Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 301-310    https://doi.org/10.1007/s11705-012-1204-6
RESEARCH ARTICLE
Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes
Jiquan MA1, Junhong ZHAO1, Zhongbin REN2, Lei LI1()
1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Sinopec International Petroleum Exploration and Production Corporation Sudan Branch, Beijing 100029, China
 Download: PDF(377 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High performance polyvinylidene fluoride (PVDF) flat sheet ultrafiltration (UF) membranes have been prepared by an immersion precipitation phase inversion method using perfluorosulfonic acid (PFSA) as a pore former and as a hydrophilic component of the membranes and polyethylene glycol (Mw = 400) (PEG400) as a pore forming agent. The effects of the presence of PEG and the concentration of the PFSA on the phase separation of the casting solutions and on the morphologies and performance of UF membranes including their porosity, water flux, rejection of bovine serum albumin (BSA) protein, and anti-fouling property were investigated. Phase diagrams, viscosities and the phase separations upon exposure to water vapor showed that both PEG400 and PFSA promoted demixing of the casting solution. Scanning electron microscopy measurements showed that the PVDF-PFSA blend membranes had more macropores and finger-like structures than the native PVDF membranes. The PVDF-PFSA membrane (5 wt-% PEG400+ 5 wt-% PFSA) had a pure water flux of 141.7 L/m2·h, a BSA rejection of 90.1% and a relative pure water flux reduction (RFR) of 15.28%. These properties were greatly superior to those of the native PVDF membrane (pure water flux of 5.6 L/m2·h, BSA rejection of 96.3% and RFR of 42.86%).

Keywords polyvinylidene fluoride      perfluorosulfonic acid      polyethylene glycol      flat sheet membrane      ultrafiltration     
Corresponding Author(s): LI Lei,Email:lilei0323@sjtu.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Jiquan MA,Junhong ZHAO,Zhongbin REN, et al. Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes[J]. Front Chem Sci Eng, 2012, 6(3): 301-310.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1204-6
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/301
Fig.1  The structural formula of perfluorosulfonic acid
MembraneM1M2M3M4M5M6
Composition /wt-%
PVDF171717171717
PFSA001357
PEG400055555
DMAc837877757371
Coagulation
CompositionWaterWaterWaterWaterWaterWater
Coagulation
Temperature /°C252525252525
Porosity /%-39.3042.0654.6757.9755.01
Viscosity /(Pa·s)3.5854.5904.7316.2398.15811.171
Tab.1  Composition, fabrication conditions, porosity and viscosity of membranes
Fig.2  Phase diagram of PVDF-PFSA-PEG400-DMAc-HO system at 25°C
Fig.3  Liquid-liquid demixing times of casting solutions exposed to water vapor as a function of PEG400/PFSA concentration (wt-%/wt-%)
Fig.4  SEM photographs of the cross section of the membrane samples prepared from the casting solutions with different PEG400/PFSA concentrations (wt-%/wt-%): (a) 0/0, (b) 5/0, (c) 0/1, (d) 0/3, (e) 5/1, (f) 5/3, (g) 5/5 and (h) 5/7
Fig.5  Flux of pure water through the membranes as a function of the concentration of PEG400/PFSA (wt-%/wt-%)
Fig.6  Permeation flux and rejection of BSA by membranes as a function of the concentration of PEG400/PFSA (wt-%/wt-%)
Fig.7  FTIR spectra of membrane samples
Fig.8  Water contact angle measurement for membranes M1, M3, M4, M5 and M6 prepared from casting solutions with different PEG400/PFSA concentrations (wt-%/wt-%): (M1) 0/0, (M3) 5/1, (M4) 5/3, (M5) 5/5, and (M6) (5/7)
Fig.9  Relative pure water reduction for membranes M1, M3, M4, M5 and M6 prepared from casting solutions with different PEG400/PFSA concentrations (wt-%/wt-%): (M1) 0/0, (M3) 5/1, (M4) 5/3, (M5) 5/5, and (M6) 5/7
1 Yeow M, Liu Y, Li K. Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO) as an additive. Journal of Membrane Science , 2005, 258(1-2): 16-22
doi: 10.1016/j.memsci.2005.01.015
2 Liu F, Hashim N A, Liu Y, Abed M R M, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science , 2011, 375(1-2): 1-27
doi:10.1016/j.memsci.2011.03.014
3 Du J R, Peldszus S, Huck P M, Feng X. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research , 2009, 43(18): 4559-4568
doi: 10.1016/j.watres.2009.08.008
4 Chanachai A, Meksup K, Jiraratananon R. Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process. Separation and Purification Technology , 2010, 72(2): 217-224
doi: 10.1016/j.seppur.2010.02.014
5 Qiu G M, Zhu L P, Zhu B K, Xu Y Y, Qiu G L. Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide: preparation, characterization and biocompatibility. Journal of Supercritical Fluids , 2008, 45(3): 374-383
doi: 10.1016/j.supflu.2008.02.002
6 Rahimpour A, Madaeni S S, Zereshki S, Mansourpanah Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science , 2009, 255(16): 7455-7461
doi: 10.1016/j.apsusc.2009.04.021
7 Yuan Z, Danli X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination , 2008, 223(1-3): 438-447
doi: 10.1016/j.desal.2007.01.184
8 Rajabzadeh S, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H. Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Separation and Purification Technology , 2009, 66(1): 76-83
doi: 10.1016/j.seppur.2008.11.021
9 Liu F, Xu Y Y, Zhu B K, Zhang F, Zhu L P. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. Journal of Membrane Science , 2009, 345(1-2): 331-339
doi: 10.1016/j.memsci.2009.09.020
10 Yuliwati E, Ismail A F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination , 2011, 273(1): 226-234
doi: 10.1016/j.desal.2010.11.023
11 Yan L, Hong S, Li M L, Li Y S. Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Separation and Purification Technology , 2009, 66(2): 347-352
doi: 10.1016/j.seppur.2008.12.015
12 Cho K, Jung H, Choi N, Sung S, Park J, Choi J, Sung Y. A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ionics , 2005, 176(39-40): 3027-3030
doi: 10.1016/j.ssi.2005.09.048
13 Song M K, Kim Y T, Fenton J M, Kunz H R, Rhee H W. Chemically-modified Nafion?/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells. Journal of Power Sources , 2003, 117(1-2): 14-21
doi: 10.1016/S0378-7753(03)00166-6
14 Mai Z, Zhang H, Li X, Xiao S, Zhang H. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. Journal of Power Sources , 2011, 196(13): 5737-5741
doi: 10.1016/j.jpowsour.2011.02.048
15 Peighambardoust S J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy , 2010, 35(17): 9349-9384
doi: 10.1016/j.ijhydene.2010.05.017
16 Cho K, Eom J, Jung H, Choi N, Lee Y, Park J, Choi J, Park K, Sung Y. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC). Electrochimica Acta , 2004, 50(2-3): 583-588
doi: 10.1016/j.electacta.2004.03.063
17 Cho K Y, Jung H Y, Sung K A, Kim W K, Sung S J, Park J K, Choi J H, Sung Y E. Preparation and charateristics of Nafion membrane coated with a PVdF copolymer/recast Nafion blend for direct methanol fuel cell. Journal of Power Sources , 2006, 159(1): 524-528
doi: 10.1016/j.jpowsour.2005.10.106
18 Lang W Z, Xu Z L, Yang H, Tong W. Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane. Journal of Membrane Science , 2007, 288(1-2): 123-131
doi: 10.1016/j.memsci.2006.11.009
19 Yuan G L, Xu Z L, Wei Y M. Characterization of PVDF-PFSA hollow fiber UF blend membrane with low-molecular weight cut-off. Separation and Purification Technology , 2009, 69(2): 141-148
doi: 10.1016/j.seppur.2009.07.011
20 Li L, Shang F, Wang L, Pei S, Zhang Y. Transport properties of PFSA membranes with various ion exchange capacities for direct methanol fuel cell application. Energy & Environmental Science , 2010, 3(1): 114
doi: 10.1039/b917352h
21 Luan Y, Zhang H, Zhang Y, Li L, Li H, Liu Y. Study on structural evolution of perfluorosulfonic ionomer from concentrated DMF-based solution to membranes. Journal of Membrane Science , 2008, 319(1-2): 91-101
doi: 10.1016/j.memsci.2008.03.054
22 Shang F, Li L, Zhang Y, Li H. PWA/silica/PFSA composite membrane for direct methanol fuel cells. Journal of Materials Science , 2009, 44(16): 4383-4388
doi: 10.1007/s10853-009-3658-6
23 Ai F, Yuan W Z, Wang Q, Li H, Zhang Y, Pei S. Enhancing the anti-cracking performance of perfluorosulfonic acid membranes for implantable biosensors through supercritical CO2 treatment. Journal of Materials Science , 2012, 47(8): 3602-3606
doi: 10.1007/s10853-011-6206-0
24 Ai F, Wang Q, Yuan W Z, Li H, Chen X, Yang L, Zhang Y, Pei S. Biocompatibility and anti-cracking performance of perfluorocarboxylic acid ionomer membranes for implantable biosensors. Journal of Materials Science , 2012, 47(13): 5181-5189
doi: 10.1007/s10853-012-6397-z
25 Luan Y, Zhang Y, Li L, Zhang H, Zhang Q, Huang Z, Liu Y. Perfluorosulfonic ionomer solution in N,N-dimethylformamide. Journal of Applied Polymer Science , 2008, 107(5): 2892-2898
doi: 10.1002/app.27150
26 Idris A, Mat Zain N, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination , 2007, 207(1-3): 324-339
doi: 10.1016/j.desal.2006.08.008
27 Mansourizadeh A, Ismail A F. Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption. Journal of Membrane Science , 2010, 348(1-2): 260-267
doi: 10.1016/j.memsci.2009.11.010
28 Han M J, Nam S T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. Journal of Membrane Science , 2002, 202(1-2): 55-61
doi: 10.1016/S0376-7388(01)00718-9
29 Krishnamoorthy L, Arif P M, Ahmedkhan R. Separation of proteins from aqueous solution using cellulose acetate/poly (vinyl chloride) blend ultrafiltration membrane. Journal of Materials Science , 2011, 46(9): 2914-2921
doi: 10.1007/s10853-010-5166-0
30 Susanto H, Feng Y, Ulbricht M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. Journal of Food Engineering , 2009, 91(2): 333-340
doi: 10.1016/j.jfoodeng.2008.09.011
31 Lee K W, Seo B K, Nam S T, Han M J. Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination , 2003, 159(3): 289-296
doi: 10.1016/S0011-9164(03)90081-6
32 Rahimpour A, Madaeni S S, Mehdipour-Ataei S. Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. Journal of Membrane Science , 2008, 311(1-2): 349-359
doi: 10.1016/j.memsci.2007.12.038
33 Susanto H, Ulbricht M. Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. Journal of Membrane Science , 2009, 327(1-2): 125-135
doi: 10.1016/j.memsci.2008.11.025
34 Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E. Vibrational spectrum of PVDF and its interpretation. Polymer Testing , 2004, 23(7): 791-796
doi: 10.1016/j.polymertesting.2004.04.001
35 Gruger A, Régis A, Schmatko T, Colomban P. Nanostructure of Nafion? membranes at different states of hydration: An IR and Raman study. Vibrational Spectroscopy , 2001, 26(2): 215-225
doi: 10.1016/S0924-2031(01)00116-3
36 Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science , 2009, 342(1-2): 97-104
doi: 10.1016/j.memsci.2009.06.022
[1] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[2] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
[3] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[4] Nora’aini ALI, Fadhilati HASSAN, Sofiah HAMZAH. Preparation and characterization of asymmetric ultrafiltration membrane for effective recovery of proteases from surimi wash water[J]. Front Chem Sci Eng, 2012, 6(2): 184-191.
[5] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[6] ZHANG Mei, CUI Zhenyu, ZHU Baoku, HAN Gaige, XU Youyi, ZHANG Aiqing. Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction[J]. Front. Chem. Sci. Eng., 2008, 2(1): 89-94.
[7] GAO Sujun, SUN Yaqin, XIU Zhilong. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol precipitation and dilution crystallization[J]. Front. Chem. Sci. Eng., 2007, 1(2): 202-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed