Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 147-161    https://doi.org/10.1007/s11705-015-1546-y
RESEARCH ARTICLE
Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite
Yan Zhang1,3,Pingqiang Gao3,Lin Zhao1,2,*(),Yizhong Chen2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China
3. School of Chemistry and Chemical Engineering, Yulin University, Shaanxi 719000, China
 Download: PDF(1136 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel hydrogel composite was prepared via inverse suspension polymerization using starch, acrylic acid and organo-mordenite micropowder with the crosslinker, N,N′-methylenebisacrylamide and the initiator, potassium persulfate. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy confirmed that the acrylic acid was grafted onto the backbone of the corn starch, that the organo-mordenite participated in the polymerization, and that the addition of organo-mordenite improved the surface morphology of the hydrogel composite. The swelling capacity of the hydrogel composite was evaluated in distilled water, and solutions with different pH values, and various salt solutions. It was found that the incorporation of 10 wt-% organo-mordenite enhanced the water absorbency by 144% (from 268 to 655 g·g−1) and swelling was extremely sensitive to the pH values, the concentration of the salt solution and cation type. Swelling kinetics and water diffusion mechanism of the hydrogel composite in distilled water were also discussed. Moreover, the hydrogel composite showed excellent reversibility of water absorption even after five repetitive cycles and the hydrogel composite exhibited significant environmental-responsiveness by changing the swelling medium from distilled water to 0.1 mol·L−1 NaCl solution. In addition, the loading and release of urea by the hydrogel composite were tested and the nutrient-slow-release capability of this material was found to be suitable for many potential applications.

Keywords hydrogel composite      environmental-responsiveness      organo-mordenite      starch      acrylic acid     
Corresponding Author(s): Lin Zhao   
Online First Date: 01 December 2015    Issue Date: 29 February 2016
 Cite this article:   
Yan Zhang,Pingqiang Gao,Lin Zhao, et al. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite[J]. Front. Chem. Sci. Eng., 2016, 10(1): 147-161.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1546-y
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/147
Fig.1  Proposed mechanism for the synthesis of the starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite
Fig.2  FTIR spectra of (a) organo-mordenite, (b) starch, (c) starch-g-poly(acrylic acid) and (d) starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite with 10 wt-% of organo-mordenite
Fig.3  XRD spectra of (a) starch-g-poly(acrylic acid) hydrogel, (b) organo-mordenite, and (c) starch-g-poly(acrylic acid)/organo-mordenite with 10 wt-% organo-mordenite
Fig.4  SEM micrographs of (a) starch-g-poly(acrylic acid), magnification 50000, (b) organo-mordenite, magnification 6000, (c) starch-g-polyacrylic aicd)/organo-mordenite (5 wt-%), magnification 5000, and (d) starch-g-polyacrylic aicd)/organo-mordenite (10 wt-% ), magnification 5000
Fig.5  EDS spectra of (a) starch-g-poly(acrylic acid), (b) organo-mordenite, (c) starch-g-polyacrylic aicd)/organo-mordenite (5 wt-%), and (d) starch-g-polyacrylic aicd)/organo-mordenite (10 wt-%)
Fig.6  Effect of the amount of organo-mordenite on the swelling capacity of starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite (10 wt-%) in distilled water
Fig.7  Swelling behavior of starch-g-poly(acrylic acid) hydrogel and starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite (10 wt-%) as a function of time in distilled water
Fig.8  Swelling behavior of the starch-g-poly(acrylic acid) hydrogel and the starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite (10 wt-%) in distilled water (a) t/Wt versus t and (b) ln(Wt/W) versus lnt.
Sample Kinetics parameters Diffusion parameters
W e a ) W b) k s c) k i s d) R 2 ne) R 2
Starch-g-ploy (acrylic acid) 268 278 2.9×10−4 22.5 0.9993 0.30 0.8158
Starch-g-poly(acrylic acid)/ organo-mordenite 655 943 1.3×10−5 11.5 0.9801 0.38 0.9325
Tab.1  Swelling kinetics and diffusion parameters for starch-g-poly(acrylic acid) and starch-g-poly(acrylic acid)/organo-mordenite (10 wt-%)
Fig.9  Effect of pH values on the water absorption of hydrogels
Fig.10  Absorption of various salt solutions by hydrogels (a) starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite (10 wt-% organo-mordenite) and (b) starch-g-poly(acrylic acid)
Fig.11  Environmental-responsiveness of starch-g-poly(acrylic acid)/mordenite hydrogel composite: swelling in distilled water and deswelling in NaCl (0.1 mol·L−1)
Fig.12  Reversibility of the hydrogels in distilled water
Fig.13  The equilibrium swelling capacity of the hydrogel composites (10 wt-% organo-mordenite) in urea solutions with different concentrations (0.02, 0.04, 0.08, and 0.12 mol·L−1)
Fig.14  Release of urea from loaded starch-g-poly(acrylic acid)/organo-mordenite (with 10 wt-% organo-mordenite)
1 Seetapan  N, Wongsawaeng  J, Kiatkamjornwong  S. Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polymers for Advanced Technologies, 2011, 22(12): 1685–1695
https://doi.org/10.1002/pat.1658
2 Raju  K M, Raju  M P. Synthesis and swelling properties of superabsorbent copolymers. Advances in Polymer Technology, 2001, 20(2): 146–154
https://doi.org/10.1002/adv.1012
3 Swain  S K, Shur  B, Patra  S K. Poly(acrylamide-co-vinyl alcohol)—superabsorbent materials reinforced by modified clay. Polymer Composites, 2013, 34(11): 1794–1800
https://doi.org/10.1002/pc.22583
4 Li  A, Wang  A. Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal, 2005, 41(7): 1630–1637
https://doi.org/10.1016/j.eurpolymj.2005.01.028
5 Lokhande  H T, Gotmare  V D. Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization. Bioresource Technology, 1999, 68(3): 283–286
https://doi.org/10.1016/S0960-8524(98)00148-5
6 Kazanskii  K S, Dubrovskii  S A. Chemistry and physics of “agricultural” hydrogels. Advances in Polymer Science, 1992, 104: 97–133
https://doi.org/10.1007/3-540-55109-3_3
7 Mohana  R K, Padmanabha  R M. Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polymer International, 2001, 50(8): 946–951
https://doi.org/10.1002/pi.721
8 Chen  L P, Ying  K L, Hsu  K C. Amphibious water-soluble copolymer. I. Its synthesis and dispersing ability on barium titanate. Journal of Applied Polymer Science, 2004, 92(4): 2232–2239
https://doi.org/10.1002/app.13696
9 Zhang  Y H, Wang  L M, Li  X H, He  P X. Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid. Journal of Polymer Research, 2011, 18(2): 157–161
https://doi.org/10.1007/s10965-010-9402-8
10 Hao  L, Yang  H, Lei  Z. Synthesis and properties of thermo-responsive macroporous PAM-co-PNIPAM microspheres. Materials Letters, 2012, 70: 83–85
https://doi.org/10.1016/j.matlet.2011.11.112
11 Wang  G, Li  M, Chen  X. Inverse suspension polymerization of sodium acrylate. Journal of Applied Polymer Science, 1997, 65(4): 789–794
https://doi.org/10.1002/(SICI)1097-4628(19970725)65:4<789::AID-APP16>3.0.CO;2-O
12 Zhang  Y, Gu  Q, Yin  J, Wang  Z, He  P. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites. Advances in Polymer Technology, 2014, 33(2): 21400–21407
https://doi.org/10.1002/adv.21400
13 Karlsson  M E, Leeman  A M, Björck  I M, Eliasson  A C. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry, 2007, 100(1): 136–146
https://doi.org/10.1016/j.foodchem.2005.09.032
14 Pereira  A G B, Paulino  A T, Nakamura  C V, Britta  E A, Rubira  A F, Muniz  E C. Effect of starch type on miscibility in poly(ethylene oxide)(PEO)/starch blends and cytotoxicity assays. Materials Science and Engineering C, 2011, 31(2): 443–451
https://doi.org/10.1016/j.msec.2010.11.004
15 Spagnol  C, Rodrigues  F H, Pereira  A G, Fajardo  A R, Rubira  A F, Muniz  E C. Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 2012, 19(4): 1225–1237
https://doi.org/10.1007/s10570-012-9711-7
16 Al  E, Güçlü  G, İyim  T B, Emik  S, Özgümüş  S. Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. Journal of Applied Polymer Science, 2008, 109(1): 16–22
https://doi.org/10.1002/app.27968
17 Lanthong  P, Nuisin  R, Kiatkamjornwong  S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydrate Polymers, 2006, 66(2): 229–245
https://doi.org/10.1016/j.carbpol.2006.03.006
18 Irani  M, Ismail  H, Ahmad  Z. Preparation and properties of linear low-density polyethylene-g-poly(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polymer Testing, 2013, 32(3): 502–512
https://doi.org/10.1016/j.polymertesting.2013.01.001
19 Subhas  S, Samar  C D, Dipak  R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science, 2014, 131(6): 3351–3359
20 Macias  A F, Spinola  A G, Mendoza  T M H, Gonzalez  F D, Zelaya  F P. Effect of zeolite (clinoptilolite and mordenite) amended andosols on soil chemical environment and growth of oat. Interciencia, 2007, 32(10): 692–696
21 Ramesh  K, Reddy  D D, Biswas  A K, Rao  A S. Zeolites and their potential uses in agriculture. Advances in Agronomy, 2011, 113: 215–236
https://doi.org/10.1016/B978-0-12-386473-4.00004-X
22 Komaromine  M K, Loksa  G, Csereklye  K E, Bardoczyne  E S, Kallai  S. Use of zeolite to improve soil amelioration and takes effects on microclimate. Cereal Research Communications, 2008, 36: 1783–1786
23 Oste  L A, Lexmond  T M, Van Riemsdijk  W H. Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 2002, 31(3): 813–821
https://doi.org/10.2134/jeq2002.0813
24 Khoonsap  S, Amnuaypanich  S. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethylmethacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water-acetone mixtures. Journal of Membrane Science, 2011, 367(1-2): 182–189
https://doi.org/10.1016/j.memsci.2010.10.058
25 Guo  L P, Chen  Y Z, Yang  J. The surface modification of zeolite-4A by CTAB and its properties. Journal of Wuhan University of Technology-Material, 1999, 14: 18–23 (in Chinese)
26 Jin  S P, Yue  G R, Feng  L, Han  Y Q, Yu  X H, Zhang  Z H. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. Journal of Agricultural and Food Chemistry, 2011, 59(1): 322–327
https://doi.org/10.1021/jf1032137
27 Xie  L H, Liu  M Z, Ni  B L, Wang  F Y. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Industrial & Engineering Chemistry Research, 2012, 51(10): 3855–3862
https://doi.org/10.1021/ie2016043
28 Li  A, Zhang  J P, Wang  A Q. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science, 2007, 103(1): 37–45
https://doi.org/10.1002/app.23901
29 Ladha  J K, Pathak  H, Krupnik  T J, Six  J J, Van Kessel  C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 2005, 87: 85–156
https://doi.org/10.1016/S0065-2113(05)87003-8
30 Liu  M Z, Zhan  F L, Wu  L, Guo  M Y. Preparation of slow release urea fertilizer with preservation of soil moisture. Journal of Polymer Materials, 2004, 21(2): 213–220
31 Wang  Y F, Liu  M Z, Ni  B L, Xie  L H. κ-Karrageenan-sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial & Engineering Chemistry Research, 2012, 51(3): 1413–1422
https://doi.org/10.1021/ie2020526
32 Liu  M Z, Liang  R, Zhan  F L, Liu  Z, Niu  A Z. Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polymers for Advanced Technologies, 2006, 17(6): 430–438
https://doi.org/10.1002/pat.720
33 Zhang  Y, Zhao  L, Ma  K, Mao  G Z. The surface modification of zeolite 4a and its effect on the water-absorption capability of starch-g-poly(acrylic acid) composite. Clays and Clay Minerals, 2014, 62(3): 211–223
https://doi.org/10.1346/CCMN.2014.0620305
34 Subhas  S, Samar  C D, Dipak  R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science, 2014, 131(6): 3351–3359
35 Watt  G W, Chrisp  J D. Spectrophotometric method for determination of urea. Analytical Chemistry, 1954, 26(3): 452–453
https://doi.org/10.1021/ac60087a006
36 Zhang  M Y, Cheng  Z Q, Zhao  T Q, Liu  M Z, Hu  M J, Li  J F. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. Journal of Agricultural and Food Chemistry, 2014, 62(35): 8867–8874
https://doi.org/10.1021/jf5021279
37 Silverstein  R M, Webster  F X. Spectrometric Identification of Organic Compounds. 6th ed. New York: Wiley, 1998
38 Lamberti  C, Bordiga  S, Zecchina  A, Salvalaggio  M, Geobaldo  F, Areán  C O. XANES, EXAFS and FTIR characterization of copper-exchanged mordenite. Journal of the Chemical Society, Faraday Transactions, 1998, 94(10): 1519–1525
https://doi.org/10.1039/a708778k
39 Rožić  M, Miljanić  S. Sorption of HDTMA cations on croatian natural mordenite tuff. Journal of Hazardous Materials, 2011, 185(1): 423–429
https://doi.org/10.1016/j.jhazmat.2010.09.050
40 Li  Z H, Jiang  W T, Hong  H L. An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4): 1525–1534
https://doi.org/10.1016/j.saa.2008.05.015
41 Pourjavadi  A, Soleyman  R. Novel high capacity swelling superabsorbent composite and its potential for controlled release of fertilizers. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 2010, 29(4): 113–123
42 Kaur  I, Sharma  M. Synthesis and characterization of graft copolymers of Sago starch and acrylic acid. Stärke, 2012, 64(6): 441–451
https://doi.org/10.1002/star.201100153
43 Zhang  J P, Chen  H, Wang  A Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. European Polymer Journal, 2005, 41(10): 2434–2442
https://doi.org/10.1016/j.eurpolymj.2005.03.022
44 Wang  W B, Xu  J X, Wang  A Q. A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polymer Letters, 2011, 5(5): 385–400
https://doi.org/10.3144/expresspolymlett.2011.38
45 Wu  J, Wei  Y, Lin  J, Lin  S. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer, 2003, 44(21): 6513–6520
https://doi.org/10.1016/S0032-3861(03)00728-6
46 Treacy M M J, Higgins J B. Collection of simulated XRD powder patterns for zeolites. 5th ed. Amsterdam: Elsevier, 2007, 284
47 Mithilesh  Y, Somit  K S, Kyong  Y R. Synthesis of partially hydrolyzed graft copolymer (H-Ipomoea hederacea seed gum-g-polyacrylonitrile). Carbohydrate Polymers, 2013, 95(1): 471–478
https://doi.org/10.1016/j.carbpol.2013.03.004
48 Zhang  J, Li  A, Wang  A. Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydrate Polymers, 2006, 65(2): 150–158
https://doi.org/10.1016/j.carbpol.2005.12.035
49 Rashidzadeh  A, Olad  A, Salari  D, Reyhanitabar  A. On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research, 2014, 21(2): 1–15
https://doi.org/10.1007/s10965-013-0344-9
50 Amnuaypanich  S, Patthana  J, Phinyocheep  P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water-ethanol mixtures. Chemical Engineering Science, 2009, 64(23): 4908–4918
https://doi.org/10.1016/j.ces.2009.07.028
51 Elazzouzi  H S, Nishiyama  Y, Putaux  J L, Heux  L, Dubreuil  F, Rochas  C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 2008, 9(1): 57–65
https://doi.org/10.1021/bm700769p
52 Schott  H. Swelling kinetics of polymers. Journal of Pharmaceutical Sciences, 1992, 81(5): 467–470
https://doi.org/10.1002/jps.2600810516
53 Li  S, Liu  X, Zou  T, Xiao  W. Removal of cationic dye from aqueous solution by a macroporous hydrophobically modified poly(acrylic acid-acrylamide) hydrogel with enhanced swelling and adsorption properties. Clean-Soil Air Water, 2010, 38(4): 378–386
https://doi.org/10.1002/clen.200900220
54 Kasgoz  H, Durmus  A. Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies, 2008, 19(7): 838–845
https://doi.org/10.1002/pat.1045
55 Mujumdar  S K, Siegel  R A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. Journal of Polymer Science. Part A, Polymer Chemistry, 2008, 46(19): 6630–6640
https://doi.org/10.1002/pola.22973
56 Liang  R, Yuan  H, Xi  G, Zhou  Q. Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers, 2009, 77(2): 181–187
https://doi.org/10.1016/j.carbpol.2008.12.018
57 Joseph  J G. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 2009, 21: 27–47
58 Flory  P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953
59 Zhang  J P, Li  A, Wang  A Q. Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly(acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite. Polymers for Advanced Technologies, 2005, 16(11): 813–820
https://doi.org/10.1002/pat.657
60 Bardajee  G R, Pourjavadi  A, Soleyman  R. Irradiation synthesis of biopolymer-based superabsorbent hydrogel: Optimization using the Taguchi method and investigation of its swelling behavior. Advances in Polymer Technology, 2009, 28(2): 131–140
https://doi.org/10.1002/adv.20154
61 Xie  J, Liu  X, Liang  J, Luo  Y S. Swelling properties of superabsorbent poly(acrylic acid-co-acrylamide) with different crosslinkers. Journal of Applied Polymer Science, 2009, 112(2): 602–608
https://doi.org/10.1002/app.29463
62 Zhang  M Y, Cheng  Z Q, Liu  M Z, Zhang  Y Q, Hu  M J, Li  J F. Synthesis and properties of a superabsorbent from an ultraviolet‐irradiated waste nameko mushroom substrate and poly(acrylic acid). Journal of Applied Polymer Science, 2014, 131(13): 4525–4529
https://doi.org/10.1002/app.40471
[1] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[2] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[3] Huijuan CHU, Hongliang WEI, Jing ZHU, Shouyin HU. Preparation of starch esters with crosslinking structures derived from dianhydride[J]. Front Chem Sci Eng, 2011, 5(1): 51-54.
[4] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[5] M. RAJASIMMAN, C. KARTHIKEYAN. Performance of inverse fluidized bed bioreactor in treating starch wastewater[J]. Front Chem Eng Chin, 2009, 3(3): 235-239.
[6] LIU Zhenfa, WANG Yanji, GAO Yuhua, ZHANG Lihui. Synergistic scale inhibition of polyaspartic acid composite with magnetic field[J]. Front. Chem. Sci. Eng., 2007, 1(3): 261-265.
[7] WEI Shanshan, ZHANG Yi, XU Jiarui. Preparation and property characterization of PAA/Fe3O4 nanocomposite[J]. Front. Chem. Sci. Eng., 2007, 1(3): 233-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed