a) /MPaHardness a) /(Hv)Fracture toughnessa) /(MPa·m1/2)
45S5Bioglass100/83.5(41±4)/-(620±11)/ (377±55)(0.57±0.08)/(0.38±0.11)
1 wt-%CNT/BG99/82.5(61±6)/ -(400±7)/(359±55)(0.68±0.10)/(0.48±0.23)
3 wt-%CNT/BG100/82.9(86±8)/ -(379±9)/(161±53)(0.92±0.06)/(0.21±0.07)
5 wt-%CNT/BG100/81.2(106±8)/ -(395±6)/(146±98)(1.17±0.11)/(0.16±0.06)
7 wt-%CNT/BG96/71.6(100±10)/ -(335±12)/(86±35)(0.75±0.05)/(0.15±0.06)
9 wt-%CNT/BG91/64.5(58±9)/ -(264±10)/(30±14)(0.80±0.09)/(0.04±0.01)
Tab.1  The mechanical properties of the sintered MWCNTs/45S5Bioglass composites obtained by SPS and conventional sintering (CS)
Fig.2  (a) Flexural strength, (b) fracture toughness, and (c) hardness of the MWCNTs/45S5Bioglass composites as a function of MWCNTs content
Fig.3  The SEM images of fracture surfaces of the composites using SPS. (a) 5 wt-% MWCNTs/45S5Bioglass composite. (b) 9 wt-% MWCNTs/45S5Bioglass composite.
Fig.4  The indentation crack propagation of 5 wt-% MWNTs/45S5Bioglass composite. The bridging nanotubes are evident along the crack
1 Best S M, Porter A E, Thian E S, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society , 2008, 28(7): 1319-1327
doi: 10.1016/j.jeurceramsoc.2007.12.001
2 Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research , 1971, 5(6): 117-141
doi: 10.1002/jbm.820050611
3 Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia , 2007, 55(10): 3305-3313
doi: 10.1016/j.actamat.2007.01.029
4 Xynos I D, Hukkanen M V J, Batten J J, Buttery L D, Hench L L, Polak J M. Bioglass ?45S5 stimulates osteoblast turnover and enhances bone formation: implications and applications for bone tissue engineering. Calcified Tissue International , 2000, 67(4): 321-329
doi: 10.1007/s002230001134
5 Stanley H R, Hall M B, Clark A E. C J K III, Hench L L, Berte J J. Using 45S5 Bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. International Journal of Oral & Maxillofacial Implants , 1997, 12: 95-105
6 Beherei H H, Mohamed K R, El-Bassyouni G T. Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceramics International , 2009, 35(5): 1991-1997
doi: 10.1016/j.ceramint.2008.10.014
7 Guo H B, Miao X, Chen Y, Cheang P, Khor K A. Characterization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Materials Letters , 2004, 58(3-4): 304-307
doi: 10.1016/S0167-577X(03)00474-9
8 Iijima S. Helical microtubules of graphitic carbon. Nature , 1991, 354(6348): 56-58
doi: 10.1038/354056a0
9 Popov V N. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports , 2004, 43(3): 61-102
doi: 10.1016/j.mser.2003.10.001
10 Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes—the route toward applications. Science , 2002, 297(5582): 787-792
doi: 10.1126/science.1060928
11 Meyyappan M. Carbon nanotubes: Science and Applications. Florida: CRC Press, 2004, 321-325
12 Wijewardane S. Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Solar Energy , 2009, 83(8): 1379-1389
doi: 10.1016/j.solener.2009.03.001
13 Esawi A M K, Morsi K, Sayed A, Gawad A A, Borah P. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Materials Science and Engineering A , 2009, 508(1-2): 167-173
doi: 10.1016/j.msea.2009.01.002
14 Zhao C, Hu G, Justice R, Schaefer D W, Zhang S, Yang M, Han C C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer , 2005, 46(14): 5125-5132
doi: 10.1016/j.polymer.2005.04.065
15 Cha S I, Kim K T, Lee K H, Mo C B, Hong S H. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Materialia , 2005, 53(7): 793-797
doi: 10.1016/j.scriptamat.2005.06.011
16 Dai P Q, Xu W C, Huang Q Y. Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition. Materials Science and Engineering A , 2008, 483-484: 172-174
doi: 10.1016/j.msea.2006.09.152
17 Mukhopadhyay A, Chu B T T, Green M L H, Todd R I. Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Materialia , 2010, 58(7): 2685-2697
doi: 10.1016/j.actamat.2010.01.001
18 Mazaheri M, Mari D, Hesabi Z R, Schaller R, Fantozzi G. Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Composites Science and Technology , 2011, 71(7): 939-945
doi: 10.1016/j.compscitech.2011.01.017
19 Hulbert D M, Anders A, Dudina D V, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia E J, Mukherjee A K. The absence of plasma in “spark plasma sintering”. Journal of Applied Physics , 2008, 104(3): 033305-033307
doi: 10.1063/1.2963701
20 Lin K, Chang J, Liu Z, Zeng Y, Shen R. Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. Journal of the European Ceramic Society , 2009, 29(14): 2937-2943
doi: 10.1016/j.jeurceramsoc.2009.04.025
21 Tjong S C. Carbon Nanotube Reinforced Composites: Metals and Ceramic Materials. Weinheim: Wiley-VCH, 2009, 185-187
[1] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
[2] Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang. Current understanding and applications of the cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 654-664.
[3] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[4] Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers[J]. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
[5] Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Front. Chem. Sci. Eng., 2017, 11(4): 613-623.
[6] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed