Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 492-499    https://doi.org/10.1007/s11705-011-1143-7
RESEARCH ARTICLE
Effects of operating conditions on membrane charge property and nanofiltration
Li XU1,2(), Li-Shun DU1,2, Jing HE3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China; 3. Lanpec Technologies Co., Ltd., Tianjin 300072, China
 Download: PDF(226 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of the operating pressure, cross flow velocity, feed concentration, and temperature on the streaming and Zeta potential of the membranes were studied. The permeate flux and the retention rate under different nanofiltration operating conditions were also investigated. The results show that the higher pressure, feed concentration, temperature, and lower cross flow velocity lead to the higher absolute value of streaming and Zeta potential. The permeate flux of the nanofiltration decreases with the feed concentration and increases with not only the pressure but also the cross flow velocity and temperature. The higher the pressure and the cross flow velocity, the higher the retention rate. The lower feed concentration and higher temperature leads to lower retention rate. The effects of the operating conditions on the permeate flux and the retention rate were explained by the variation of the membrane charge property.

Keywords nanofiltration membrane      streaming potential      Zeta potential      permeate flux      retention rate     
Corresponding Author(s): XU Li,Email:xuli620@163.com   
Issue Date: 05 December 2011
 Cite this article:   
Li XU,Li-Shun DU,Jing HE. Effects of operating conditions on membrane charge property and nanofiltration[J]. Front Chem Sci Eng, 2011, 5(4): 492-499.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1143-7
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/492
Fig.1  1,16 Temperature control device; 2,3 Pressure gauge; 4, 9, 11,13 Regulating valve; 5 Regulated DC power supply; 6 Membrane pool; 7 Rotermeter; 8 Computer; 10 Beaker; 12 Electronic balance; 14 Screw pump; 15 Feed liquid trough
Schematic diagram of the nanofiltration device
Fig.2  Variations of the permeate flux and streaming potential with time ( = 1.0 × 10 mol·m, = 0.05 m·s, Δ = 1.2 MPa, = 40°C)
Fig.3  Effect of pressure on the streaming and Zeta potential ( = 1.0 × 10 mol·m, = 0.05 m·s, = 40°C)
Fig.4  Effect of cross flow velocity on the streaming and Zeta potential ( = 1.0 × 10 mol·m, Δ = 1.2 MPa, = 40°C)
Fig.5  Effect of feed concentration on the streaming and Zeta potential (Δ = 1.2 MPa, = 0.05 m·s, = 40°C)
Fig.6  Effect of feed concentration on the streaming and Zeta potential ( = 1.0 × 10 mol·m, Δ = 1.2MPa, = 0.05m·s)
Fig.7  Effect of pressure on permeate flux of SG membrane ( = 1.0 × 10 mol·m, = 0.05m·s, = 40°C)
Fig.8  Effect of pressure on penetrating fluid concentration and retention rate ( = 1.0 × 10 mol·m, = 0.05 m·s, = 40°C)
Fig.9  Effect of cross flow velocity on permeate flux ( = 1.0 × 10mol·m, Δ = 1.2 MPa, = 40°C)
Fig.10  Effect of cross flow velocity on penetrating fluid concentration and retention rate ( = 1.0 × 10 mol·m, Δ = 1.2 MPa, = 40°C)
Fig.11  Effect of feed concentration on permeate flux ( = 0.05 m·s, Δ = 1.2 MPa, = 40°C)
Fig.12  Effect of feed concentration on penetrating fluid concentration and retention rate ( = 0.05 m·s, Δ = 1.2 MPa, = 40°C)
Fig.13  Effect of temperature on permeate flux ( = 1.0 × 10 mol·m, = 0.05 m·s, Δ = 1.2 MPa)
Fig.14  Effect of temperature on penetrating fluid concentration and retention rate ( = 1.0 × 10 mol·m, = 0.05 m·s, Δ = 1.2 MPa)
1 Bowen W R, Mohammad A W, Hilal N. Characterization of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science , 1997, 126(1): 91–105
doi: 10.1016/S0376-7388(96)00276-1
2 Bowen W R, Welfoot J S. Predictive modelling of nanofiltration: membrane specification and process optimization. Desalination , 2002, 147(1-3): 197–203
doi: 10.1016/S0011-9164(02)00534-9
3 Labbez C, Fievet P, Szymczyk A, Thomas F, Simon C, Vidonne A, Pagetti J, Foissy A. A comparison of membrane charge of a low nanofiltration ceramic membrane determined from ionic retention and tangential streaming potential measurements. Desalination , 2002, 147(1-3): 223–229
doi: 10.1016/S0011-9164(02)00539-8
4 Navarro R, González M P, Saucedo I, Avila M, Prádanos P, Martínez F, Martín A, Hernández A. Effect of an acidic treatment on the chemical and charge properties of a nanofiltration membrane. Journal of Membrane Science , 2008, 307(1): 136–148
doi: 10.1016/j.memsci.2007.09.015
5 Teixeira M R, Rosa M J, Nystr?m M. The role of membrane charge on nanofiltration performance. Journal of Membrane Science , 2005, 265(1-2): 160–166
doi: 10.1016/j.memsci.2005.04.046
6 Zhao K S, Ni G Z. Dielectric analysis of nanofiltration membrane in electrolyte solutions: Influences of permittivity of wet membrane and volume charge density on ion permeability. Journal of Electroanalytical Chemistry , 2011, 661(1): 226–238
doi: 10.1016/j.jelechem.2011.08.005
7 Ahmad A L, Ooi B S, Mohammad A W, Choudhury J P. Effect of constricted polymerization time on nanofiltration membrane characteristic and performance: a study using the Donnan steric pore flow model. Journal of Applied Polymer Science , 2004, 94(1): 394–399
doi: 10.1002/app.20904
8 Levenstein R, Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes. Journal of Membrane Science , 1996, 116(1): 77–92
doi: 10.1016/0376-7388(96)00029-4
9 Lapointe J F, Gauthier S F, Pouliot Y, Bouchard C. Fouling of a nanofiltration membrane by -lactoglobulin tryptic hydrolysate: impact on the membrane sieving and electrostatic properties. Journal of Membrane Science , 2005, 253(1-2): 89–102
doi: 10.1016/j.memsci.2005.01.001
10 Ricq L, Pierre A, Bayle S, Reggiani J C. Electrokinetic characterization of polyethersulfone UF membranes. Desalination , 1997, 109(3): 253–261
doi: 10.1016/S0011-9164(97)00071-4
11 Peeters J M M, Mulder M H V, Strathmann H. Streaming potential measurements as a characterization method for nanofiltration membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 1999, 150(1-3): 247–259
doi: 10.1016/S0927-7757(98)00828-0
12 Szymczyk A, Fievet P, Mullet M, Reggiani J C, Pagetti J. Comparison of two electrokinetic methods—electroosmosis and streaming potential—to determine the Zeta-potential of plane ceramic membranes. Journal of Membrane Science , 1998, 143(1-2): 189–195
doi: 10.1016/S0376-7388(97)00340-2
13 Mo J X, Liu S M. Theory, experimental method and result of the streaming potential. Technology of Water Treatment , 1991, 17(3): 153–161
14 Wang J, Wang X L. Experimental study of the streaming potential of porous polymer MF membranes. Journal of Lianyungang College of Chemical Technology , 2000, 13(3): 4–6 (in Chinese)
15 Liu X H, Wang X Q, Chen H. Synthesis of pyrazosulfuron-ethyl by non-phosgene method. Journal of Lianyungang College of Chemical Technology , 2000, 13(4): 13–15 (in Chinese)
16 Wang J, Ying A L, Wang X L, Yu B. z potentials and pore surface charge densities of the porous polymer membranes (PMP-013MF membrane). Journal of Lianyungang College of Chemical Technology , 2001, 14(1): 1–4 (in Chinese)
17 Wang J, Wang X L, Ying A L, Yu B. Study of the flow character of porous polymer UF membranes. Journal of Lianyungang College of Chemical Technology , 2001, 14(2): 5–7 (in Chinese)
18 Wang J, Wang X L. Determination of the streaming potential of porous polyacrylonitrile UF membranes. Journal of Huaihai Institute of Technology , 2002, 11(1): 38–41 (in Chinese)
19 Xie H, Saito T, Hickner M A. Zeta potential of ion-conductive membranes by streaming current measurements. Langmuir , 2011, 27(8): 4721–4727 (in Chinese)
doi: 10.1021/la105120f pmid:21443169
20 Huisman I H, Prádanos P, Calvo J I, Hernández A. Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. Journal of Membrane Science , 2000, 178(1-2): 79–92
doi: 10.1016/S0376-7388(00)00485-3
21 Pastor R, Calvo J I, Prádanos P, Hernández A. Surface charges and zeta potentials on polyethersulphone heteroporous membranes. Journal of Membrane Science , 1997, 137(1-2): 109–119
doi: 10.1016/S0376-7388(97)00186-5
22 Huisman I H, Prádanos P, Hernández A. Electrokinetic characterisation of ultrafiltration membranes by streaming potential, electroviscous effect, and salt retention. Journal of Membrane Science , 2000, 178(1-2): 55–64
doi: 10.1016/S0376-7388(00)00479-8
23 Kim K J, Fane A G, Nystrom M, Pihlajamaki A, Bowen W R, Mukhtar H. Evaluation of electroosmosis and streaming potential for measurement of electric charges of polymeric membranes. Journal of Membrane Science , 1996, 116(2): 149–159
doi: 10.1016/0376-7388(96)00038-5
24 Martínez F, Martín A, Malfeito J, Palacio L, Prádanos P, Tejerina F, Hernández A. Streaming potential through and on ultrafiltration membranes: influence of salt retention. Journal of Membrane Science , 2002, 206(1-2): 431–441
25 Ye N. Research on the membrane streaming potential testing technique and application. Dissertation for the Master degree . Tianjin: Tianjin University, 2002 (in Chinese)
26 van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution , 2003, 122(3): 435–445
doi: 10.1016/S0269-7491(02)00308-1 pmid:12547533
[1] Heba ABDALLAH, Ayman EL-GENDI, Maaly KHEDR, Elham EL-ZANATI. Hydrophobic polyethersulfone porous membranes for membrane distillation[J]. Front. Chem. Sci. Eng., 2015, 9(1): 84-93.
[2] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[3] SHANG Weijuan, WANG Daxin, WANG Xiaolin. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 208-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed