|
|
Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes |
Yan Zhang1, Jian Xiao1, Qiying Lv1, Shuai Wang1,2( ) |
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2. Flexible Electronics Research Center (FERC), School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Electrolytic water splitting has been considered as a promising technology to produce highly pure H2 by using electrical power produced from wind, solar energy or other fitful renewable energy resources. Combining novel self-supporting structure and high-performance transition metal phosphides (TMP) shows substantial promise for practical application in water splitting. In this review, we try to provide a comprehensive analysis of the design and fabrication of various self-supported TMP electrodes for hydrogen evolution reaction, which are divided into three categories: catalysts growing on carbon-based substrates, catalysts growing on metal-based substrates and freestanding catalyst films. The material structures together with catalytic performances of self-supported electrodes are presented and discussed. We also show the specific strategies to further improve the catalytic performance by elemental doping or incorporation of nanocarbons. The simple and one-step methods to fabricate self-supported TMP electrodes are also highlighted. Finally, the challenges and perspectives for self-supported TMP electrodes in water splitting application are briefly discussed.
|
Keywords
transition metal phosphide
self-supported electrode
electrocatalysis
hydrogen evolution reaction
|
Corresponding Author(s):
Shuai Wang
|
Just Accepted Date: 10 April 2018
Online First Date: 05 July 2018
Issue Date: 18 September 2018
|
|
1 |
Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
https://doi.org/10.1126/science.1103197
|
2 |
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
|
3 |
McCrory C C L, Jung S, Ferrer I M, Chatman S M, Peters J C, Jaramillo T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, 2015, 137(13): 4347–4357
https://doi.org/10.1021/ja510442p
|
4 |
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(29): 14942–14962
https://doi.org/10.1039/C5TA02974K
|
5 |
Fang M, Dong G, Wei R, Ho J C. Hierarchical nanostructures: Design for sustainable water splitting. Advanced Energy Materials, 2017, 7(23): 1700559
https://doi.org/10.1002/aenm.201700559
|
6 |
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7: 13638
https://doi.org/10.1038/ncomms13638
|
7 |
Chen Z, Ye S, Wilson A R, Ha Y, Wiley B J. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires. Energy & Environmental Science, 2014, 7(4): 1461–1467
https://doi.org/10.1039/C4EE00211C
|
8 |
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230
https://doi.org/10.1002/adma.201502696
|
9 |
Zhang J, Wang T, Liu P, Liao Z Q, Liu S H, Zhuang X D, Chen M W, Zschech E, Feng X L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8: 15437
https://doi.org/10.1038/ncomms15437
|
10 |
Wang T, Guo Y, Zhou Z, Chang X, Zheng J, Li X. Ni-Mo nanocatalysts on Ndoped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano, 2016, 10(11): 10397–10403
https://doi.org/10.1021/acsnano.6b06259
|
11 |
Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5: 4695
https://doi.org/10.1038/ncomms5695
|
12 |
Jin Y S, Wang H T, Li J J, Yue X, Han Y J, Shen P K, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790
https://doi.org/10.1002/adma.201506314
|
13 |
Tang Y J, Wang Y, Wang X L, Li S L, Huang W, Dong L Z, Liu C H, Li Y F, Lan Y Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(12): 1600116
https://doi.org/10.1002/aenm.201600116
|
14 |
Wang J, Zhong H X, Wang Z L, Meng F L, Zhang X B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano, 2016, 10(2): 2342–2348
https://doi.org/10.1021/acsnano.5b07126
|
15 |
Tang C, Cheng N Y, Pu Z H, Xing W, Sun X P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angewandte Chemie International Edition, 2015, 54(32): 9351–9355
https://doi.org/10.1002/anie.201503407
|
16 |
Chen X S, Liu G B, Zheng W, Feng W, Cao W W, Hu W P, Hu P A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544
https://doi.org/10.1002/adfm.201603674
|
17 |
Yan H J, Tian C G, Wang L, Wu A P, Meng M C, Zhao L, Fu H G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 127(21): 6423–6427
https://doi.org/10.1002/ange.201501419
|
18 |
Shi J L, Pu Z H, Liu Q, Asiri A M, Hu J M, Sun X P. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochimica Acta, 2015, 154: 345–351
https://doi.org/10.1016/j.electacta.2014.12.096
|
19 |
Callejas J F, Read C G, Roske C W, Lewis N S, Schaak R E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chemistry of Materials, 2016, 28(17): 6017–6044
https://doi.org/10.1021/acs.chemmater.6b02148
|
20 |
Yang Y, Fei H L, Ruan G D, Tour J M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Advanced Materials, 2015, 27(20): 3175–3180
https://doi.org/10.1002/adma.201500894
|
21 |
Tang C, Xie L S, Wang K Y, Du G, Asiri A M, Luo Y L, Sun X P A. Ni2P nanosheet array integrated on 3D Ni foam: An efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(32): 12407–12410
https://doi.org/10.1039/C6TA05604K
|
22 |
Tang C, Zhang R, Lu W B, Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angewandte Chemie International Edition, 2017, 56(3): 842–846
https://doi.org/10.1002/anie.201608899
|
23 |
Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 6512
https://doi.org/10.1038/ncomms7512
|
24 |
Ma F X, Wu H B, Xia B Y, Xu C Y, Lou X W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angewandte Chemie International Edition, 2015, 54(51): 15395–15399
https://doi.org/10.1002/anie.201508715
|
25 |
Vrubel H, Hu X L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 51(51): 12703–12706
https://doi.org/10.1002/anie.201207111
|
26 |
Li H, Wen P, Li Q, Dun Q C, Xing J H, Lu C, Adhikari S, Jiang L, Carroll D L, Geyer S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Advanced Energy Materials, 2017, 7(17): 1700513
https://doi.org/10.1002/aenm.201700513
|
27 |
Zhang J T, Qu L T, Shi G Q, Liu J Y, Chen J F, Dai L M N. P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie International Edition, 2016, 55(6): 2230–2234
https://doi.org/10.1002/anie.201510495
|
28 |
Das R K, Wang Y, Vasilyeva S V, Donoghue E, Pucher I, Kamenov G, Cheng H P, Rinzler A G. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons. ACS Nano, 2014, 8(8): 8447–8456
https://doi.org/10.1021/nn5030225
|
29 |
Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chemical Reviews, 2013, 113(10): 7981–8065
https://doi.org/10.1021/cr400020d
|
30 |
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2015, 5(24): 1500985
https://doi.org/10.1002/aenm.201500985
|
31 |
Tang C, Qu F L, Asiri A M, Luo Y L, Sun X P. CoP nanoarray: A robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2017, 4(4): 659–662
https://doi.org/10.1039/C6QI00518G
|
32 |
Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(25): 9267–9270
https://doi.org/10.1021/ja403440e
|
33 |
McEnaney J M, Crompton J C, Callejas J F, Popczun E J, Biacchi A J, Lewis N S, Schaak R E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chemistry of Materials, 2014, 26(16): 4826–4831
https://doi.org/10.1021/cm502035s
|
34 |
Xing Z C, Liu Q, Asiri A M, Sun X P. Closely Interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Advanced Materials, 2014, 26(32): 5702–5707
https://doi.org/10.1002/adma.201401692
|
35 |
Feng Y, Yu X Y, Paik U Y. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52(8): 1633–1636
https://doi.org/10.1039/C5CC08991C
|
36 |
Liu Q, Tian J Q, Cui W, Jiang P, Cheng N Y, Asiri A M, Sun X P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714
https://doi.org/10.1002/anie.201404161
|
37 |
Li X L, Liu W, Zhang M Y, Zhong Y R, Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063
https://doi.org/10.1021/acs.nanolett.7b00126
|
38 |
Wang X D, Cao Y, Teng Y, Chen H Y, Xu Y F, Kuang D B. Large-area synthesis of Ni2P honeycomb electrode for highly efficient water splitting. ACS Applied Materials & Interfaces, 2017, 9(38): 32812–32819
https://doi.org/10.1021/acsami.7b10893
|
39 |
Ledendecker M, Calderon S K, Papp C, Steinruck H P, Antonietti M, Shalom M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angewandte Chemie International Edition, 2015, 54(42): 12361–12365
https://doi.org/10.1002/anie.201502438
|
40 |
Liu T T, Wang K Y, Du G, Asiri A M, Sun X P. Self-supported CoP nanosheet arrays: A nonprecious metal catalyst for efficient hydrogen generation from alkaline NaBH4 solution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(34): 13053–13057
https://doi.org/10.1039/C6TA02997C
|
41 |
Liu T T, Xie L S, Yang J H, Kong R M, Du G, Asiri A M, Sun X P, Chen L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–1845
https://doi.org/10.1002/celc.201700392
|
42 |
Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angewandte Chemie International Edition, 2015, 54(21): 6251–6254
https://doi.org/10.1002/anie.201501616
|
43 |
Liu Q, Gu S, Li C M. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. Journal of Power Sources, 2015, 299: 342–346
https://doi.org/10.1016/j.jpowsour.2015.09.027
|
44 |
Han S, Feng Y L, Zhang F, Yang C Q, Yao Z Q, Zhao W X, Qiu F, Yang L Y, Yao Y F, Zhuang X D, et al. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906
https://doi.org/10.1002/adfm.201501390
|
45 |
Zhang G, Wang G H, Liu Y, Liu H J, Qu J H, Li J H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. Journal of the American Chemical Society, 2016, 138(44): 14686–14693
https://doi.org/10.1021/jacs.6b08491
|
46 |
Zhang T Q, Liu J, Huang L B, Zhang X D, Sun Y G, Liu X C, Bin D S, Chen X, Cao A M, Hu J S, et al. Microbial phosphorous enabled synthesis of phosphides nanocomposites for efficient electrocatalysts. Journal of the American Chemical Society, 2017, 139(32): 11248–11253
https://doi.org/10.1021/jacs.7b06123
|
47 |
Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2015, 19(5): 265–273
https://doi.org/10.1016/j.mattod.2015.10.012
|
48 |
Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 2016, 8(47): 19779–19786
https://doi.org/10.1039/C6NR05747K
|
49 |
Li Y J, Zhang H C, Jiang M, Zhang Q, He P L, Sun X M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Advanced Functional Materials, 2017, 27(37): 1702513
https://doi.org/10.1002/adfm.201702513
|
50 |
Yu J, Li Q Q, Li Y, Xu C Y, Zhen L, Dravid V P, Wu J S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Advanced Functional Materials, 2016, 26(42): 7644–7651
https://doi.org/10.1002/adfm.201603727
|
51 |
Zhang Z Y, Liu S S, Xiao J, Wang S. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(24): 9691–9699
https://doi.org/10.1039/C6TA03732A
|
52 |
Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541
https://doi.org/10.1039/C5CS00434A
|
53 |
Prins R, Bussell M E. Metal phosphides: Preparation, characterization and catalytic reactivity. Catalysis Letters, 2012, 142(12): 1413–1436
https://doi.org/10.1007/s10562-012-0929-7
|
54 |
Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R, Markovic N M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29: 29–36
https://doi.org/10.1016/j.nanoen.2016.04.017
|
55 |
Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15: 26–55
https://doi.org/10.1016/j.nantod.2017.06.006
|
56 |
Morales-Guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569
https://doi.org/10.1039/C3CS60468C
|
57 |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: eaad4998
|
58 |
Vrubel H, Moehl T, Gratzel M, Hu X L. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987
https://doi.org/10.1039/c3cc45416a
|
59 |
Wu T L, Pi M Y, Zhang D K, Chen S J. 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(38): 14539–14544
https://doi.org/10.1039/C6TA05838H
|
60 |
Wang X D, Chen H Y, Xu Y F, Liao J F, Chen B X, Rao H S, Kuang D B, Su C Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(15): 7191–7199
https://doi.org/10.1039/C6TA11188B
|
61 |
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Advanced Energy Materials, 2017, 7(7): 1602086
https://doi.org/10.1002/aenm.201602086
|
62 |
Li Q, Xing Z C, Asiri A M, Jiang P, Sun X P. Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39(30): 16806–16811
https://doi.org/10.1016/j.ijhydene.2014.08.099
|
63 |
Wang X G, Li W, Xiong D H, Petrovykh D Y, Liu L F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077
https://doi.org/10.1002/adfm.201505509
|
64 |
Zhang G, Song Y, Zhang H, Xu J, Duan H, Liu J. Radially aligned porous carbon nanotube arrays on carbon fibers: A hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Advanced Functional Materials, 2016, 26(18): 3012–3020
https://doi.org/10.1002/adfm.201505226
|
65 |
Xu K, Cheng H, Lv H, Wang J, Liu L, Liu S, Wu X, Chu W, Wu C, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322
https://doi.org/10.1002/adma.201703322
|
66 |
Yan Y, Xia B Y, Ge X, Liu Z, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry, 2015, 21(50): 18062–18067
https://doi.org/10.1002/chem.201503777
|
67 |
Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angewandte Chemie International Edition, 2015, 54(12): 3669–3673
https://doi.org/10.1002/anie.201410792
|
68 |
Tong S S, Wang X J, Li Q C, Han X J. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1447–1457
https://doi.org/10.1016/S1872-2040(16)60958-1
|
69 |
Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–4069
https://doi.org/10.1021/cs501106g
|
70 |
Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6(22): 13440–13445
https://doi.org/10.1039/C4NR04866K
|
71 |
Pu Z, Liu Q, Asiri A M, Sun X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 2014, 6(24): 21874–21879
https://doi.org/10.1021/am5060178
|
72 |
Zhu W X, Tang C, Liu D N, Wang J L, Asiric A M, Sun X P. A self-standing nanoporous MoP2 nanosheet array: An advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(19): 7169–7173
https://doi.org/10.1039/C6TA01328G
|
73 |
Tian J, Liu Q, Asiri A M, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7590
https://doi.org/10.1021/ja503372r
|
74 |
Yang X, Lu A Y, Zhu Y, Hedhili M N, Min S X, Huang K W, Han Y, Lin L J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15: 634–641
https://doi.org/10.1016/j.nanoen.2015.05.026
|
75 |
Tian J, Liu Q, Liang Y, Xing Z, Asiri A M, Sun X. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Applied Materials & Interfaces, 2014, 6(23): 20579–20584
https://doi.org/10.1021/am5064684
|
76 |
Streckova M, Mudra E, Orinakova R, Markusova-Buckova L, Sebek M, Kovalcikova A, Sopcak T, Girman V, Dankova Z, Micusik M, et al. Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chemical Engineering Journal, 2016, 303: 167–181
https://doi.org/10.1016/j.cej.2016.05.147
|
77 |
Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798
https://doi.org/10.1039/C6EE03768B
|
78 |
Ye C, Wang M Q, Chen G, Deng Y H, Li L J, Luo H Q, Li N B. One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(17): 7791–7795
https://doi.org/10.1039/C7TA00592J
|
79 |
Li D Q, Liao Q Y, Ren B W, Jin Q Y, Cui H, Wang X C. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11301–11308
https://doi.org/10.1039/C7TA02149F
|
80 |
Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137
https://doi.org/10.1021/acscatal.7b00662
|
81 |
Xiao X, Tao L, Li M, Lv X, Huang D, Jiang X, Pan H, Wang M, Shen Y. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9(7): 1970–1975
https://doi.org/10.1039/C7SC04849A
|
82 |
Ma M, Zhu G, Xie F, Qu F L, Liu Z, Du G, Asiri A M, Yao Y D, Sun X P. Homologous catalysts based on Fe-doped CoP nanoarrays for high-performance full water splitting under benign conditions. ChemSusChem, 2017, 10(16): 3188–3192
https://doi.org/10.1002/cssc.201700693
|
83 |
Wang A L, Lin J, Xu H, Tong Y X, Li G R. Ni2P-CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(43): 16992–16999
https://doi.org/10.1039/C6TA07704H
|
84 |
Zhang R, Tang C, Kong R M, Du G, Asiri A M, Chen L, Sun X P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9(14): 4793–4800
https://doi.org/10.1039/C7NR00740J
|
85 |
Wang X D, Xu Y F, Rao H S, Xu W J, Chen H Y, Zhang W X, Kuang D B, Su C Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy & Environmental Science, 2016, 9(4): 1468–1475
https://doi.org/10.1039/C5EE03801D
|
86 |
Zhang R, Wang X, Yu S, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Advanced Materials, 2017, 29(9): 1605502
https://doi.org/10.1002/adma.201605502
|
87 |
Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y P, Li M X, Jin S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catalysis, 2015, 5(11): 6355–6361
https://doi.org/10.1021/acscatal.5b01657
|
88 |
Han A L, Jin S, Chen H L, Ji H X, Sun Z J, Du P W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0-14. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1941–1946
https://doi.org/10.1039/C4TA06071G
|
89 |
Read C G, Callejas J F, Holder C F, Schaak R E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Applied Materials & Interfaces, 2016, 8(20): 12798–12803
https://doi.org/10.1021/acsami.6b02352
|
90 |
Pu Z, Amiinu I S, Mu S. In situ fabrication of tungsten diphosphide nanoparticles on tungsten foil: A hydrogen-evolution cathode for a wide pH range. Energy Technology, 2016, 4(9): 1030–1034
https://doi.org/10.1002/ente.201600110
|
91 |
Bai Y J, Zhang H J, Fang L, Liu L, Qiu H J, Wang Y. Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(10): 5434–5441
https://doi.org/10.1039/C4TA06903J
|
92 |
Liu R W, Gu S, Du H F, Li C M. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17263–17267
https://doi.org/10.1039/C4TA03638G
|
93 |
Pu Z, Liu Q, Jiang P, Asiri A M, Obaid A Y, Sun X. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chemistry of Materials, 2014, 26(15): 4326–4329
https://doi.org/10.1021/cm501273s
|
94 |
Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catalysis, 2017, 7(1): 98–102
https://doi.org/10.1021/acscatal.6b02849
|
95 |
Zhang L, Ren X, Guo X, Liu Z, Asiri A M, Li B H, Chen L, Sun X P. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2. Inorganic Chemistry, 2018, 57(2): 548–552
https://doi.org/10.1021/acs.inorgchem.7b02665
|
96 |
Pu Z H, Liu Q, Tang C, Asiri A M, Sun X P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6(19): 11031–11034
https://doi.org/10.1039/C4NR03037K
|
97 |
Pu Z, Amiinu I S, Wang M, Yang Y, Mu S. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8(16): 8500–8504
https://doi.org/10.1039/C6NR00820H
|
98 |
Pu Z, Tang C, Luo Y. Ferric phosphide nanoparticles film supported on titanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. International Journal of Hydrogen Energy, 2015, 40(15): 5092–5098
https://doi.org/10.1016/j.ijhydene.2015.02.026
|
99 |
Jiang P, Liu Q, Liang Y, Tian J, Asiri A, Sun X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 2014, 53(47): 12855–12859
https://doi.org/10.1002/anie.201406848
|
100 |
Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri A M. Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(26): 10114–10117
https://doi.org/10.1039/C6TA03628G
|
101 |
Niu Z, Jiang J, Ai L. Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting. Electrochemistry Communications, 2015, 56: 56–60
https://doi.org/10.1016/j.elecom.2015.04.010
|
102 |
Wu L, Pu Z, Tu Z, Amiinu I S, Liu S, Wang P, Mu S. Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chemical Engineering Journal, 2017, 327: 705–712
https://doi.org/10.1016/j.cej.2017.06.152
|
103 |
Son C Y, Kwak I H, Lim Y R, Park J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2016, 52(13): 2819–2822
https://doi.org/10.1039/C5CC09832G
|
104 |
Wei L, Goh K, Birer O, Karahan H, Chang J, Zhai S, Chen X, Chen Y. A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9(13): 4401–4408
https://doi.org/10.1039/C6NR09864A
|
105 |
Zhang Y, Liu Y W, Ma M, Ren X, Liu Z A, Du G, Asiri A M, Sun X P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53(80): 11048–11051
https://doi.org/10.1039/C7CC06278H
|
106 |
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
https://doi.org/10.1021/acs.nanolett.6b03803
|
107 |
Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie, 2014, 53(36): 9577–9581
https://doi.org/10.1002/anie.201403842
|
108 |
Li W, Gao X, Xiong D, Xia F, Liu J, Song W, Xu J, Thalluri S M, Cerqueira M F, Fu X, et al. Vapor-solid synthesis of monolithic singlecrystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8(4): 2952–2958
https://doi.org/10.1039/C6SC05167G
|
109 |
Ma Z, Li R, Wang M, Meng H, Zhang F, Bao X, Tang B, Wang X. Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 2016, 219: 194–203
https://doi.org/10.1016/j.electacta.2016.10.004
|
110 |
Liu T T, Liu D N, Qu F L, Wang D X, Zhang L, Ge R X, Hao S, Ma Y J, Du G, Asiri A M, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 2017, 7(15): 1700020
https://doi.org/10.1002/aenm.201700020
|
111 |
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
https://doi.org/10.1002/adfm.201503666
|
112 |
Wang X, Kolen’ko Y V, Bao X Q, Kovnir K, Liu L. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angewandte Chemie, 2015, 54(28): 8188–8192
https://doi.org/10.1002/anie.201502577
|
113 |
Xiao J, Lv Q Y, Zhang Y, Zhang Z Y, Wang S. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Advances, 2016, 6(109): 107859–107864
https://doi.org/10.1039/C6RA20737E
|
114 |
Wang X, Kolen’ko Y V, Liu L. Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51(31): 6738–6741
https://doi.org/10.1039/C5CC00370A
|
115 |
You B, Jiang N, Sheng M, Bhushan M W, Sun Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2015, 6(2): 714–721
https://doi.org/10.1021/acscatal.5b02193
|
116 |
Tan Y, Wang H, Liu P, Cheng C, Zhu F, Hirata A, Chen M. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. Advanced Materials, 2016, 28(15): 2951–2955
https://doi.org/10.1002/adma.201505875
|
117 |
Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, Fujita T, Tang Z, Chen M. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261
https://doi.org/10.1039/C6EE01109H
|
118 |
Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan Y. Template-preparation of three-dimensional molybdenum phosphide sponge as high performance electrode for hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 4(1): 59–66
https://doi.org/10.1039/C5TA05453B
|
119 |
Kibsgaard J, Tsai C, Chan K, Benck J D, Nørskov J K, Abild-Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 2015, 8(10): 3022–3029
https://doi.org/10.1039/C5EE02179K
|
120 |
Cheng Y, Guo J, Huang Y, Liao Z, Xiang Z. Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy, 2017, 35: 115–120
https://doi.org/10.1016/j.nanoen.2017.03.028
|
121 |
Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475(7356): 364–367
https://doi.org/10.1038/nature10313
|
122 |
Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y Q. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Applied Materials & Interfaces, 2014, 6(18): 16312–16319
https://doi.org/10.1021/am504539k
|
123 |
Pu Z, Amiinu I S, Zhang C, Wang M, Kou Z, Mu S. Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: An efficicent and durabale hydrogen evolution electrocatalyst in a wide pH range. Nanoscale, 2017, 9(10): 3555–3560
https://doi.org/10.1039/C6NR09883E
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|