Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 417-424    https://doi.org/10.1007/s11705-018-1711-1
RESEARCH ARTICLE
3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
Miaomiao Tong, Lei Wang(), Peng Yu, Xu Liu, Honggang Fu()
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
 Download: PDF(424 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm2 in 1 mol·L1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.

Keywords bimetallic phosphides      N-doped carbon      self-support      hydrogen evolution      oxygen evolution     
Corresponding Author(s): Lei Wang,Honggang Fu   
Just Accepted Date: 09 February 2018   Online First Date: 19 April 2018    Issue Date: 18 September 2018
 Cite this article:   
Miaomiao Tong,Lei Wang,Peng Yu, et al. 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. Front. Chem. Sci. Eng., 2018, 12(3): 417-424.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1711-1
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/417
Fig.1  XRD patterns of NiCo/NF@NC, NiCoP/NF@NC, CoP/NF@NC and NiP/NF@NC
Fig.2  (A?C) SEM, (D) TEM and (E, F) HRTEM images of NiCoP/NF@NC
Fig.3  (A) Wide XPS spectra of NiCoP/NF@NC; high-resolution XPS spectra of (B) Ni 2p, (C) Co 2p, (D) P 2p, (E) N 1s and (F) C 1s for NiCoP/NF@NC
Fig.4  (A) HER LSV curves of NiCoP/NF@NC, NiP/NF@NC, CoP/NF@NC, NiCoP-NF@NC and Pt/C-NF@NC in 1.0 mol?L1 KOH electrolytes with a scan rate of 5 mV?s1; (B) corresponding Tafel slopes of the five catalysts; (C) electrochemical cyclic voltammogram of NiCoP/NF@NC at different scanning rates of 20?200 mV?s1, inset shows the corresponding Cdl obtained at 0.15 V vs. RHE; (D) LSV curves of NiCoP/NF@NC before and after continuous potential sweeps at a scan rate of 50 mV?s1 in 1.0 mol?L1 KOH electrolyte
Fig.5  (A) OER LSV curves of NiCoP/NF@NC, NiP/NF@NC, CoP/NF@NC, NiCoP-NF@NC and RuO2-NF@NC in 1.0 mol?L1 KOH electrolytes with a scan rate of 5 mV?s1; (B) corresponding Tafel slopes of the five catalysts; (C) EIS spectra for all the compared catalysts; (D) LSV curves of NiCoP/NF@NC before and after continuous potential sweeps at a scan rate of 50 mV?s1 in 1.0 mol?L1 KOH electrolyte
1 Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414(6861): 332–337
https://doi.org/10.1038/35104599
2 Liu W, Hu E, Jiang H, Xiang Y, Weng Z, Li M, Fan Q, Yu X, Altman E I, Wang H. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7: 10771
https://doi.org/10.1038/ncomms10771
3 Jiao Y, Zheng Y, Davey K, Qiao S Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1(10): 16130
https://doi.org/10.1038/nenergy.2016.130
4 Nφrskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
https://doi.org/10.1038/nchem.121
5 Alapati S V, Johnson J K, Sholl D S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Physical Chemistry Chemical Physics, 2007, 9(12): 1438–1452
https://doi.org/10.1039/b617927d
6 Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180
https://doi.org/10.1039/C4CS00448E
7 Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science, 2016, 352(6283): 333–337
https://doi.org/10.1126/science.aaf1525
8 Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230
https://doi.org/10.1002/adma.201502696
9 Jin Y, Wang H, Li J, Yue X, Han Y, Shen P K, Cui Y, Jin Y S, Wang H T, Li J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790
https://doi.org/10.1002/adma.201506314
10 Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026
https://doi.org/10.1021/jacs.5b08186
11 Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Shuai N, Dai Z H, Wan L J, Hu J S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Advanced Materials, 2017, 29(39): 1703311
https://doi.org/10.1002/adma.201703311
12 Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 nanoparticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction. ACS Catalysis, 2017, 7(7): 4381–4385
13 Xu X J, Du P Y, Chen Z K, Huang M H. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(28): 10933–10939
https://doi.org/10.1039/C6TA03788G
14 Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive Au–PANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699
https://doi.org/10.1039/C7TA02660A
15 Feng J X, Wu J Q, Tong Y X, Li G R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. Journal of the American Chemical Society, 2018, 140(2): 610–617
https://doi.org/10.1021/jacs.7b08521
16 Feng J X, Xu H, Ye S H, Ouyang G F, Tong Y X, Li G R. Silica-polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angewandte Chemie-Internatioanal Edition, 2017, 56(28): 8120–8124
17 Feng J X, Xu H, Dong Y T, Lu X F, Tong Y X, Li G R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie-Internatioanal Edition, 2017, 56(11): 2960–2964
18 Li J S, Wang Y, Liu C H, Li S L, Wang Y G, Dong L Z, Dai Z H, LiY F, Lan Y Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7: 11204
19 Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. Journal of the American Chemical Society, 2015, 137(22): 7169–7177
https://doi.org/10.1021/jacs.5b02688
20 Tang Y J, Gao M R, Liu C H, Li S L, Jiang H L, Lan Y Q, Han M, Yu S H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angewandte Chemie-Internatioanal Edition, 2015, 54(44): 12928–12932
21 Li Z M, Han M, Xu D D, Yang J, Lin Y, Shi N E, Lu Y A, Yang R, Liu B T, Dai Z H, et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolutionshulin. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201706018
22 Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039
https://doi.org/10.1021/acsnano.7b01945
23 Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54(49): 14710–14714
https://doi.org/10.1002/anie.201506480
24 Wan J, Wu J B, Gao X, Li T Q, Hu Z M, Yu H M, Huang L. Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933
https://doi.org/10.1002/adfm.201703933
25 Zhou X F, Yang X L, Li H, Hedhili M N, Huang K W, Li L J, Zhang W J. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(30): 15552–15558
https://doi.org/10.1039/C7TA03041J
26 Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angewandte Chemie International Edition, 2016, 55: 13422–13426
27 Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
https://doi.org/10.1021/nl903868w
28 Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
https://doi.org/10.1021/ja201269b
29 Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters, 2012, 12(7): 3788–3792
https://doi.org/10.1021/nl301702r
30 Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotechnology, 2014, 9(4): 268–272
https://doi.org/10.1038/nnano.2014.26
31 Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 2013, 13(3): 1341–1347
https://doi.org/10.1021/nl400258t
32 Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115
33 Park H, Zhang Y, Scheifers J P, Jothi P R, Encinas A, Fokwa B P T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. Journal of the American Chemical Society, 2017, 139(37): 12915–12918
https://doi.org/10.1021/jacs.7b07247
34 Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschllögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
https://doi.org/10.1021/acs.nanolett.6b03803
35 Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9(8): 2251–2259
https://doi.org/10.1007/s12274-016-1112-z
36 He P, Yu X Y, Lou X W D. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angewandte Chemie International Edition, 2017, 56(14): 3897–3900
https://doi.org/10.1002/anie.201612635
37 Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–679
https://doi.org/10.1002/adfm.201601420
38 Wang Z, Cao X, Liu D, Hao S, Du G, Asiri A M, Sun X. Ternary NiCoP nanosheet array on a Ti mesh: A high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52(100): 14438–14441
https://doi.org/10.1039/C6CC08078B
39 Wang C, Jiang J, Ding T, Chen G, Xu W, Yang Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Advanced Materials Interfaces, 2016, 3(4): 1500454–1500458
https://doi.org/10.1002/admi.201500454
40 Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796
https://doi.org/10.1002/adfm.201601420
41 Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri A M, Sun X. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714
https://doi.org/10.1002/anie.201404161
42 Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W D. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials, 2012, 22(21): 4592–4597
https://doi.org/10.1002/adfm.201200994
43 Yuan C Z, Yang L, Hou L R, Shen L F, Zhang X G, Lou X W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science, 2012, 5(7): 7883–7887
https://doi.org/10.1039/c2ee21745g
44 Yu L, Zhang G, Yuan C, Lou X W D. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139
https://doi.org/10.1039/C2CC37117K
45 Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137
https://doi.org/10.1021/acscatal.7b00662
46 Du D H, Li P C, Ouyang J Y. Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Applied Materials & Interfaces, 2015, 7(48): 26952–26958
https://doi.org/10.1021/acsami.5b07757
47 Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169
https://doi.org/10.1002/adfm.201704169
48 Liang X, Zheng B, Chen L, Zhang J, Zhuang Z, Chen B. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9(27): 23222–23229
https://doi.org/10.1021/acsami.7b06152
49 Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlögl U, Alshareef H N, Ngenschlögl U S, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
https://doi.org/10.1021/acs.nanolett.6b03803
50 Wang X, Li W, Xiong D, Petrovykh D Y, Liu L. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077
https://doi.org/10.1002/adfm.201505509
[1] FCE-17056-OF-TM_suppl_1 Download
[1] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[2] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[3] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[4] Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
[5] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed