Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (4) : 546-560    https://doi.org/10.1007/s11705-019-1842-z
RESEARCH ARTICLE
Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite
Hanlu Wang, Idris Jibrin, Xingye Zeng()
College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
 Download: PDF(4683 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Catalysts for the desulfurization of gasoline samples were synthesized via the immobilization of well-dispersed phosphotungstic acid (HPW) on Mobil composition of matter-twenty-two (MWW) zeolite. Characterization results indicated that these catalysts possess a mesoporous structure with the retention of the Keggin structure of immobilized HPW. Relevant reaction parameters influencing sulfur removal were systematically investigated, including HPW loading, catalyst dosage, temperature, initial S-concentration, molar ratio of oxidant to sulfide (O/S), volume ratio of MeCN to model oil (Ext./oil), and sulfide species. The 40 wt-% HPW/MWW catalyst exhibited the highest catalytic activity with 99.6% dibenzothiophene sulfur removal from prepared samples. The 40 wt-% HPW/MWW catalyst was recycled four times and could be easily regenerated. Finally, as an exploratory study, straight-run-gasoline and fluid catalytic cracking gasoline were employed to accurately evaluate the desulfurization performance of 40 wt-% HPW/MWW. Our research provides new insights into the development and application of catalysts for desulfurization of gasoline.

Keywords oxidative desulfurization      phosphotungstic acid      MWW      wet impregnation      adsorption energy     
Corresponding Author(s): Xingye Zeng   
Just Accepted Date: 15 October 2019   Online First Date: 29 November 2019    Issue Date: 22 May 2020
 Cite this article:   
Hanlu Wang,Idris Jibrin,Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1842-z
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I4/546
Samples Theoretical content of HPW /% W contenta) Actual content of HPW /% Surface areab) /(m2·g−1) Pore volume
/(m3·g−1)
Average pore size c)
/nm
MWW 0 0 0 354 0.44 12.1
HPW/MWW-10 10 6.9 9.4 307 0.48 12.6
HPW/MWW-20 20 14.4 19.6 264 0.30 9.9
HPW/MWW-30 30 22.8 31.0 222 0.25 9.9
HPW/MWW-40 40 27.9 38.0 195 0.22 8.7
HPW/MWW-50 50 34.1 46.4 163 0.18 8.1
Tab.1  Structural parameters of MWW and HPW/MWW
Fig.1  N2 adsorption-desorption isotherms for a range of HPW-loaded MWW catalysts.
Fig.2  (a) XRD and (b) FT-IR spectra of MWW and HPW/MWW with a range of HPW loadings.
Fig.3  TEM images of HPW-MWW-40.
Fig.4  (a) Survey XPS spectra of HPW and HPW-MWW-40, (b) High-resolution XPS spectra of W 4f for HPW and HPW-MWW-40, and (c) High-resolution XPS spectra of O 1s for HPW and HPW-MWW-40.
Fig.5  Scheme 1 Schematic mechanism for the formation of HPW-supported MWW zeolite.
Fig.6  Effects of different reaction conditions on sulfur removal: (a) HPW loading, (b) HPW-MWW-40 quantity, (c) temperature, (d) S-concentration, (e) O/S, and (f) Ext./oil.
Entry Catalyst Initial sulfur /ppm Catalyst dosage /(g·L−1) T /°C O/Sa) Ext./oilb) t /min Removal /% Ref.
1 HPW/MWW 500 3 60 4:1 1:2 50 99.6 This work
2 HPW-GO 500 5 60 6:1 1:1 30 100 [57]
3 HPW/NH2-Al2O3 350 2 60 8:1 1:0.7 120 99.2 [55]
4 HPW/SPC 500 6 60 3:1 1:1 120 98.6 [62]
5 HPW/TiO2 500 10 60 12:1 1:1 120 95.2 [60]
6 HPW/mpg-C3N4 100 10 60 8:1 1:1 150 100 [51]
7 HPW/TUD-1 500 10 60 8:1 1:0.58 120 98.1 [31]
8 HPW/CeO2 500 4 30 6:1 1:5 30 99.4 [58]
9 HPW/MIL-101 500 50 50 6:1 1:1 60 100 [61]
10 HPW-h-BN 500 10 40 4:1 60 100 [63]
11 HPW-IL/SBA-15 500 2 60 3:1 60 100 [32]
12 HPW/PIL 1000 2 50 5:1 90 100 [56]
13 Cs2.5H0.5HPW/MCNT 500 7 60 20:1 160 100 [64]
14 HPW/ZrO2-SiO2 100 10 60 2:1 30 100 [59]
15 HPW/SiO2 100 10 60 8:1 150 100 [59]
Tab.2  Comparisons of DBT removal performance for HPW-supported heterogeneous catalysts with other studies
Fig.7  (a) Effects of different ASCs on sulfur removal. Reaction conditions: T = 60°C, O/S= 4:1, model oil= 10 mL, MeCN= 5 mL, and m(HPW/MWW-40) = 0.03 g, and t = 50 min. DEads and structural models of HPW and (b) BT, (c) DBT, and (d) 4,6-DMDBT.
Fig.8  (a) HPW/MWW-40 recycling and (b) regeneration. Reaction conditions: T = 60°C, O/S= 4:1, model oil= 10 mL, MeCN= 5 mL, m(HPW/MWW-40) = 0.03 g, and t = 50 min.
Fig.9  SEM and EDS of HPW/MWW-40: (a) before reaction, (b) after four runs, and (c) after regeneration.
Fig.10  GC-MS spectra after ODS.
Fig.11  Various S-compounds and their amounts (a) before ODS of SRG; (b) after ODS of SRG; (c) before ODS of FCC; (d) after ODS of FCC gasolines. Details for S-compounds corresponding to the abscissa value are given in Tables S1 and S2 (cf. Electronic Supplementary Material).
Components SRG FCC
Before reaction After reaction Before reaction After reaction
n-Paraffin /wt-% 35.8 30.9 4.4 4.4
Isoparaffins /wt-% 33.8 32.1 35.4 35.4
Olefin /wt-% 0 0 17.6 17.3
Naphthenic /wt-% 22.7 28.5 10.0 10.0
Aromatic /wt-% 7.7 8.3 32.6 32.6
MeCN 0 0.3 0.0 0.3
Tab.3  Key components of SRG and FCC gasoline
1 Y S Al Degs, A H El Sheikh, R Z Al Bakain, A P Newman, M A Al Ghouti. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: A review. Energy Technology (Weinheim), 2016, 4(6): 679–699
https://doi.org/10.1002/ente.201500475
2 Q Wei, J Chen, C Song, G Li. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst. Frontiers of Chemical Science and Engineering, 2015, 9(3): 336–348
https://doi.org/10.1007/s11705-015-1535-1
3 A Kong, Y Wei, Y Li. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation. Frontiers of Chemical Science and Engineering, 2013, 7(2): 170–176
https://doi.org/10.1007/s11705-013-1322-9
4 L Wang, R T Yang. New nanostructured sorbents for desulfurization of natural gas. Frontiers of Chemical Science and Engineering, 2014, 8(1): 8–19
https://doi.org/10.1007/s11705-014-1411-4
5 X D Tang, Y F Zhang, J J Li, Y Q Zhu, D Y Qing, Y X Deng. Deep extractive desulfurization with arenium ion deep eutectic solvents. Industrial & Engineering Chemistry Research, 2015, 54(16): 4625–4632
https://doi.org/10.1021/acs.iecr.5b00291
6 Y Chen, H Song, H Meng, Y Lu, C Li, Z Lei, B Chen. Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Processing Technology, 2017, 158: 20–25
https://doi.org/10.1016/j.fuproc.2016.10.019
7 S Torkamani, J Shayegan, S Yaghmaei, I Alemzadeh. Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Industrial & Engineering Chemistry Research, 2008, 47(19): 7476–7482
https://doi.org/10.1021/ie800494p
8 J J Kilbane, B Stark. Biodesulfurization: A model system for microbial physiology research. World Journal of Microbiology & Biotechnology, 2016, 32(8): 137
https://doi.org/10.1007/s11274-016-2084-6
9 J He, P Wu, Y Wu, H Li, W Jiang, S Xun, M Zhang, W Zhu, H Li. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8930–8938
https://doi.org/10.1021/acssuschemeng.7b01741
10 D Yue, J Lei, Y Peng, J Li, X Du. Hierarchical ordered meso/macroporous H3PW12O40/SiO2 catalysts with superior oxidative desulfurization activity. Journal of Porous Materials, 2018, 25(3): 727–734
https://doi.org/10.1007/s10934-017-0486-y
11 K Leng, X Li, G Ye, Y Du, Y Sun, W Xu. Ti-containing hierarchical Beta with highly active sites for deep desulfurization of fuels under mild conditions. Catalysis Science & Technology, 2016, 6(20): 7615–7622
https://doi.org/10.1039/C6CY01389A
12 G Silva, S Voth, P Szymanski, E M Prokopchuk. Oxidation of dibenzothiophene by hydrogen peroxide in the presence of bis(acetylacetonato)oxovanadium(IV). Fuel Processing Technology, 2011, 92(8): 1656–1661
https://doi.org/10.1016/j.fuproc.2011.04.014
13 K G Haw, W A W A Bakar, R Ali, J F Chong, A A A Kadir. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system. Fuel Processing Technology, 2010, 91(9): 1105–1112
https://doi.org/10.1016/j.fuproc.2010.03.021
14 A Sengupta, P D Kamble, J K Basu, S Sengupta. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Industrial & Engineering Chemistry Research, 2012, 51(1): 147–157
https://doi.org/10.1021/ie2024068
15 S W Li, Z Yang, R M Gao, G Zhang, J S Zhao. Direct synthesis of mesoporous SRL-POM@MOF-199@MCM-41 and its highly catalytic performance for the oxidesulfurization of DBT. Applied Catalysis B: Environmental, 2018, 221: 574–583
https://doi.org/10.1016/j.apcatb.2017.09.044
16 C Komintarachat, W Trakarnpruk. Oxidative desulfurization using polyoxometalates. Industrial & Engineering Chemistry Research, 2006, 45(6): 1853–1856
https://doi.org/10.1021/ie051199x
17 T O Sachdeva, K K Pant. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Processing Technology, 2010, 91(9): 1133–1138
https://doi.org/10.1016/j.fuproc.2010.03.027
18 D Jin, Z Hou, Y Luo, X Zheng. Synthesis of dimethyldiphenylmethane over supported 12-tungstophosphoric acid (H3PW12O40). Journal of Molecular Catalysis A: Chemical, 2006, 243(2): 233–238
https://doi.org/10.1016/j.molcata.2005.08.037
19 A Sakthivel, K Komura, Y Sugi. MCM-48 supported tungstophosphoric acid: An efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2008, 47(8): 2538–2544
https://doi.org/10.1021/ie071314z
20 L Liu, Y Zhang, W Tan. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon. Ultrasonics Sonochemistry, 2014, 21(3): 970–974
https://doi.org/10.1016/j.ultsonch.2013.10.028
21 T Chen, C Fan. One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. Journal of Porous Materials, 2013, 20(5): 1225–1230
https://doi.org/10.1007/s10934-013-9706-2
22 L Liu, Y Zhang, W Tan. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst. Frontiers of Chemical Science and Engineering, 2013, 7(4): 422–427
https://doi.org/10.1007/s11705-013-1353-2
23 X You, L L Yu, F F Xiao, S C Wu, C Yang, J H Cheng. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation. Chemical Engineering Journal, 2018, 335: 812–821
https://doi.org/10.1016/j.cej.2017.10.123
24 J Lei, L Chen, P Yang, X Du, X Yan. Oxidative desulfurization of diesel fuel by mesoporous phosphotungstic acid/SiO2: The effect of preparation methods on catalytic performance. Journal of Porous Materials, 2013, 20(5): 1379–1385
https://doi.org/10.1007/s10934-013-9724-0
25 J Qiu, G Wang, Y Zhang, D Zeng, Y Chen. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel, 2015, 147: 195–202
https://doi.org/10.1016/j.fuel.2015.01.064
26 Y Ha, Y Li. Tungstophosphoric acid supported on nano SiO2 catalyst for the alkylation of 2-ethylthiophene with vinyltoluene in the crack C9 fraction. Journal of Porous Materials, 2015, 22(3): 721–728
https://doi.org/10.1007/s10934-015-9945-5
27 G R Bertolini, L R Pizzio, A Kubacka, M J Muñoz-Batista, M Fernández-García. Composite H3PW12O40-TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225: 100–109
https://doi.org/10.1016/j.apcatb.2017.11.055
28 G Marcì, E García-López, L Palmisano, D Carriazo, C Martín, V Rives. Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2009, 90(3-4): 497–506
https://doi.org/10.1016/j.apcatb.2009.03.034
29 P Yang, S Zhou, Y Du, J Li, J Lei. Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels. Journal of Porous Materials, 2017, 24(2): 531–539
https://doi.org/10.1007/s10934-016-0288-7
30 X M Yan, Z Mei, P Mei, Q Yang. Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. Journal of Porous Materials, 2014, 21(5): 729–737
https://doi.org/10.1007/s10934-014-9819-2
31 L Tang, G Luo, M Zhu, L Kang, B Dai. Preparation, characterization and catalytic performance of HPW-TUD-1 catalyst on oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 620–626
https://doi.org/10.1016/j.jiec.2012.09.015
32 J Xiong, W Zhu, W Ding, L Yang, Y Chao, H Li, F Zhu, H Li. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: Efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895–19904
https://doi.org/10.1021/ie503322a
33 Z K Zhao, Y T Dai. A comparison of the H3PW12O40/MCM-41 and HY zeolite for alkenylation of p-xylene with phenylacetylene. Advanced Materials Research, 2013, 634-638: 377–381
https://doi.org/10.4028/www.scientific.net/AMR.634-638.377
34 Q Y Liu, W L Wu, J Wang, X Q Ren, Y R Wang. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol. Microporous and Mesoporous Materials, 2004, 76(1-3): 51–60
https://doi.org/10.1016/j.micromeso.2004.08.001
35 G Luo, L Kang, M Zhu, B Dai. Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene. Fuel Processing Technology, 2014, 118: 20–27
https://doi.org/10.1016/j.fuproc.2013.08.001
36 P Wu. A novel titanosilicate with MWW structure III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. Journal of Catalysis, 2003, 214(2): 317–326
https://doi.org/10.1016/S0021-9517(02)00170-7
37 P Wu, T Tatsumi, T Komatsu, T Yashima. A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. Journal of Physical Chemistry B, 2001, 105(15): 2897–2905
https://doi.org/10.1021/jp002816s
38 P Wu, T Tatsumi, T Komatsu, T Yashima. Hydrothermal synthesis of a novel titanosilicate with MWW topology. Chemistry Letters, 2000, 29(7): 774–775
https://doi.org/10.1246/cl.2000.774
39 Y Wang, D Zhou, G Yang, S Miao, X Liu, X Bao. A DFT study on isomorphously substituted MCM-22 zeolite. Journal of Physical Chemistry A, 2004, 108(32): 6730–6734
https://doi.org/10.1021/jp0376875
40 J Wang, F Zhang, W Hua, Y Yue, Z Gao. Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catalysis Communications, 2012, 18: 63–67
https://doi.org/10.1016/j.catcom.2011.11.023
41 S Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799
https://doi.org/10.1002/jcc.20495
42 M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scalmani, V Barone, B Mennucci, G A Petersson, et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc., 2013
43 H Y Luo, V K Michaelis, S Hodges, R G Griffin, Y Román-Leshkov. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science (Cambridge), 2015, 6(11): 6320–6324
https://doi.org/10.1039/C5SC01912E
44 B Zhang, H Asakura, N Yan. Atomically dispersed Rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Industrial & Engineering Chemistry Research, 2017, 56(13): 3578–3587
https://doi.org/10.1021/acs.iecr.7b00376
45 G Nie, J J Zou, R Feng, X Zhang, L Wang. HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine. Catalysis Today, 2014, 234: 271–277
https://doi.org/10.1016/j.cattod.2013.12.003
46 H Wang, C Wang, Y Yang, M Zhao, Y H Wang. H3PW12O40/mpg-C3N4 as efficient and reusable bifunctional catalyst in one-pot oxidation-Knoevenagel condensation tandem reaction. Catalysis Science & Technology, 2017, 7(2): 405–417
https://doi.org/10.1039/C6CY01669C
47 X Sheng, J Kong, Y Zhou, Y Zhang, Z Zhang, S Zhou. Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. Microporous and Mesoporous Materials, 2014, 187: 7–13
https://doi.org/10.1016/j.micromeso.2013.12.007
48 P Y Hoo, A Z Abdullah. Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chemical Engineering Journal, 2014, 250: 274–287
https://doi.org/10.1016/j.cej.2014.04.016
49 K Kalantari, M Kalbasi, M Sohrabi, S J Royaee. Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceramics International, 2017, 43(1): 973–981
https://doi.org/10.1016/j.ceramint.2016.10.028
50 H J Kim, Y G Shul, H Han. Synthesis of heteropolyacid (H3PW12O40)/SiO2 nanoparticles and their catalytic properties. Applied Catalysis A, General, 2006, 299(1-2): 46–51
https://doi.org/10.1016/j.apcata.2005.10.010
51 Y Zhu, M Zhu, L Kang, F Yu, B Dai. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel. Industrial & Engineering Chemistry Research, 2015, 54(7): 2040–2047
https://doi.org/10.1021/ie504372p
52 J A Kadijani, E Narimani. Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content. Applied Petrochemical Research, 2016, 6(1): 25–34
https://doi.org/10.1007/s13203-015-0107-0
53 H Lü, J Gao, Z Jiang, F Jing, Y Yang, G Wang, C Li. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. Journal of Catalysis, 2006, 239(2): 369–375
https://doi.org/10.1016/j.jcat.2006.01.025
54 X Zeng, X Xiao, Y Li, J Chen, H Wang. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Applied Catalysis B: Environmental, 2017, 209: 98–109
https://doi.org/10.1016/j.apcatb.2017.02.077
55 L Qin, Y Zheng, D Li, Y Zhou, L Zhang, Z Zuhra. Phosphotungstic acid immobilized on amino functionalized spherical millimeter-sized mesoporous gamma-Al2O3 bead and its superior performance in oxidative desulfurization of dibenzothiophene. Fuel, 2016, 181: 827–835
https://doi.org/10.1016/j.fuel.2016.05.063
56 H Yang, B Jiang, Y Sun, L Zhang, Z Huang, Z Sun, N Yang. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid. Journal of Hazardous Materials, 2017, 333: 63–72
https://doi.org/10.1016/j.jhazmat.2017.03.017
57 A K Dizaji, B Mokhtarani, H R Mortaheb. Deep and fast oxidative desulfurization of fuels using graphene oxide-based phosphotungstic acid catalysts. Fuel, 2019, 236: 717–729
https://doi.org/10.1016/j.fuel.2018.09.076
58 M Zhang, W Zhu, S Xun, H Li, Q Gu, Z Zhao, Q Wang. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220: 328–336
https://doi.org/10.1016/j.cej.2012.11.138
59 X Zhang, Y Zhu, P Huang, M Zhu. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization. RSC Advances, 2016, 6(73): 69357–69364
https://doi.org/10.1039/C6RA16622A
60 X M Yan, P Mei, J Lei, Y Mi, L Xiong, L Guo. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 304(1-2): 52–57
https://doi.org/10.1016/j.molcata.2009.01.023
61 S Ribeiro, A D S Barbosa, A C Gomes, M Pillinger, I S Gonçalves, L Cunha-Silva, S S Balula. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Processing Technology, 2013, 116: 350–357
https://doi.org/10.1016/j.fuproc.2013.07.011
62 B Li, Z Liu, J Liu, Z Zhou, X Gao, X Pang, H Sheng. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid. Journal of Colloid and Interface Science, 2011, 362(2): 450–456
https://doi.org/10.1016/j.jcis.2011.07.025
63 H Ji, J Sun, P Wu, B Dai, Y Chao, M Zhang, W Jiang, W Zhu, H Li. Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A Chemical, 2016, 423: 207–215
https://doi.org/10.1016/j.molcata.2016.06.019
64 R Wang, F Yu, G Zhang, H Zhao. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catalysis Today, 2010, 150(1-2): 37–41
https://doi.org/10.1016/j.cattod.2009.10.001
65 A Bazyari, A A Khodadadi, A Haghighat Mamaghani, J Beheshtian, L T Thompson, Y Mortazavi. Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Applied Catalysis B: Environmental, 2016, 180: 65–77
https://doi.org/10.1016/j.apcatb.2015.06.011
66 S T Yang, K E Jeong, S Y Jeong, W S Ahn. Synthesis of mesoporous TS-1 using a hybrid SiO2-TiO2 xerogel for catalytic oxidative desulfurization. Materials Research Bulletin, 2012, 47(12): 4398–4402
https://doi.org/10.1016/j.materresbull.2012.09.041
67 J Wang, L Zhang, Y Sun, B Jiang, Y Chen, X Gao, H Yang. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Processing Technology, 2018, 177: 81–88
https://doi.org/10.1016/j.fuproc.2018.04.013
68 S Du, F Li, Q Sun, N Wang, M Jia, J Yu. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications, 2016, 52(16): 3368–3371
https://doi.org/10.1039/C5CC08441E
69 S Xun, W Zhu, Y Chang, H Li, M Zhang, W Jiang, D Zheng, Y Qin, H Li. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288: 608–617
https://doi.org/10.1016/j.cej.2015.12.005
70 C Wang, W Zhu, Z Chen, S Yin, P Wu, S Xun, W Jiang, M Zhang, H Li. Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5(121): 99927–99934
https://doi.org/10.1039/C5RA16079K
71 H Li, W Zhu, Y Wang, J Zhang, J Lu, Y Yan. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chemistry, 2009, 11(6): 810–815
https://doi.org/10.1039/b901127g
72 S Otsuki, T Nonaka, N Takashima, W Qian, A Ishihara, T Imai, T Kabe. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232–1239
https://doi.org/10.1021/ef000096i
73 X Zeng, G Mo, H Wang, R Zhou, C Zhao. Oxidation mechanism of dibenzothiophene compounds: A computational study. Computational & Theoretical Chemistry, 2014, 1037: 22–27
https://doi.org/10.1016/j.comptc.2014.03.023
74 H Li, W Zhu, S Zhu, J Xia, Y Chang, W Jiang, M Zhang, Y Zhou, H Li. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(6): 2087–2100
https://doi.org/10.1002/aic.15161
75 K Kalantari, M Kalbasi, M Sohrabi, S J Royaee. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, 2016, 42(13): 14834–14842
https://doi.org/10.1016/j.ceramint.2016.06.117
76 D Yue, J Lei, Z Lina, G Zhenran, X Du, J Li. Oxidation desulfurization of fuels by using amphiphilic hierarchically meso/macroporous phosphotungstic acid/SiO2 catalysts. Catalysis Letters, 2018, 148(4): 1100–1109
https://doi.org/10.1007/s10562-018-2317-4
77 S Liu, F Zhao, H Sun, X Liu, B Cui. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization. Applied Organometallic Chemistry, 2018, 32(2): e4082
https://doi.org/10.1002/aoc.4082
78 L Wang, S Li, H Cai, Y Xu, X Wu, Y Chen. Ultra-deep desulfurization of fuel with metal complex of Chitosan Schiff base assisted by ultraviolet. Fuel, 2012, 94: 165–169
https://doi.org/10.1016/j.fuel.2011.10.023
79 B Jiang, H Yang, L Zhang, R Zhang, Y Sun, Y Huang. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal, 2016, 283: 89–96
https://doi.org/10.1016/j.cej.2015.07.070
[1] FCE-19003-OF-WH_suppl_1 Download
[1] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[2] Liyan LIU, Yu ZHANG, Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed