Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 400-414    https://doi.org/10.1007/s11705-018-1757-0
RESEARCH ARTICLE
Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane
Meibo He1,2, Zhuang Liu3, Tong Li4, Chen Chen5, Baicang Liu1,2(), John C. Crittenden6
1. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
2. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
3. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
5. Litree Purifying Technology Co., Ltd, Haikou 571126, China
6. Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 Download: PDF(3905 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricarbonyl trichloride on polysulfone (PSf) support membranes blended with K+-responsive poly(N-isopropylacryamide-co-acryloylamidobenzo-15-crown-5) (P(NIPAM-co-AAB15C5)). Membranes were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, contact angle, and filtration tests. The results showed that: (1) Under K+-free conditions, the blended P(NIPAM-co-AAB15C5)/PSf supports had porous and hydrophilic surfaces, thereby producing NF membranes with smooth surfaces and low MgSO4 rejections; (2) With K+ in the PIP solution, the surface roughness and water permeability of the resultant NF membrane were increased due to the K+-induced transition of low-content P(NIPAM-co-AAB15C5) from hydrophilic to hydrophobic; (3) After a curing treatment at 95 °C, the improved NF membrane achieved an even higher pure water permeability of 10.97 L·m−2·h−1·bar−1 under 200 psi. Overall, this study provides a novel method to improve the performance of NF membranes and helps understand the influence of supports on TFC membranes.

Keywords nanofiltration      interfacial polymerization      support membrane      potassium ion-responsive      thin-film composite     
Corresponding Author(s): Baicang Liu   
Just Accepted Date: 13 June 2018   Online First Date: 16 October 2018    Issue Date: 22 May 2019
 Cite this article:   
Meibo He,Zhuang Liu,Tong Li, et al. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane[J]. Front. Chem. Sci. Eng., 2019, 13(2): 400-414.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1757-0
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/400
Fig.1  The chemical structure of the the K+-responsive P(NIPAM-co-AAB15C5) copolymer
Membrane PSf /wt-% P(NIPAM-co-AAB15C5) /wt-% Additive/PSf /(wt·wt−1%) Solvent
NMP/wt-%
IP solution A IP solution B Curing treatment in a DI water bath at 95 °C for 120 s
PIP/wt-% NaOH/wt-% KCl/(mol·L−1) TMC in Isopar-G /(wt·v−1%)
M1 18 0 0 82 2 0.1 0 0.25 ?
M2 18 0.45 2.5 81.55 2 0.1 0 0.25 ?
M3 18 0.45 2.5 81.55 2 0.1 0.1 0.25 ?
M4 18 0.45 2.5 81.55 2 0.1 0.1 0.25 Yes
M5 18 0.9 5 81.10 2 0.1 0 0.25 ?
M6 18 0.9 5 81.10 2 0.1 0.1 0.25 ?
Tab.1  The composition of support membrane casting solutions and IP solutions
Fig.2  ATR-FTIR spectra of different PSf membranes
Fig.3  XPS spectra for the surfaces of PSf membranes
Membrane O/% C/% N/% S/%
Pure PSf 10.86 84.69 ? 4.45
PSf-2.5 12.05 83.59 ? 4.35
PSf-5 11.56 83.70 1.54 3.19
Tab.2  Elemental composition analysis of PSf membrane surfaces
Fig.4  SEM images of surface morphologies of (a) pure PSf membrane, (b) membrane PSf-2.5, (c) membrane PSf-5
Membrane Daverage/nm Dmax/nm Pore density/m−2 Surface porosity/%
Pure PSf 10.35±3.23 18.05 1.2 × 1014 1.16
PSf-2.5 11.10±3.96 24.66 1.6 × 1014 1.90
PSf-5 11.38±3.84 21.71 2.3 × 1014 2.78
Tab.3  Pore distribution of PSf membranes
Fig.5  Water and 0.1 mol·L1 KCl solution contact angles of PSf support membranes at room temperature (~25 °C)
Fig.6  ATR-FTIR spectra of polyamide TFC NF membranes fabricated via the IP of PIP and TMC on PSf supports
Fig.7  XPS spectra for surfaces of NF membranes
Membrane O/% C/% N/% S/% O/N
M1 15.36 72.56 10.65 1.43 1.4
M2 13.77 73.47 11.42 1.34 1.2
M3 14.47 72.74 12.25 0.54 1.2
M4 14.68 73.44 11.43 0.45 1.2
M5 14.55 74.28 10.60 0.57 1.4
M6 13.35 81.16 2.96 2.53 5.2
Tab.4  Elemental composition analysis of NF membrane surfaces
Fig.8  SEM surface morphologies of NF membranes: (a) M1; (b) M2; (c) M3; (d) M4; (e) M5; (f) M6
Fig.9  (a–e) AFM 3D images of the M1–M5 membranes and (f) the summary of surface roughness
Fig.10  Water contact angle of NF membranes
Fig.11  Pure water permeability and MgSO4 rejection of NF membranes under 200 psi
Membrane Pure water permeability /(L·m−2·h−1·bar−1) MgSO4 rejection/% Operation conditions Ref.
M4 10.97±1.45 75±7.2 200 psi, 25 °C This work
PIP( 3 g· L1 )/TMC(3 g· L1 ) on TA/DETA-PSF 10 >95 0.6 MPa, 25 °C [31]
PIP( 1.76 w ·v−1%)/NTSC(0.03 w·v−1% ) 7.4 70.8 0.5 MPa, 25 °C [51]
PVAm1 (0.6 wt-%)/IPC (0.08 w ·v−1%) 6.13 77.8 0.6 MPa, 25 °C [52]
PEI (2.4 wt-%)+ PIP(0. 6 wt-%))/TMC(0.3 w·v−1)% 5.06 75 1 MPa [53]
Alcohol amine (6 w· v−1%) + SDS(0.3 w· v −1%) + LiBr( 3 w ·v−1%)/TMC(0.2 w·v−1% ) 2.29 25 0.7 MPa [54]
Dopamine( 0.5 wt -%)/TMC(0.2 w·v−1% ) ≈6 27.2 0.2 MPa, 20 °C [55]
Tab.5  Comparison of performance of the membrane M4 in this study with other interfacially polymerized composite NF membranes reported in previous studies
Fig.12  Schematic illustration of the effects of P(NIPAM-co-AAB15C5) in PSf support membranes on the formation of PA layers
1 V JPereira, J Galinha, M TBarreto Crespo, C TMatos, J GCrespo. Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources. Separation and Purification Technology, 2012, 95: 89–96
https://doi.org/10.1016/j.seppur.2012.04.013
2 ISentana, R D S Puche, E Sentana, DPrats. Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes. Desalination, 2011, 277(1–3): 147–155
https://doi.org/10.1016/j.desal.2011.04.016
3 MSen, A Manna, PPal. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. Journal of Membrane Science, 2010, 354(1–2): 108–113
https://doi.org/10.1016/j.memsci.2010.02.063
4 JSchaep, B Van der Bruggen, SUytterhoeven, RCroux, CVandecasteele, DWilms, EVan Houtte, FVanlerberghe. Removal of hardness from groundwater by nanofiltration. Desalination, 1998, 119(1–3): 295–301
https://doi.org/10.1016/S0011-9164(98)00172-6
5 XZou, J Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater. Frontiers of Chemical Science and Engineering, 2016, 10(4): 490–498
https://doi.org/10.1007/s11705-016-1600-4
6 KSuresh, G Pugazhenthi, RUppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Frontiers of Chemical Science and Engineering, 2017, 11(2): 266–279
https://doi.org/10.1007/s11705-017-1608-4
7 W LAng, A W Mohammad, N Hilal, C PLeo. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 2015, 363: 2–18
https://doi.org/10.1016/j.desal.2014.03.008
8 K PLee, T C Arnot, D Mattia. A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 2011, 370(1–2): 1–22
https://doi.org/10.1016/j.memsci.2010.12.036
9 A WMohammad, Y H Teow, W L Ang, Y T Chung, D L Oatley-Radcliffe, NHilal. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254
https://doi.org/10.1016/j.desal.2014.10.043
10 NHilal, H Al-Zoubi, N ADarwish, A WMohammad, MAbu Arabi. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308
https://doi.org/10.1016/j.desal.2004.01.007
11 W JLau, A F Ismail, N Misdan, M AKassim. A recent progress in thin film composite membrane: A review. Desalination, 2012, 287: 190–199
https://doi.org/10.1016/j.desal.2011.04.004
12 MFathizadeh, A Aroujalian, ARaisi. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination, 2012, 284: 32–41
https://doi.org/10.1016/j.desal.2011.08.034
13 A KGhosh, E M V Hoek. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336(1–2): 140–148
https://doi.org/10.1016/j.memsci.2009.03.024
14 WXie, G M Geise, B D Freeman, H S Lee, G Byun, J EMcGrath. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 2012, 403–404: 152–161
https://doi.org/10.1016/j.memsci.2012.02.038
15 X XXu, C L Zhou, B R Zeng, H P Xia, W G Lan, X M He. Structure and properties of polyamidoamine/polyacrylonitrile composite nanofiltration membrane prepared by interfacial polymerization. Separation and Purification Technology, 2012, 96: 229–236
https://doi.org/10.1016/j.seppur.2012.05.033
16 ATiraferri, N Y Yip, W A Phillip, J D Schiffman, M Elimelech. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 2011, 367(1–2): 340–352
https://doi.org/10.1016/j.memsci.2010.11.014
17 C YTang, Y N Kwon, J O Leckie. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167
https://doi.org/10.1016/j.desal.2008.04.003
18 ZLv, J Hu, JZheng, XZhang, LWang. Antifouling and high flux sulfonated polyamide thin-film composite membrane for nanofiltration. Industrial & Engineering Chemistry Research, 2016, 55(16): 4726–4733
https://doi.org/10.1021/acs.iecr.6b00409
19 QNan, P Li, BCao. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Applied Surface Science, 2016, 387: 521–528
https://doi.org/10.1016/j.apsusc.2016.06.150
20 AWahab Mohammad, NHilal, MNizam Abu Seman. A study on producing composite nanofiltration membranes with optimized properties. Desalination, 2003, 158(1–3): 73–78
https://doi.org/10.1016/S0011-9164(03)00435-1
21 YZhang, H Zhang, YLi, HMao, G Yang, JWang. Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54(23): 6175–6186
https://doi.org/10.1021/acs.iecr.5b01236
22 S PSun, T S Chung, K J Lu, S Y Chan. Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration. AIChE Journal, 2014, 60(10): 3623–3633
https://doi.org/10.1002/aic.14558
23 QAn, F Li, YJi, HChen. Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. Journal of Membrane Science, 2011, 367(1–2): 158–165
https://doi.org/10.1016/j.memsci.2010.10.060
24 E SKim, Q Yu, BDeng. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871
https://doi.org/10.1016/j.apsusc.2011.06.059
25 A KGhosh, B H Jeong, X Huang, E M VHoek. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 2008, 311(1–2): 34–45
https://doi.org/10.1016/j.memsci.2007.11.038
26 P SSingh, S V Joshi, J J Trivedi, C V Devmurari, A P Rao, P K Ghosh. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. Journal of Membrane Science, 2006, 278(1–2): 19–25
https://doi.org/10.1016/j.memsci.2005.10.039
27 XLi, K Y Wang, B Helmer, T SChung. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039–10050
https://doi.org/10.1021/ie2027052
28 K YWang, T S Chung, G Amy. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE Journal, 2012, 58(3): 770–781
https://doi.org/10.1002/aic.12635
29 DEmadzadeh, W J Lau, T Matsuura, MRahbari-Sisakht, A FIsmail. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 2014, 237: 70–80
https://doi.org/10.1016/j.cej.2013.09.081
30 QZhang, Z Zhang, LDai, HWang, S Li, SZhang. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes. Journal of Membrane Science, 2017, 537: 372–383
https://doi.org/10.1016/j.memsci.2017.05.033
31 XZhang, Y Lv, H CYang, YDu, Z K Xu. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Applied Materials & Interfaces, 2016, 8(47): 32512–32519
https://doi.org/10.1021/acsami.6b10693 pmid: 27933848
32 M BWu, Y Lv, H CYang, L FLiu, XZhang, Z KXu. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. Journal of Membrane Science, 2016, 515: 238–244
https://doi.org/10.1016/j.memsci.2016.05.056
33 L YChu, T Niitsuma, TYamaguchi, SNakao, Nakao S. Thermoresponsive transport through porous membranes with grafted PNIPAM gates. AIChE Journal, 2003, 49(4): 896–909
https://doi.org/10.1002/aic.690490409
34 BZheng, F Wang, SDong, FHuang. Supramolecular polymers constructed by crown ether-based molecular recognition. Chemical Society Reviews, 2012, 41(5): 1621–1636
https://doi.org/10.1039/C1CS15220C pmid: 22012256
35 ZLiu, F Luo, X JJu, RXie, T Luo, Y MSun, L YChu. Positively K+-responsive membranes with functional gates driven by host-guest molecular recognition. Advanced Functional Materials, 2012, 22(22): 4742–4750
https://doi.org/10.1002/adfm.201201251
36 ZLiu, L Liu, X JJu, RXie, B Zhang, L Y KChu. K+-recognition capsules with squirting release mechanisms. Chemical Communications, 2011, 47(45): 12283–12285
https://doi.org/10.1039/c1cc15082k pmid: 22001936
37 PMi, L Y Chu, X J Ju, C H Niu. A smart polymer with ion-induced negative shift of the lower critical solution temperature for phase transition. Macromolecular Rapid Communications, 2008, 29(1): 27–32
https://doi.org/10.1002/marc.200700546
38 M YJiang, X J Ju, L Fang, ZLiu, H RYu, LJiang, WWang, R Xie, QChen, L YChu. A novel, smart microsphere with K+-induced shrinking and aggregating properties based on a responsive host-guest system. ACS Applied Materials & Interfaces, 2014, 6(21): 19405–19415
https://doi.org/10.1021/am505506v pmid: 25325533
39 PMi, X J Ju, R Xie, H GWu, JMa, L Y Chu. A novel stimuli-responsive hydrogel for K+-induced controlled-release. Polymer, 2010, 51(7): 1648–1653
https://doi.org/10.1016/j.polymer.2010.02.018
40 ZLiu, W Wang, RXie, X JJu, L YChu. Stimuli-responsive smart gating membranes. Chemical Society Reviews, 2016, 45(3): 460–475
https://doi.org/10.1039/C5CS00692A pmid: 26595416
41 ZLiu, X J Ju, Y H Huang, R Xie, WWang, K RLee, L YChu. Diffusional permeability characteristics of positively K+-responsive membranes caused by spontaneously changing membrane pore size and surface wettability. Journal of Membrane Science, 2016, 497: 328–338
https://doi.org/10.1016/j.memsci.2015.09.052
42 BLiu, C Chen, PZhao, TLi, C Liu, QWang, YChen, J Crittenden. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574
https://doi.org/10.1007/s11705-016-1588-9
43 J ECadotte. US Patent, 4277344, 1981–07–07
44 BLiu, S Wang, PZhao, HLiang, WZhang, JCrittenden. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment. Applied Surface Science, 2018, 435: 415–423
https://doi.org/10.1016/j.apsusc.2017.11.126
45 HPuliyalil, P Slobodian, MSedlacik, RBenlikaya, PRiha, K Ostrikov, UCvelbar. Plasma-enabled sensing of urea and related amides on polyaniline. Frontiers of Chemical Science and Engineering, 2016, 10(2): 265–272
https://doi.org/10.1007/s11705-016-1570-6
46 T HYoung, L W Chen. A two step mechanism of diffusion-controlled ethylene vinyl alcohol membrane formation. Journal of Membrane Science, 1991, 57(1): 69–81
https://doi.org/10.1016/S0376-7388(00)81163-1
47 T HYoung, L W Chen. A diffusion-controlled model for wet-casting membrane formation. Journal of Membrane Science, 1991, 59(2): 169–181
https://doi.org/10.1016/S0376-7388(00)81181-3
48 J RDu, S Peldszus, P MHuck, XFeng. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research, 2009, 43(18): 4559–4568
https://doi.org/10.1016/j.watres.2009.08.008 pmid: 19716151
49 S HHuang, C J Hsu, D J Liaw, C C Hu, K R Lee, J Y Lai. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. Journal of Membrane Science, 2008, 307(1): 73–81
https://doi.org/10.1016/j.memsci.2007.09.014
50 CKlaysom, S Hermans, AGahlaut, SVan Craenenbroeck, I F JVankelecom. Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. Journal of Membrane Science, 2013, 445: 25–33
https://doi.org/10.1016/j.memsci.2013.05.037
51 MLiu, G Yao, QCheng, MMa, S Yu, CGao. Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP). Journal of Membrane Science, 2012, 415–416: 122–131
https://doi.org/10.1016/j.memsci.2012.04.043
52 SYu, M Ma, JLiu, JTao, M Liu, CGao. Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC). Journal of Membrane Science, 2011, 379(1–2): 164–173
https://doi.org/10.1016/j.memsci.2011.05.061
53 DWu, S Yu, DLawless, XFeng. Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations. Reactive & Functional Polymers, 2015, 86: 168–183
https://doi.org/10.1016/j.reactfunctpolym.2014.08.009
54 BTang, C Zou, PWu. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane. Journal of Membrane Science, 2010, 365(1–2): 276–285
https://doi.org/10.1016/j.memsci.2010.09.015
55 JZhao, Y Su, XHe, XZhao, Y Li, RZhang, ZJiang. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465: 41–48
https://doi.org/10.1016/j.memsci.2014.04.018
[1] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[2] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
[3] Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
[4] Baicang Liu,Chen Chen,Pingju Zhao,Tong Li,Caihong Liu,Qingyuan Wang,Yongsheng Chen,John Crittenden. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate[J]. Front. Chem. Sci. Eng., 2016, 10(4): 562-574.
[5] Li XU, Li-Shun DU, Jing HE. Effects of operating conditions on membrane charge property and nanofiltration[J]. Front Chem Sci Eng, 2011, 5(4): 492-499.
[6] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[7] SHANG Weijuan, WANG Daxin, WANG Xiaolin. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 208-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed