Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 510-518    https://doi.org/10.1007/s11783-013-0588-y
RESEARCH ARTICLE
Characterization of interaction between different adsorbents and copper by simulation experiments using sediment-extracted organic matter from Taihu Lake, China
Yan ZHANG1,Yuan ZHANG2,3,Tao YU2,3,*()
1. Tianjin Academy of Environmental Sciences, Tianjin 300191, China
2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
 Download: PDF(212 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The complex capacity of different types of organic matters (OMs) for Cu was quantitatively studied by simulation experiments using different adsorbents prepared from the sediment in Taihu Lake. The free Cu was measured with ion selective electrode (ISE) and complex capacity was calculated using a conditional formation constant model. The result indicated that the complex capacity was 0.048 mmol·g-1, 0.009 and 0.005 mmol·g-1for raw sediment, sediment without DOM, sediment without insoluble organic matters but with DOM and sediment without OM. Insoluble organic matter played a major role in the sorption of Cu in sediment and it can adsorb most Cu from water column. In the solution, Cu mainly existed as a complex with DOM and the DOM-Cu complexation capacity was 327.87 mg·g-1. The change of TOC and pH indicated ion-exchange in the interaction between free Cu and DOM. When the Cu concentration in the experiment reached the complex capacity of DOM, precipitation was the major mechanism to remove Cu from water phase, which was observed from UV absorbance change of DOM, that is, its aromaticity increased while molecular weight decreased. The desorption result indicated that DOM was more capable of desorbing Cu from adsorbents without OM than adsorbent with OM. The desorbed quantity with DOM was 1.65, 1.78 and 2.25 times higher than that with water for adsorbents without OM, raw adsorbents (sediment) and adsorbents without DOM.

Keywords interaction      dissolved organic matters      sediment      sorption      desorption      Taihu Lake     
Corresponding Author(s): Tao YU   
Issue Date: 11 June 2014
 Cite this article:   
Yan ZHANG,Yuan ZHANG,Tao YU. Characterization of interaction between different adsorbents and copper by simulation experiments using sediment-extracted organic matter from Taihu Lake, China[J]. Front.Environ.Sci.Eng., 2014, 8(4): 510-518.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0588-y
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/510
OM/%DOM/(mg·L-1)sediment grademetals concentration/(mg·kg-1)
grain size/mmproportion/%formsCuFeAlMgMn
4.32118±23.56<0.06474.65total52.081661033.013149573.6
0.125–0.0647.05(exchangeable)6.12
0.25–0.1256.4(acid-extracted)14.23
0.50–0.257.8
Tab.1  Properties of the sediment from the Taihu lake
Fig.1  Adsorption quantity of Cu on different solid adsorbents (a for RSED and SNDOM; b for SADOM and SNOM)
Fig.2  Change of total Cu and bound Cu in solution with a series of Cu initial concentrations (a for RESW, b for SNDOM, c for SADOM)
Fig.3  The fitting curve of [M·bound]/[ M·free] against [M·bound](a for RESD, b for NDOM, c for SADOM)
RSEDSNDOMSADOM
log Kc7.427.125.46
Lt /(mg·L-1)1.020.6237.71
complex capacity/ (mg·g-1)8.8332.86327.87
Tab.2  The conditional formation constant and complex capacity of DOM with Cu in solution
Fig.4  Change of TOC (a) and pH (b) in experimental solution with different Cu concentrations
Fig.5  
Fig.6  Change of UV parameters in solution (a for a280, b for A250/A365)
Fig.7  Desorbed quantity of Cu from different adsorbents
adsorbentsadsorbed quantity on adsorbent/(mg·g-1)waterDOM
desorbed quantity/(mg·g-1)desorbed ratio/%desorbed quantity/(mg·g-1)desorbed ratio/%
SNOM0.2360.08636.560.14360.39
SNDOM2.4530.1335.410.29912.2
RSED3.8280.1523.980.2727.1
Tab.3  Desorbed quantity and the ratio of desorbed for different adsorbents
1 BoyleE A, EdmondJ M, SholkovitzE R. The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 1977, 41(9): 1313–1324
doi: 10.1016/0016-7037(77)90075-8
2 NiuH Y, DengW J, WuQ H, ChenX G. Potential toxic risk of heavy metals from sediment of the Pearl River in South China. Journal of Environmental Sciences, 2009, 21(8): 1053–1058
doi: 10.1016/S1001-0742(08)62381-5 pmid: 19862917
3 AmeryF, DegryseF, van MoorleghemC, DuyckM, SmoldersE. The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments. Analytica Chimica Acta, 2010, 670(1–2): 24–32
doi: 10.1016/j.aca.2010.04.047 pmid: 20685412
4 PengJ F, SongY H, YuanP, CuiX Y, QiuG L. The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 2009, 161(2–3): 633–640
doi: 10.1016/j.jhazmat.2008.04.061 pmid: 18547718
5 LiZ L, ZhouL X. Cadmium transport mediated by soil colloid and dissolved organic matter: a field study. Journal of Environmental Sciences (China), 2010, 22(1): 106–115
doi: 10.1016/S1001-0742(09)60081-4 pmid: 20397394
6 LiuS, LimM, FabrisR, ChowC, DrikasM, AmalR. Comparison of photocatalytic degradation of natural organic matter in two Australian surface waters using multiple analytical techniques. Organic Geochemistry, 2010, 41(2): 124–129
doi: 10.1016/j.orggeochem.2009.08.008
7 NishijimaW, SpeitelG E Jr. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon. Chemosphere, 2004, 56(2): 113–119
doi: 10.1016/j.chemosphere.2004.03.009 pmid: 15120556
8 GuvenD E, AkinciG. Heavy metals partitioning in the sediments of Izmir Inner Bay. Journal of Environmental Sciences (China), 2008, 20(4): 413–418
doi: 10.1016/S1001-0742(08)62072-0 pmid: 18575124
9 MurakamiM, FujitaM, FurumaiH, KasugaI, KurisuF. Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. Journal of Hazardous Materials, 2009, 164(2-3): 707–712
doi: 10.1016/j.jhazmat.2008.08.052 pmid: 18823702
10 HuL G, Diez-RivasC, HasanA R, Solo-GabrieleH, FieberL, CaiY. Transport and interaction of arsenic, chromium, and copper associated with CCA-treated wood in columns of sand and sand amended with peat. Chemosphere, 2010, 78(8): 989–995
doi: 10.1016/j.chemosphere.2009.12.019 pmid: 20053417
11 ChenH, WangA Q. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. Journal of Hazardous Materials, 2009, 165(1-3): 223–231
doi: 10.1016/j.jhazmat.2008.09.097 pmid: 19008046
12 TyeA M, YoungS, CroutN M J, ZhangH, PrestonS, ZhaoF J, McGrathS P. Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 2004, 55(3): 579–590
doi: 10.1111/j.1365-2389.2004.00627.x
13 ChenZ R, CaiY, Solo-GabrieleH, SnyderG H, CisarJ L. Interactions of arsenic and the dissolved substances derived from turf soils. Environmental Science and Technology, 2006, 40(15): 4659–4665
doi: 10.1021/es060619m pmid: 16913121
14 LinL, WuJ L. The evidence of isotopes geochemistry for eutrophical progress in Meiliang Bay, Taihu. Chinese Science, 2005, 35: 55–62 (in Chinese)
15 FujitakeN, KodamaH, NagaoS, TsudaK, YonebayashiK. Chemical properties of aquatic fulvic acids isolated from Lake Biwa, a clear water system in Japan. Humic Substances Research, 2009, 5–6: 45–53
16 ImaiA, FukushimaT, MatsushigeK, Hwan KimY. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources. Water Research, 2001, 35(17): 4019–4028
doi: 10.1016/S0043-1354(01)00139-7 pmid: 11791831
17 WangL Y, WuF C, ZhangR Y, LiW, LiaoH Q. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau. Journal of Environmental Sciences, 2009, 21(5): 581–588
doi: 10.1016/S1001-0742(08)62311-6 pmid: 20108658
18 SunS C, HuangY P. Lake Taihu. Beijing: Ocean Publishing of China, 1993 (in Chinese)
19 TaoY, YuanZ, WeiM, XiaonaH. Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment, 2012, 184(7): 4367–4382
doi: 10.1007/s10661-011-2270-9 pmid: 21863265
20 TessierA, CampbellP G C, BissonM. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
doi: 10.1021/ac50043a017
21 HyeongK, CapuanoR M. The effect of organic matter and the H2O2 organic-matter-removal method on the δD of smectite-rich samples. Geochimica et Cosmochimica Acta, 2000, 64(22): 3829–3837
doi: 10.1016/S0016-7037(00)00438-5
22 GengA C, ZhangS, HoeiandH. Complex behaviour of trivalent rare earth elements by humic acids. Journal of Environmental Sciences,1998, 10(3): 302–308
23 MurakamiM, FujitaM, FurumaiH, KasugaI, KurisuF. Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. Journal of Hazardous Materials, 2009, 164(2–3): 707–712
doi: 10.1016/j.jhazmat.2008.08.052 pmid: 18823702
24 HurJ, KimG. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Chemosphere, 2009, 75(4): 483–490
doi: 10.1016/j.chemosphere.2008.12.056 pmid: 19178928
25 JacintheP A, FilippelliG M, TedescoL P, LichtK J. Distribution of Copper in Sediments from Fluvial Reservoirs Treated with Copper Triethanolamine Complex Algicide. Water, Air, and Soil Pollution, 2010, 211(1–4): 35–48
doi: 10.1007/s11270-009-0278-3
26 SiposP, NémethT, KisV K, MohaiI. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 2008, 73(4): 461–469
doi: 10.1016/j.chemosphere.2008.06.046 pmid: 18674797
27 LiuG L, CaiY. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants. Chemosphere, 2010, 81(7): 890–896
doi: 10.1016/j.chemosphere.2010.08.002 pmid: 20801484
28 CarterR J, HoxeyA, VerheyenT V. Complexation capacity of sediment humic acids a function of extraction technique. Science of the Total Environment, 1992, 125: 25–31
doi: 10.1016/0048-9697(92)90379-7
29 MaesA, Van HerreweghenE, Van ElewijckF, CremersA. Behaviour of trace cadmium in boom clay reducing sediment 1.Complexation with in site dissolved humic acids. Science of the Total Environment, 1992, 117-118: 463–473
doi: 10.1016/0048-9697(92)90111-5
30 FuP Q, WuF C, LiuC Q, WangF Y, LiW, YueL X, GuoQ J. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Applied Geochemistry, 2007, 22(8): 1668–1679
doi: 10.1016/j.apgeochem.2007.03.041
31 HurJ, LeeB M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy. Chemosphere, 2011, 83(11): 1603–1611
doi: 10.1016/j.chemosphere.2011.01.004 pmid: 21288553
32 KalbitzK, WennrichR. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 1998, 209(1): 27–39
doi: 10.1016/S0048-9697(97)00302-1 pmid: 9496662
33 PeuravuoriJ, PihlajaK. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 1997, 337(2): 133–149
doi: 10.1016/S0003-2670(96)00412-6
34 Giancoli BarretoS R, NozakiJ, BarretoW J. Origin of dissolved organic carbon studied by UV-vis spectroscopy. Acta Hydrochimica et Hydrobiologica, 2003, 31(6): 513–518
doi: 10.1002/aheh.200300510
35 PrasadM, XuH Y, SaxenaS. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Journal of Hazardous Materials, 2008, 154(1–3): 221–229
doi: 10.1016/j.jhazmat.2007.10.019 pmid: 18082944
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[4] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[5] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[6] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[7] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[8] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[9] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[10] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[11] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[12] Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption[J]. Front. Environ. Sci. Eng., 2020, 14(4): 65-.
[13] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[14] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[15] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed