Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 575-585    https://doi.org/10.1007/s11705-017-1650-2
RESEARCH ARTICLE
Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance
Ehsan Salehi1(), Fereshteh Soroush1, Maryam Momeni2, Aboulfazl Barati1, Ali Khakpour3
1. Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
2. Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
3. Arian Fan Azma Company, Tehran, Iran
 Download: PDF(480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel modified activated carbons (ACs) with enhanced adsorptive properties were obtained coating by chitosan (CS), polyethylene glycol (PEG) and blends of the two polymers (0:1, 1:0, 1:1, 1:2 and 2:1 wt/wt) on ACs by an impregnation technique. The adsorption performances of the pristine, acidified and polymer-impregnated ACs were studied using methylene blue as a model adsorbate. The adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and abrasion hardness tests. The average coating thicknesses were between 10 to 23 microns. The pore sizes, pore densities and pore capacities of the activated carbons increased as the wt-% PEG in the coating increased. The highest adsorption capacity (424.7 mg/g) was obtained for the chitosan-coated ACs and this adsorption was well described by the Langmuir isotherm model. The kinetic results were best described by the pseudo-second-order kinetic model. The highest rate constant was obtained with the ACs modified with the CS:PEG (2:1) coating and this result was almost 2.6 times greater than that of the unmodified ACs. The CS/PEG impregnated ACs also displayed superior hardness (~90%), compared to unmodified ACs (~85%). Overall the chitosan had a greater effect on improving adsorption capacity whereas the polyethylene glycol enhanced the adsorption rate.

Keywords carbon biocomposites      impregnation      chitosan      polyethylene glycol      image processing     
Corresponding Author(s): Ehsan Salehi   
Just Accepted Date: 14 April 2017   Online First Date: 12 July 2017    Issue Date: 06 November 2017
 Cite this article:   
Ehsan Salehi,Fereshteh Soroush,Maryam Momeni, et al. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1650-2
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/575
Fig.1  FTIR spectra of (a) AC, (b) Acidified AC, (c) AC/PEG, (d) AC/CS and (e) AC/CS/PEG 1:1
Fig.2  Original SEM micrographs (left) and fragmented processed images (right) for the pristine AC (a), AC/CS (b), AC/PEG (c) and AC/CS/PEG 1:1 (d)
ParameterACAC/CSAC/PEGAC/CS/PEG (1:1)
Total number of pores per scanned surface unit255.1678.93297.96298.33
Average pore-surface per scanned surface /m20.3060.1190.2840.366
Standard deviation of pore surface0.9870.3650.8011.115
Pore size range /µm0.011?26.830.011?3.770.012?16.050.012?6.24
Standard deviation of pore size8.653.546.336.25
Number of pores per cross section region8336651051814
Average thickness of coating layer /µm?22.7510.2317.11
Tab.1  Image processing results for different adsorbents
AdsorbentHardness/ %RLDG°/(kJ?mol?1)
AC85±0.50.272?9.838
AC/PEG87±0.50.319?9.244
AC/CS87±0.50.339?9.069
AC/CS/PEG 1:189±0.50.244?10.209
AC/CS/PEG 1:289±0.50.261?9.961
AC/CS/PEG 2:190±0.50.304?9.416
Tab.2  Separation factor, Gibbs free energy change and attrition hardness for the adsorbents
Fig.3  Removal of methylene blue by AC, AC/PEG, AC/CS and AC/CS/PEG with CS to PEG w/w ratios of 1: 1, 1:2 and 2:1
Fig.4  Isothermal adsorption of MB on different modified activated carbons
AdsorbentLangmuir modelFreundlich modelRedlich-Peterson model
qmax /(mg?g?1)kL /(L?mg?1)R2nkfR2αβ ×10?4 /(mol?g?1)kR×10?4R2
AC404.10.0530.9954.15104.70.979?1?2130.873
AC/PEG399.10.0420.9793.6183.80.962?1?2120.95
AC/CS424.70.0390.9893.689.90.979?2.4?0.780.675
AC/CS/PEG1:13640.0560.9863.9888.20.981?1?3130.961
AC/CS/PEG1:2356.90.0620.9843.7181.10.978?1?3130.966
AC/CS/PEG2:1390.20.0450.9773.5689.90.964?1?3140.973
Tab.3  Equilibrium constants and correlation coefficients of Langmuir, Freundlich, and Redlich-Peterson isotherms for adsorption of MB on AC absorbents at 25 °C
AdsorbentPseudo first orderPseudo second order
qe,calcqe,calck1 × 10?4R2qe,calck2 × 10?4R2
AC31755.08230.923337.10.99
AC/PEG283.527.48460.95333.38.20.99
AC/CS307.6674.3220.66333.75.31
AC/CS/PEG1:1288.5233.8460.93333.59.10.99
AC/CS/PEG 1:2275.6820.56450.84333.38.30.99
AC/CS/PEG 2:1279.7324.37210.8333.818.31
Tab.4  Fitting results for pseudo-first-order and pseudo-second-order models for the adsorption of MB on various AC adsorbents (T = 25 °C, C0 = 700 mg/L and pH= 7)
Fig.5  Influence of contact time on MB removal by AC, AC/PEG, AC/CS, AC/CS/PEG 1:1, 1:2 and 2:1 (pH= 7, initial MB concentration: 700 mg/L)
Fig.6  Influence of solution pH on adsorption of MB on AC, AC/CS and AC/CS/PEG 2:1 (C0 = 50 mg/L)
1 Auta M, Hameed B H. Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye. Chemical Engineering Journal, 2011, 171(2): 502–509
https://doi.org/10.1016/j.cej.2011.04.017
2 Tunc O, Tanac H, Aksu Z. Potential use of cotton plant wastes for the removal of remazol black B reactive dye. Journal of Hazardous Materials, 2009, 163(1): 187–198
https://doi.org/10.1016/j.jhazmat.2008.06.078
3 Foo K Y, Hameed B H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology, 2012, 104: 679–686
https://doi.org/10.1016/j.biortech.2011.10.005
4 Seshardi S, Bishop P L, Aga A M. Anaerobic/aerobic treatment of selected azo dyes in waste water. Waste Management (New York, N.Y.), 1994, 14(2): 127–137
https://doi.org/10.1016/0956-053X(94)90005-1
5 Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile waste water using whole bacterial cells: A review. Dyes and Pigments, 2003, 58(3): 179–196
https://doi.org/10.1016/S0143-7208(03)00064-0
6 Kuo W S, Ho P H. Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 2001, 45(1): 77–83
https://doi.org/10.1016/S0045-6535(01)00008-X
7 Ciardelli G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electoflocculation. Water Research, 2001, 35(2): 567–572
https://doi.org/10.1016/S0043-1354(00)00286-4
8 Tang W Z, Huren An. Huren A. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere, 1995, 31(9): 4157–4170
https://doi.org/10.1016/0045-6535(95)80015-D
9 Gupta V K, Suhas. Application of low-cost adsorbents for dye removal: A review. Journal of Environmental Management, 2009, 90(8): 2313–2342
https://doi.org/10.1016/j.jenvman.2008.11.017
10 Salleh M A M, Mahmoud D K, Karim W A, Idris A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280(1-3): 1–13
https://doi.org/10.1016/j.desal.2011.07.019
11 Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 2008, 99(15): 6809–6816
https://doi.org/10.1016/j.biortech.2008.01.041
12 Lua A C, Yang T. Characteristics of activated carbon prepared from pistachionut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 2005, 290(2): 505–513
https://doi.org/10.1016/j.jcis.2005.04.063
13 Olivares-Marin M, Fernandez-Gonzalez C, Macias-Garcia A, Gomez-Serrano V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy & Fuels, 2007, 21(5): 2942–2949
https://doi.org/10.1021/ef060652u
14 Bagheri N, Abedi J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research & Design, 2009, 87(8): 1059–1064
https://doi.org/10.1016/j.cherd.2009.02.001
15 Yang J, Qiu K. Preparation of activated carbons from walnut shells via vacuum chemical. Chemical Engineering Journal, 2010, 165(1): 209–217
https://doi.org/10.1016/j.cej.2010.09.019
16 Bhatnagar A, Hogland W, Marques M, Sillanpaac M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 2013, 219: 499–511
https://doi.org/10.1016/j.cej.2012.12.038
17 Ravi Kumar M N V. A review of chitin and chitosan applications. Reactive & Functional Polymers, 2000, 46(1): 1–27
https://doi.org/10.1016/S1381-5148(00)00038-9
18 Rinaudo M. Chitin and chitosan, properties and applications. Progress in Polymer Science, 2006, 31(7): 603–632
https://doi.org/10.1016/j.progpolymsci.2006.06.001
19 Tan I A W, Ahmad A L, Hameed B H. Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1-3): 88–96
https://doi.org/10.1016/j.colsurfa.2007.12.018
20 Pillai C K S, Paul W, Sharma C H P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 34(7): 641–678
https://doi.org/10.1016/j.progpolymsci.2009.04.001
21 Crini G, Badot P M. Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 2008, 33(4): 399–447
https://doi.org/10.1016/j.progpolymsci.2007.11.001
22 Chandy T, Mooradian D L, Rao G H R. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin. Journal of Applied Polymer Science, 1998, 70(11): 2143–2153
https://doi.org/10.1002/(SICI)1097-4628(19981212)70:11<2143::AID-APP7>3.0.CO;2-L
23 Salehi E, Madaeni S S, Rajabi L, Derakhshan A A, Daraei S, Vatanpour V. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chemical Engineering Journal, 2013, 215-216: 791–801
https://doi.org/10.1016/j.cej.2012.11.071
24 Swayampakulaa K, Boddub V M, Nadavala S K, Abburi K. Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan coated perlite beads as biosorbent. Journal of Hazardous Materials, 2009, 170(2-3): 680–689
https://doi.org/10.1016/j.jhazmat.2009.05.106
25 Hydari S, Sharififard H, Nabavinia M, Parvizi M R. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chemical Engineering Journal, 2012, 193-194: 276–282
https://doi.org/10.1016/j.cej.2012.04.057
26 Edwin Vasu A. Surface modification of activated carbon for enhancement of nickel( P) adsorption. Journal of Chemistry, 2008, 5(4): 814–819
27 Xie L, Sparks M A, Li W, Qi Y, Liu Ch, Thomas M C, Johnson G A. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR in Biomedicine, 2013, 26(12): 1853–1863
https://doi.org/10.1002/nbm.3039
28 Alcantar N A, Aydil E S, Israelachvil J N. Polyethylene glycol-coated biocompatible surfaces. Journal of Biomedical Materials Research, 2000, 51(3): 343–351
https://doi.org/10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
29 Sheth S R, Leckband D. Measurements of attractive forces between protiens end-grafted poly ethylene glycol chains. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(16): 8399–8404
https://doi.org/10.1073/pnas.94.16.8399
30 Shashikala M, Nagapadma M, Pinto L, Nambiar S N. Studies on the removal of methylene blue dye from water using chitosan. International Journal of Development Research, 2013, 3(8): 40–44
31 Minfeng Z, Zhenngping F. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. Journal of Membrane Science, 2004, 245(1-2): 95–102
https://doi.org/10.1016/j.memsci.2004.08.004
32 Huang M, Liu L, Zhang G, Yuan G, Fang Y. Preparation of chitosan derivative with polyethylene glycol side chains for porous structure without specific processing technique. International Journal of Biological Macromolecules, 2006, 38(3-5): 191–196
https://doi.org/10.1016/j.ijbiomac.2006.02.008
33 Liu Q S, Zheng T, Li N, Wang P, Abulikemu G. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 2010, 256(10): 3309–3315
https://doi.org/10.1016/j.apsusc.2009.12.025
34 Hameed B H, Ahmad A L, Latiff K N A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 2007, 75(1): 143–149
https://doi.org/10.1016/j.dyepig.2006.05.039
35 Chandra T C, Mirna M M, Sudaryanto Y, Ismadji S. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal, 2007, 127(1-3): 121–129
https://doi.org/10.1016/j.cej.2006.09.011
36 Bulut Y, Aydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006, 194(1-3): 259–267
https://doi.org/10.1016/j.desal.2005.10.032
37 Ruthven D W. Principles of Adsorption and Adsorption Processes. Jon Wiley & Sons, 1984, 145–198
38 Tan T W, He X J, Du W X. Adsorption behavior of metal ions on imprinted chitosan adsorbent. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(2): 191–195
https://doi.org/10.1002/jctb.358
39 Taty Costodes V C, Fauduet H, Porte C, Hoa Y S H. Removal of lead (II) ions from synthetic and real effluents using immobilized pinus sylvestris sawdust: Adsorption on a fixed-bed column. Journal of Hazardous Materials, 2005, 123(1-3): 135–144
https://doi.org/10.1016/j.jhazmat.2005.03.032
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[3] Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)[J]. Front. Chem. Sci. Eng., 2017, 11(2): 238-251.
[4] Weikang ZHANG, Ye TIAN. Phosphorous removal from wastewater by lanthanum modified Y zeolites[J]. Front. Chem. Sci. Eng., 2015, 9(2): 209-215.
[5] Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Front Chem Sci Eng, 2013, 7(4): 388-400.
[6] Jiquan MA, Junhong ZHAO, Zhongbin REN, Lei LI. Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes[J]. Front Chem Sci Eng, 2012, 6(3): 301-310.
[7] Xiaoshuai LIU, Zihong CHENG, Wei MA. Removal of copper by modified chitosan adsorptive membrane[J]. Front Chem Eng Chin, 2009, 3(1): 102-106.
[8] LIU Xiaoye, DAI Gance. Impregnation of thermoplastic resin in jute fiber mat[J]. Front. Chem. Sci. Eng., 2008, 2(2): 145-149.
[9] ZHANG Mei, CUI Zhenyu, ZHU Baoku, HAN Gaige, XU Youyi, ZHANG Aiqing. Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction[J]. Front. Chem. Sci. Eng., 2008, 2(1): 89-94.
[10] XUE Ping, WU Tao. Asymmetric transfer hydrogenation of prochiral ketone catalyzed over Fe-CS/SBA-15 catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(3): 251-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed