|
|
Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution |
Shenghua Ye, Gaoren Li( ) |
MOE Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of ~186 mV at 10.0 mA·cm−2 and a small tafel slope of 88.6 mV·deg−1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.
|
Keywords
NiCo alloy
polypyrrole
hybrid nanotube
electrocatalyst
hydrogen evolution reaction
|
Corresponding Author(s):
Gaoren Li
|
Just Accepted Date: 15 March 2018
Online First Date: 07 June 2018
Issue Date: 18 September 2018
|
|
1 |
Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, Guo W, Yang S. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37): 11900–11903
https://doi.org/10.1021/jacs.5b07728
|
2 |
Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultratin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863
https://doi.org/10.1002/anie.201402315
|
3 |
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7589
https://doi.org/10.1021/ja503372r
|
4 |
Liu Q, Xie L S, Liu Z A, Du G, Asiri A M, Sun X P. A Zn-doped Ni3S2 nanosheet array as a high-perpformance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53(92): 12446–12449
https://doi.org/10.1039/C7CC06668F
|
5 |
Xie M W, Xiong X L, Yang L, Shi X F, Asiri A M, Sun X P. An Fe(TCNQ)2 nanowire array on Fe foil: An efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54(18): 2300–2303
https://doi.org/10.1039/C7CC09105B
|
6 |
You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531
https://doi.org/10.1021/acssuschemeng.7b03780
|
7 |
Xiong X L, Ji Y Y, Xie M W, You C, Yang L, Liu Z A, Asiri A M, Sun X P. MnO2-CoP3 nanowire array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86: 161–165
https://doi.org/10.1016/j.elecom.2017.12.008
|
8 |
Xie F Y, Wu H L, Mou J R, Lin D M, Xu C G, Wu C, Sun X P. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
https://doi.org/10.1016/j.jcat.2017.10.013
|
9 |
Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(21): 6325–6329
https://doi.org/10.1002/anie.201501419
|
10 |
Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 124(51): 12875–12878
https://doi.org/10.1002/ange.201207111
|
11 |
Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982
https://doi.org/10.1038/ncomms6982
|
12 |
Morales-Guio C G, Liardet L, Mayer M T, Tilley S D, Grätzel M, Hu X. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angewandte Chemie International Edition, 2015, 54(2): 664–667
|
13 |
Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co3+. Science, 2008, 321(5892): 1072–1075
https://doi.org/10.1126/science.1162018
|
14 |
Smith E D L, Prếvot M S, Fagan R D, Zhang Z, Sedach P A, Siu M K J, Trudel S, Berlinguette C P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013, 340(6128): 60–63
https://doi.org/10.1126/science.1233638
|
15 |
McCrory C L, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987
https://doi.org/10.1021/ja407115p
|
16 |
Anantharaj S, Rao Ede S, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis to sulphide, selenide and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097
https://doi.org/10.1021/acscatal.6b02479
|
17 |
Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6(1): 6430
https://doi.org/10.1038/ncomms7430
|
18 |
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
|
19 |
Hall D E. Electrodes for alkaline water electrolysis. Journal of the Electrochemical Society, 1981, 128(4): 740–746
https://doi.org/10.1149/1.2127498
|
20 |
Brown D E, Mahmood M N, Turner A K, Hall S M, Fogarty P O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. International Journal of Hydrogen Energy, 1982, 7(5): 405–410
https://doi.org/10.1016/0360-3199(82)90051-9
|
21 |
Brown D E, Mahmood M N, Man M C, Turner A K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution. Electrochimica Acta, 1984, 29(11): 1551–1556
https://doi.org/10.1016/0013-4686(84)85008-2
|
22 |
Raj I A, Vasu K I. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. Journal of Applied Electrochemistry, 1990, 20(1): 32–38
https://doi.org/10.1007/BF01012468
|
23 |
Nocera D G. The artificial leaf. Accounts of Chemical Research, 2012, 45(5): 767–776
https://doi.org/10.1021/ar2003013
|
24 |
Gong M, Zhou W, Tsai M C, Zhou J, Guan M, Lin M C, Zhang B, Hu Y, Wang D, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695
https://doi.org/10.1038/ncomms5695
|
25 |
Yan H. Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chemie International Edition, 2011, 50(1): 2674–2676
|
26 |
Sasaki K, Naohara H, Cai Y, Choi M, Liu P, Vukmirovic M B, Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel cell cathodes. Angewandte Chemie, 2010, 49(46): 8602–8607
https://doi.org/10.1002/anie.201004287
|
27 |
Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie, 2005, 44(14): 2132–2135
https://doi.org/10.1002/anie.200462335
|
28 |
Luo J, Wang L, Mott D, Njoki P N, Lin Y, He T, Xu Z, Wanjana B N, Lim I S, Zhong C J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Advanced Materials, 2008, 20(22): 4342–4347
https://doi.org/10.1002/adma.200703009
|
29 |
Liu Z, Jackson G I S, Eichhorn B W. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie, 2010, 49(18): 3173–3176
https://doi.org/10.1002/anie.200907019
|
30 |
Ghosh T, Vukmirovic M, Disalvo F, Adzic R R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. Journal of the American Chemical Society, 2010, 132(3): 906–907
https://doi.org/10.1021/ja905850c
|
31 |
Wang A L, Xu H, Feng J X, Ding L X, Tong Y X, Li G R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effect and synergistic effects for ethanol electrooxidation. Journal of the American Chemical Society, 2013, 135(29): 10703–10709
https://doi.org/10.1021/ja403101r
|
32 |
Xu H, Ding L X, Liang C L, Tong Y X, Li G R. High-performance polypyrrole functionalized PtPdelectrocatalysts based on PtPd@PPy@PtPd three-layered nanotube arrays for electrooxidation of small organic molecules. NPG Asia Materials, 2013, 5(5): e69
https://doi.org/10.1038/am.2013.54
|
33 |
Hu M J, Zhang Y, Lu S, Guo S R, Lin B, Zhang M, Yu S H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. Journal of the American Chemical Society, 2008, 130(35): 11606–11607
https://doi.org/10.1021/ja804467g
|
34 |
Cioffi N, Torsi L, Losito I, Franco C, Bari I, Chiavarone L, Scamarcio G, Tesakov V, Sabbatini L, Zambonin P. Electrosynthesis and analytical characterization of polypyrrole thin film. Journal of Materials Chemistry, 2001, 11: 1434–1440
https://doi.org/10.1039/b009857o
|
35 |
Zhang X, Bai R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir, 2003, 19(26): 10703–10709
https://doi.org/10.1021/la034893v
|
36 |
Jaramillo A, Spurlock L D, Young V, Toth A B. XPS characterization of nanosized overoxidized polypyrrole film on graphite electrodes. Analyst (London), 1999, 124(8): 1215–1221
https://doi.org/10.1039/a902578b
|
37 |
Bard A J, Faulkner L R. Electrochemical Method. New York: Wiley, 1980, 87
|
38 |
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W, Xie Y. Defect-rivh MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 11(40): 5807–5813
https://doi.org/10.1002/adma.201302685
|
39 |
Chen Z, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F. Jaramillo. F. Core-shell MoO3-MoS2 nanowire fore hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 2011, 11(10): 4168–4175
https://doi.org/10.1021/nl2020476
|
40 |
Benck J D, Chen Z, Kuritzky L Y, Forman A J, Jaramillo T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insight into the origin of their catalytic activity. ACS Catalysis, 2012, 2(9): 1916–1923
https://doi.org/10.1021/cs300451q
|
41 |
Machado S A S, Tiengo J, Lima Neto P D, Avaca L A. The influence pf H-absorption on the cathodic response of high area nickel electrodes in alkaline solutions. Electrochimica Acta, 1994, 39(11): 1757–1761
https://doi.org/10.1016/0013-4686(94)85161-1
|
42 |
Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, 22(30): 15153–15159
https://doi.org/10.1039/c2jm31439h
|
43 |
Wu L, Li Q, Wu C H, Zhu H, Mendoza-Garcia A, Shen B, Guo J, Sun S. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. Journal of the American Chemical Society, 2015, 137(22): 7071–7074 doi:10.1021/jacs.5b04142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|