Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 329-333    https://doi.org/10.1007/s11783-010-0232-z
Research articles
Impact of solids on biphasic biodegradation of phenanthrene in the presence of hydroxypropyl- β -cyclodextrin (HPCD)
Zhenyi ZHANG1,Chihiro INOUE2,Guanghe LI3,
1.Department of Environmental Sciences & Engineering, Tsinghua University, Beijing 100084, China;Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; 2.Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; 3.Department of Environmental Sciences & Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(155 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The consequence of polycyclic aromatic hydrocarbons (PAHs) in the environment is of great concern. The hydrophobic properties of PAHs significantly impact phase distribution causing limited bioavailability. Enhanced biodegradation has been extensively carried out by surfactants and the redeployment effect was recognized. However, the quantitative relationship concerning the impact of solids was rarely reported. A batch of biphasic tests were carried out by introducing Mycobacterium vanbaalenii PYR-1 and hydroxypropyl-β-cyclodextrin (HPCD) into a mixture of phenanthrene solution and various glass beads (GB37-63, GB105-125, and GB350-500). The comparative results demonstrated that HPCD had little effect on microbial growth and was not degradable by bacterium. A model was proposed to describe the biodegradation process. The regression results indicated that the partition coefficient kd (1.234, 0.726 and 0.448 L·g−1) and the degradation rate k (0 mmol·L−1: 0.055, 0.094, and 0.112; 20 mmol·L−1: 0.126, 0.141, and 0.156; 40 mmol·L−1: 0.141, 0.156 and 0.184 d−1) were positively and negatively correlated with the calculated total surface area (TSA) of solids, respectively. Degradation enhanced in the presence of HPCD, and the enhancing factor f was calculated (20 mmol·L−1: 15.16, 40.01, and 145.5; 40 mmol·L−1: 13.29, 37.97, and 138.4), indicating that the impact of solids was significant for the enhancement of biodegradation.
Keywords biphasic biodegradation      hydroxypropyl-β-cyclodextrin (HPCD)      polycyclic aromatic hydrocarbons (PAHs)      
Issue Date: 05 September 2010
 Cite this article:   
Zhenyi ZHANG,Chihiro INOUE,Guanghe LI. Impact of solids on biphasic biodegradation of phenanthrene in the presence of hydroxypropyl- β -cyclodextrin (HPCD)[J]. Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0232-z
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/329
Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: environmentalpollution and bioremediation. Trends inBiotechnology, 2002, 20(6): 243―248

doi: 10.1016/S0167-7799(02)01943-1
Bamforth S M, Singleton I. Bioremediationof polycyclic aromatic hydrocarbons: current knowledge and futuredirections. Journal of Chemical Technologyand Biotechnology (Oxford, Oxfordshire), 2005, 80(7): 723―736

doi: 10.1002/jctb.1276
Peng R H, Xiong A S, Xue Y, Fu X Y, Gao F, Zhao W, Tian Y S, Yao Q H. Microbial biodegradation of polyaromatichydrocarbons. FEMS Microbiology Reviews, 2008, 32(6): 927―955

doi: 10.1111/j.1574-6976.2008.00127.x
Edwards D A, Luthy R G, Liu Z B. Solubilization of Polycyclic Aromatic-Hydrocarbonsin Micellar Nonionic Surfactant Solutions. Environmental Science & Technology, 1991, 25(1): 127―133

doi: 10.1021/es00013a014
Volkering F, Breure A M, van Andel J G, Rulkens W H. Influence of Nonionic Surfactants on Bioavailabilityand Biodegradation of Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 1995, 61(5): 1699―1705
Grimberg S J, Miller C T, Aitken M D. Surfactant-enhanced dissolutionof phenanthrene into water for laminar flow conditions. Environmental Science & Technology, 1996, 30(10): 2967―2974

doi: 10.1021/es9509285
Guha S, Jaffe P R. Bioavailabilityof hydrophobic compounds partitioned into the micellar phase of nonionicsurfactants. Environmental Science &Technology, 1996, 30(4): 1382―1391

doi: 10.1021/es950694p
Sun S B, Jaffe P R. Sorptionof phenanthrone from water onto alumina coated with dianionic surfactants. Environmental Science & Technology, 1996, 30(10): 2906―2913

doi: 10.1021/es950768x
Carmichael L M, Pfaender F K. The effect of inorganic and organic supplements on the microbialdegradation of phenanthrene and pyrene in soils. Biodegradation, 1997, 8(1): 1―13

doi: 10.1023/A:1008258720649
Sun L, Zhu L Z. Effect ofanionic-nonionic mixed surfactant on ryegrass uptake of phenanthreneand pyrene from water. Chinese ScienceBulletin, 2009, 54(3): 387―393

doi: 10.1007/s11434-009-0037-2
Li J L, Chen B H. Effect ofnonionic surfactants on biodegradation of phenanthrene by a marinebacteria of Neptunomonas naphthovorans. Journal of Hazardous Materials, 2009, 162(1): 66―73

doi: 10.1016/j.jhazmat.2008.05.019
Zhou W J, Zhu L Z. Influenceof surfactant sorption on the removal of phenanthrene from contaminatedsoils. Environmental Pollution, 2008, 152(1): 99―105

doi: 10.1016/j.envpol.2007.05.016
Wang P, Keller A A. Partitioning of hydrophobic organic compounds within soil-water-surfactantsystems. Water Research, 2008, 42(8―9): 2093―2101

doi: 10.1016/j.watres.2007.11.015
Allan I J, Semple K T, Hare R, Reid B J. Cyclodextrin enhanced biodegradation of polycyclic aromatichydrocarbons and phenols in contaminated soil slurries. Environmental Science & Technology, 2007, 41(15): 5498―5504

doi: 10.1021/es0704939
Allan I J, Semple K T, Hare R, Reid B J. Prediction of mono- and polycyclic aromatic hydrocarbondegradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 2006, 144(2): 562―571

doi: 10.1016/j.envpol.2006.01.026
Khan A A, Kim S J, Paine D D, Cerniglia C E. Classification of a polycyclic aromatic hydrocarbon-metabolizingbacterium, Mycobacterium sp strain PYR-1, as Mycobacterium vanbaalenii sp nov. InternationalJournal of Systematic and Evolutionary Microbiology, 2002, 52(6): 1997―2002

doi: 10.1099/ijs.0.02163-0
Ko S O, Schlautman M A, Carraway E R. Partitioning of hydrophobicorganic compounds to hydroxypropyl-beta-cyclodextrin: Experimentalstudies and model predictions for surfactant-enhanced remediationapplications. Environmental Science &Technology, 1999, 33(16): 2765―2770

doi: 10.1021/es9813360
Viglianti C, Hanna K, de Brauer C, Germain P. Removalof polycyclic aromatic hydrocarbons from aged-contaminated soil usingcyclodextrins: experimental study. EnvironmentalPollution, 2006, 140(3): 427―435

doi: 10.1016/j.envpol.2005.08.002
Reid B J, Stokes J D, Jones K C, Semple K T. Nonexhaustive cyclodextrin-based extraction techniquefor the evaluation of PAH bioavailability. Environmental Science & Technology, 2000, 34(15): 3174―3179

doi: 10.1021/es990946c
Doick K J, Semple K T. The effect of soil: water ratios on the mineralisation of phenanthrene:LNAPL mixtures in soil. FEMS MicrobiologyLetters, 2003, 220(1): 29―33

doi: 10.1016/S0378-1097(03)00056-9
Stokes J D, Wilkinson A, Reid B J, Jones K C, Semple K T. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminatedsoils using an aqueous hydroxypropyl-beta-cyclodextrin extractiontechnique. Environmental Toxicology andChemistry, 2005, 24(6): 1325―1330

doi: 10.1897/04-336R.1
Kang S H, Xing B S. Phenanthrenesorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 2005, 39(1): 134―140

doi: 10.1021/es0490828
Liang C S, Dang Z, Xiao B, Huang W L, Liu C Q. Equilibrium sorption of phenanthreneby soil humic acids. Chemosphere, 2006, 63(11): 1961―1968

doi: 10.1016/j.chemosphere.2005.09.065
Wen B, Zhang J J, Zhang S Z, Shan X Q, Khan S U, Xing B S. Phenanthrene sorption to soil humic acid and differenthumin fractions. Environmental Science& Technology, 2007, 41(9): 3165―3171

doi: 10.1021/es062262s
[1] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[2] Qiuying CHEN,Jingling LIU,Feng LIU,Binbin WANG,Zhiguo CAO. Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 46-52.
[3] XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing. Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic Hydrocarbons[J]. Front.Environ.Sci.Eng., 2014, 8(3): 441-450.
[4] Kai LIU, Fengkui DUAN, Kebin HE, Yongliang MA, Yuan CHENG. Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems[J]. Front Envir Sci Eng, 2014, 8(2): 284-292.
[5] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[6] Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI. Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel[J]. Front Envir Sci Eng Chin, 2010, 4(4): 387-394.
[7] XIA Xinghui, HU Lijuan, MENG Lihong. Adsorption and partition of benzo(a)pyrene on sediments with different particle sizes from the Yellow River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 172-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed