Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 28-45    https://doi.org/10.1007/s11705-018-1759-y
REVIEW ARTICLE
Anodization of titanium alloys for orthopedic applications
Merve İzmir1, Batur Ercan1,2()
1. Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
2. Biomedical Engineering Program, Middle East Technical University, 066800 Ankara, Turkey
 Download: PDF(5742 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been widely investigated for orthopedic applications. Briefly, anodization is the growth of a controlled oxide film on a metallic component attached to the anode of an electrochemical cell. This review provides an overview of the anodization technique to grow nanostructured oxide films on titanium and titanium alloys and summarizes the interactions between anodized titanium alloy surfaces with cells in terms of cellular adhesion, proliferation and differentiation. It will start with summarizing the mechanism of nanofeatured oxide fabrication on titanium alloys and then switch its focus on the latest findings for anodization of titanium alloys, including the use of fluoride free electrolytes and anodization of 3D titanium foams. The review will also highlight areas requiring further research to successfully translate anodized titanium alloys to clinics for orthopedic applications.

Keywords titanium alloys      anodization      biocompatibility      orthopedics     
Corresponding Author(s): Batur Ercan   
Just Accepted Date: 10 July 2018   Online First Date: 03 December 2018    Issue Date: 25 February 2019
 Cite this article:   
Merve İzmir,Batur Ercan. Anodization of titanium alloys for orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 28-45.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1759-y
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/28
Fig.1  Schematic depicting the growth of nanostructured oxide film on Ti6Al7Nb alloy. Image is reprinted with permission from reference [16]
Fig.2  (a) Current density-time graph (j-t) obtained during anodization of titanium using an electrolyte containing fluoride ions and (b) the representation of compact oxide layer (fluoride free electrolyte) and nanoporous/nanotubular oxide layers (fluoride containing electrolyte). Images are adapted with permission from references [20,21]
Fig.3  SEM images showing nanotubular layers grown on (a) Ti6Al7Nb, (b) TiAl, and (c) TiZr using (NH4)2SO4 electrolyte. Larger images show cross-sectional views and insets show top views of nanotubular layers. Images are adapted with permission from reference [21]
Fig.4  (a), (b) and (c) SEM images of flower-like nanotubular structures on titanium at different magnifications. Titanium samples were anodized using an electrolyte containing 0.3 mol·L1 sodium chloride and 6:4 distilled water to ethylene glycol ratio. Images are adapted with permission from reference [48]
Fig.5  (a), (b), and (c) SEM images of an anodized titanium foam. Images are reprinted with permission from reference [51]
Fig.6  (a) Change of nanotubular diameters on titanium surfaces with the applied voltage and the corresponding SEM images of the anodized surfaces, (b) AFM scans showing the topography of conventional titanium and anodized nanotubular titanium having 40–60 nm diameters. Images are adapted with permission from references [65,66]
Fig.7  (A) Osteoblast densities on anodized surfaces up to 7 days of culture. # p<0.05 indicates significant difference between the flat titanium and anodized nanotubular surfaces; * p<0.05 indicates significant difference between 30 nm diameter nanotubular features with larger size (50–100 nm) ones; (B) Influence of nanotubular diameter on osteoblast elongation, $ p<0.05 compared to flat titanium and 30 and 50 nm diameter nanotubular titanium; (C) focal contact formation of MSCs on 15 and 100 nm diameter nanotubular surfaces at 1 and 3 days of culture. Cells were stained for paxillin (red), actin (green) and nucleus (blue). Scale bars are (a) and (b) 50 µm, (c) and (d) 100 µm. Images are reprinted with permission from references [65,67]
Fig.8  (a) and (b) placement of four different implants in the frontal skull of minipig and fluorescence microphotographs of (c) machined implant, (d) 30 nm, (e) 70 nm, (f) 100 nm diameter anodized nanotubular titanium implants at 8 weeks of implantation. Markers used in this study were xylenol (orange), calcein (green) and alizarin (red). Alizarin-labeled lines were most visible due to the latest injection of this dye and the xylenol orange-label was hardly detected as a result of bone metabolism. Scale bars are 200 mm. Images are adapted with permission from reference [78]
Fig.9  (a) S. aureus growth after 24 h of culture on Anod_20_HT, Anod_80_HT, Conv_HT, and Conv Ti samples sterilized using ultraviolet light, ethanol immersion or steam autoclave. Values are mean±SEM, N = 3, * p<0.10 compared to conventional Ti, ** p<0.05 compared to conventional Ti, *** p<0.01 compared to conventional Ti and # p<0.05 compared to Conv_HT within each respective group. ◊ p<0.05 compared to respective autoclaved samples; and ‡ p<0.05 compared to respective autoclaved samples. Images are adapted with permission from reference. (b) S. aureus colonies grown on Anod_20_HT and conventional titanium (Conventional Ti) sterilized with EtOH immersion after 24 h of culture [81]
Fig.10  (a) S. aureus growth on conventional (Conv) and nanotubular (Anod) titanium surfaces up to 2 days of culture. * p<0.01 compared to conventional titanium; # p<0.01 compared to nanotubular titanium samples; ** p<0.01 compared to conventional titanium and (b) SEM images of S. aureus on nanotubular titanium surfaces. Scale bar is 2 mm. Images are adapted with permission from reference [66]
1 BLi, T Webster. Orthopedic Biomaterials: Advances and Applications. Cham: Springer International Publishing, 2017, 31–32
2 S MKurtz, K L Ong, J Schmier, FMowat, KSaleh, EDybvik, JKärrholm, GGarellick, L IHavelin, OFurnes, HMalchau, ELau. Future clinical and economic impact of revision total hip and knee arthroplasty. Journal of Bone and Joint Surgery (American), 2007, 89(Suppl 3): 144–151
pmid: 17908880
3 D AEtzioni, J H Liu, M A Maggard, C Y Ko. The aging population and its impact on the surgery workforce. Annals of Surgery, 2003, 238(2): 170–177
https://doi.org/10.1097/01.SLA.0000081085.98792.3d pmid: 12894008
4 R DRamiah, A M Ashmore, E Whitley, G CBannister. Ten-year life expectancy after primary total hip replacement. Journal of Bone and Joint Surgery. British Volume, 2007, 89(10): 1299–1302
https://doi.org/10.1302/0301-620X.89B10.18735 pmid: 17957067
5 VSansone, D Pagani, MMelato. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(1): 34–40
pmid: 23858309
6 C DEtkin, B D Springer. The American joint replacement registry—the first 5 years. Arthroplasty Today, 2017, 3(2): 67–69
https://doi.org/10.1016/j.artd.2017.02.002 pmid: 28695176
7 VZwilling, E Darque-Ceretti, ABoutry-Forveille, DDavid, M YPerrin, MAucouturier. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637
https://doi.org/:10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
8 MLong, H J Rack. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639
https://doi.org/10.1016/S0142-9612(97)00146-4 pmid: 9839998
9 EBütev, Z Esen, ŞBor. Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 127–138
https://doi.org/10.1016/j.jmbbm.2015.12.040 pmid: 26807769
10 KPrasad, O Bazaka, MChua, MRochford, LFedrick, JSpoor, RSymes, MTieppo, CCollins, ACao, et al. Metallic biomaterials: Current challenges and opportunities. Materials, 2017, 10(8): 884
https://doi.org/10.3390/ma10080884 pmid: 28773240
11 MÖzcan, C Hämmerle. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials, 2012, 5(9): 1528–1545
https://doi.org/10.3390/ma5091528
12 S DRogers, D W Howie, S E Graves, M J Pearcy, D R Haynes. In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. Journal of Bone and Joint Surgery, 1997, 79(2): 311–315
https://doi.org/10.1302/0301-620X.79B2.7192 pmid: 9119864
13 K CPopat, L Leoni, C AGrimes, T ADesai. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28(21): 3188–3197
https://doi.org/10.1016/j.biomaterials.2007.03.020 pmid: 17449092
14 L CPalmer, C J Newcomb, S R Kaltz, E D Spoerke, S I Stupp. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 2008, 108(11): 4754–4783
https://doi.org/10.1021/cr8004422 pmid: 19006400
15 S JLiliensiek, PNealey, C JMurphy. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Engineering. Part A, 2009, 15(9): 2643–2651
https://doi.org/10.1089/ten.tea.2008.0284 pmid: 19207042
16 ARafieerad, E Zalnezhad, ABushroa, AHamouda, MSarraf, BNasiri-Tabrizi. Self-organized TiO2 nanotube layer on Ti-6Al-7Nb for biomedical application. Surface and Coatings Technology, 2015, 265: 24–31
https://doi.org/10.1016/j.surfcoat.2015.01.067
17 J MMacak, H Tsuchiya, LTaveira, AGhicov, PSchmuki. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research Part A, 2005, 75(4): 928–933
https://doi.org/10.1002/jbm.a.30501 pmid: 16138327
18 SMahshid, A Dolati, MGoodarzi, MAskari, AGhahramaninezhad. Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration. ECS Transactions, 2010, 28(7): 67–74
19 AAkhlag, E U Haq, W Akhtar, MArshad, ZAhmad. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes. Applied Nanoscience, 2017, 7(8): 701–710
https://doi.org/10.1007/s13204-017-0608-5
20 KIndira, U K Mudali, T Nishimura, N.Rajendran A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio- and Tribo-Corrosion, 2015, 1(28): 7–14
21 JMacak, H Tsuchiya, AGhicov, KYasuda, RHahn, S Bauer, PSchmuki. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007, 11(1–2): 3–18
https://doi.org/10.1016/j.cossms.2007.08.004
22 PRoy, S Berger, PSchmuki. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13): 2904–2939
https://doi.org/10.1002/anie.201001374 pmid: 21394857
23 HOmidvar, S Goodarzi, ASeif, A RAzadmehr. Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlattices and Microstructures, 2011, 50(1): 26–39
https://doi.org/10.1016/j.spmi.2011.04.006
24 A LEscada, R Z Nakazato, A P Claro. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290
https://doi.org/10.1590/1980-5373-mr-2016-0520
25 DRegonini, C Bowen, AJaroenworaluck, RStevens. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 2013, 74(12): 377–406
https://doi.org/10.1016/j.mser.2013.10.001
26 XFeng, J M Macak, P Schmuki. Robust self-organization of oxide nanotubes over a wide pH range. Chemistry of Materials, 2007, 19(7): 1534–1536
https://doi.org/10.1021/cm063042g
27 SSreekantan, Z Lockman, RHazan, MTasbihi, L KTong, A RMohamed. Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds, 2009, 485(1–2): 478–483
https://doi.org/10.1016/j.jallcom.2009.05.152
28 JChen, J Lin, XChen. Self-assembled TiO2 nanotube arrays with U-shaped profile by controlling anodization temperature. Journal of Nanomaterials, 2010, 1: 38
29 DGong, C A Grimes, O K Varghese, W Hu, R SSingh, ZChen, E C Dickey. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001, 16(12): 3331–3334
https://doi.org/10.1557/JMR.2001.0457
30 MKulkarni, A Mazare, PSchmuki, AIglic. Influence of anodization parameters on morphology of TiO2 nanostructured surfaces. Advanced Materials Letters, 2016, 7(1): 23–28
https://doi.org/10.5185/amlett.2016.6156
31 MGöttlicher, M Rohnke, AKunz, JThomas, R AHenning, TLeichtweiß, JJanek. Anodization of titanium in radio frequency oxygen discharge. Microstructure, kinetics and transport mechanism. Solid State Ionics, 2016, 290: 130–139
https://doi.org/10.1016/j.ssi.2016.04.013
32 MGöttlicher, M Rohnke, AHelth, TLeichtweiß, TGemming, AGebert, JEckert, JJanek. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9(11): 9201–9210
https://doi.org/10.1016/j.actbio.2013.07.015 pmid: 23891813
33 VZwilling, E Darque-Ceretti, ABoutry-Forveille, DDavid, M YPerrin, MAucouturier. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637
https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
34 RBeranek, H Hildebrand, PSchmuki. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochemical and Solid-State Letters, 2003, 6(3): 12–14
https://doi.org/10.1149/1.1545192
35 QCai, M Paulose, O KVarghese, C AGrimes. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research, 2005, 20(01): 230–236
https://doi.org/10.1557/JMR.2005.0020
36 J MMacak, M Zlamal, JKrysa, PSchmuki. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007, 3(2): 300–304
https://doi.org/10.1002/smll.200600426 pmid: 17230591
37 AMazare, M Dilea, DIonita, ITitorencu, VTrusca, EVasile. Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry, 2012, 87: 124–131
https://doi.org/10.1016/j.bioelechem.2012.01.002 pmid: 22341625
38 AKaczmarek, T Klekiel, EKrasicka-Cydzik. Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis, 2010, 42(6–7): 510–514
https://doi.org/10.1002/sia.3303
39 I SPark, H J Oh, T S Bae. Bioactivity and generation of anodized nanotubular TiO2 layer of Ti-6Al-4V alloy in glycerol solution. Thin Solid Films, 2013, 548: 292–298
https://doi.org/10.1016/j.tsf.2013.08.096
40 LMohan, C Anandan, NRajendran. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Materials Science and Engineering C, 2015, 50: 394–401
https://doi.org/10.1016/j.msec.2015.02.013 pmid: 25746285
41 HJha, R Hahn, PSchmuki. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, 2010, 55(28): 8883–8887
41 A LEscada, R Z Nakazato, A P Claro. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290
https://doi.org/10.1590/1980-5373-mr-2016-0520
42 P CChen, S J Hsieh, C C Chen, J Zou. The microstructure and capacitance characterizations of anodic titanium based alloy oxide nanotube. Journal of Nanomaterials, 2013, 2013: 157494
43 WKim, H Choe, W ABrantley. Nanostructured surface changes of Ti-35Ta-xZr alloys with changes in anodization factors. Thin Solid Films, 2011, 519(15): 4663–4667
https://doi.org/10.1016/j.tsf.2011.01.013
44 AOssowska, S Sobieszczyk, MSupernak, AZielinski. Morphology and properties of nanotubular oxide layer on the Ti-13Zr-13Nb alloy. Surface and Coatings Technology, 2014, 258(15): 1239–1248
https://doi.org/10.1016/j.surfcoat.2014.06.054
45 TSaito, T Furuta, J HHwang, SKuramoto, KNishino, NSuzuki, RChen, A Yamada, KIto, YSeno, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science, 2003, 300(5618): 464–467
https://doi.org/10.1126/science.1081957 pmid: 12702870
46 Y HChiu, T H Lai, C Y Chen, P Y Hsieh, K Ozasa, MNiinomi, KOkada, T MChang, NMatsushita, MSone, et al. Fully depleted Ti-Nb-Ta-Zr-O nanotubes: Interfacial charge dynamics and solar hydrogen production. ACS Applied Materials & Interfaces, 2018, 10(27): 22997–23008
https://doi.org/10.1021/acsami.8b00727 pmid: 29664283
47 CRichter, Z Wu, EPanaitescu, RWilley, LMenon. Ultra-high-aspect-ratio titania nanotubes. Advanced Materials, 2007, 19(7): 946–948
https://doi.org/10.1002/adma.200602389
48 Y LCheong, F K Yam, S W Ng, Z Hassan, S SNg, I MLow. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. Journal of Porous Materials, 2015, 22(6): 1437–1444
https://doi.org/10.1007/s10934-015-0024-8
49 N KAllam, K Shankar, C AGrimes. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18(20): 2341–2348
https://doi.org/10.1039/b718580d
50 SKim, M Seong, JChoi. Rapid breakdown anodization for the preparation of titania nanotubes in halogen-free acids. Journal of the Electrochemical Society, 2015, 162(6): 205–208
https://doi.org/10.1149/2.0291506jes
51 ZBi, M P Paranthaman, P A Menchhofer, R R Dehoff, C A Bridges, M Chi, SDai. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 2013, 222: 461–466
https://doi.org/10.1016/j.jpowsour.2012.09.019
52 J SKang, H Choi, JKim, HPark, J Y Kim, J W Choi, S H Yu, K J Lee, Y S Kang, S H Park, et al. Solar cells: Multidimensional anodized titanium foam photoelectrode for efficient utilization of photons in mesoscopic solar cells. Small, 2017, 13(34): 1–7
pmid: 28722350
53 J MSchakenraad, H JBusscher, C RWildevuur, JArends. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. Journal of Biomedical Materials Research, 1986, 20(6): 773–784
https://doi.org/10.1002/jbm.820200609 pmid: 3722214
54 S DPuckett, E Taylor, TRaimondo, T JWebster. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713
https://doi.org/10.1016/j.biomaterials.2009.09.081 pmid: 19879645
55 L NWang, M Jin, YZheng, YGuan, X Lu, J LLuo. Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9(1): 4421–4435
https://doi.org/10.2147/IJN.S65866 pmid: 25258532
56 T JWebster, C Ergun, R HDoremus, R WSiegel, RBizios. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17): 1803–1810
https://doi.org/10.1016/S0142-9612(00)00075-2 pmid: 10905463
57 T JWebster, J U Ejiofor. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19): 4731–4739
https://doi.org/10.1016/j.biomaterials.2003.12.002 pmid: 15120519
58 TRaimondo, S Puckett, T JWebster. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. International Journal of Nanomedicine, 2010, 5(5): 647–652
pmid: 20856840
59 WJi, P Han, CZhao, YJiang, XZhang. Increased osteoblast adhesion on nanophase Ti6Al4V. Science Bulletin, 2008, 53(11): 1757–1762
https://doi.org/10.1007/s11434-008-0093-z
60 K SBrammer, S Oh, C JCobb, L MBjursten, Hvan der Heyde, SJin. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223
https://doi.org/10.1016/j.actbio.2009.05.008 pmid: 19447210
61 A PRoss, T J Webster. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. International Journal of Nanomedicine, 2013, 8(1): 109–117
pmid: 23319862
62 CYao, E B Slamovich, T J Webster. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Journal of Biomedical Materials Research Part A, 2008, 85A(1): 157–166
https://doi.org/10.1002/jbm.a.31551 pmid: 17688267
63 PRoy, S Berger, PSchmuki. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13): 2904–2939
https://doi.org/10.1002/anie.201001374 pmid: 21394857
64 ATan, B Pingguan-Murphy, RAhmad, SAkbar. Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 2012, 38(6): 4421–4435
https://doi.org/10.1016/j.ceramint.2012.03.002
65 JPark, S Bauer, Kvon der Mark, PSchmuki. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters, 2007, 7(6): 1686–1691
https://doi.org/10.1021/nl070678d pmid: 17503870
66 BErcan, K M Kummer, K M Tarquinio, T J Webster. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomaterialia, 2011, 7(7): 3003–3012
https://doi.org/10.1016/j.actbio.2011.04.002 pmid: 21515421
67 K SBrammer, S Oh, C JCobb, L MBjursten, Hvan der Heyde, SJin. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223
https://doi.org/10.1016/j.actbio.2009.05.008 pmid: 19447210
68 K SBrammer, S Oh, J OGallagher, SJin. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters, 2008, 8(3): 786–793
https://doi.org/10.1021/nl072572o pmid: 18251515
69 W QYu, Y L Zhang, X Q Jiang, F Q Zhang. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 2010, 16(7): 624–630
https://doi.org/10.1111/j.1601-0825.2009.01643.x pmid: 20604877
70 SOh, K S Brammer, Y S Li, D Teng, A JEngler, SChien, SJin. Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130–2135
https://doi.org/10.1073/pnas.0813200106 pmid: 19179282
71 KMalec, J Góralska, MHubalewska-Mazgaj, PGłowacz, MJarosz, PBrzewski, G DSulka, MJaskuła, IWybrańska. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. International Journal of Nanomedicine, 2016, 11: 5349–5360
https://doi.org/10.2147/IJN.S116263 pmid: 27789947
72 GLi, Q Zhao, HTang, GLi, Y Chi. Fabrication, characterization and biocompatibility of TiO2 nanotubes via anodization of Ti6Al7Nb. Composite Interfaces, 2016, 23(3): 223–230
https://doi.org/10.1080/09276440.2016.1128723
73 EFilova, J Fojt, MKryslova, HMoravec, LJoska, LBacakova. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. International Journal of Nanomedicine, 2015, 10(1): 7145–7163
https://doi.org/10.2147/IJN.S87474 pmid: 26648719
74 Y TSul. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. International Journal of Nanomedicine, 2010, 5(5): 87–100
https://doi.org/10.2147/IJN.S8012 pmid: 20463928
75 L MBjursten, L Rasmusson, SOh, G CSmith, K SBrammer, SJin. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A, 2010, 92(3): 1218–1224
pmid: 19343780
76 LSalou, A Hoornaert, GLouarn, PLayrolle. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 2015, 11: 494–502
https://doi.org/10.1016/j.actbio.2014.10.017 pmid: 25449926
77 SPuckett. Select nanofabricated titanium materials for enhancing bone and skin growth of intraosseous transcutaneous amputation prostheses. Dissertation for the Doctoral Degree, Rhode Island: Brown University, 2011, 286–300
78 NWang, H Li, WLü, JLi, J Wang, ZZhang, YLiu. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials, 2011, 32(29): 6900–6911
https://doi.org/10.1016/j.biomaterials.2011.06.023 pmid: 21733571
79 S DPuckett, E Taylor, TRaimondo, T JWebster. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713
https://doi.org/10.1016/j.biomaterials.2009.09.081 pmid: 19879645
80 J LDel Pozo, RPatel. Clinical practice. Infection associated with prosthetic joints. New England Journal of Medicine, 2009, 361(8): 787–794
https://doi.org/10.1056/NEJMcp0905029 pmid: 19692690
81 GColon, B C Ward, T J Webster. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 2006, 78A(3): 595–604
https://doi.org/10.1002/jbm.a.30789 pmid: 16752397
82 C PPeremarch, R PTanoira, M AArenas, EMatykina, AConde, J JDamborenea, JEsteban. Bacterial adherence to anodized titanium alloy. Journal of Physics: Conference Series, 2010, 252(1): 1–8
83 CZhao, B Feng, YLi, JTan, X Lu, JWeng. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Applied Surface Science, 2013, 280: 8–14
https://doi.org/10.1016/j.apsusc.2013.04.057
84 TWang, Z Weng, XLiu, K W KYeung, HPan, S Wu. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2(1): 44–50
https://doi.org/10.1016/j.bioactmat.2017.02.001 pmid: 29744410
85 G ACrawford, N Chawla, KDas, SBose, A Bandyopadhyay. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia, 2007, 3(3): 359–367
https://doi.org/10.1016/j.actbio.2006.08.004 pmid: 17067860
86 MZhao, J Li, YLi, JWang, Y Zuo, JJiang, HWang. Gradient control of the adhesive force between Ti/TiO2 nanotubular arrays fabricated by anodization. Scientific Reports, 2014, 4(1): 7178
https://doi.org/10.1038/srep07178 pmid: 25417900
[1] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[2] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[3] Kaojin Wang, Satu Strandman, X. X. Zhu. A mini review: Shape memory polymers for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
[4] S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles[J]. Front Chem Sci Eng, 2012, 6(1): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed