Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (2) : 317-323    https://doi.org/10.1007/s11783-013-0596-y
RESEARCH ARTICLE
Comparison of the removal of monovalent and divalent cations in the microbial desalination cell
Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU(),Renduo ZHANG,Bangyu QIN
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(571 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl2, KCl, and CaCl2 with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca2+ >Mg2+>Na+>K+. Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl2 with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na+ were one-fifth to five times of Mg2+, ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

Keywords divalent ion      electrodialysis      ion characteristic      microbial desalination cell      monovalent ion     
Corresponding Author(s): Guangli LIU   
Online First Date: 29 November 2013    Issue Date: 13 February 2015
 Cite this article:   
Shanshan CHEN,Haiping LUO,Yanping HOU, et al. Comparison of the removal of monovalent and divalent cations in the microbial desalination cell[J]. Front. Environ. Sci. Eng., 2015, 9(2): 317-323.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0596-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I2/317
external resistance /W CE /% maximal current density /(A·m-2)
1 54.5±0.5 12.9±0.7
10 54.5±0.6 11.9±0.2
100 53.7±0.8 6.0±0.2
1000 42.2±0.3 1.5±0.0
10000 14.5±0.2 0.1±0.0
Tab.1  Power generation of the MDC with different external resistances using 0.17 mol·L-1 NaCl+ 0.17 mol·L-1 MgCl2 + 0.17 mol·L-1 KCl+ 0.17 mol·L-1 CaCl2 in the desalination chamber
Fig.1  Removal rates of electrodialysis and dialysis and charge transfer efficiencies of Na+, Mg2+, K+ and Ca2+ in a mixed salt solution of NaCl+ MgCl2 + KCl+ CaCl2 in the MDC with different external resistances
Fig.2  Removal rates of electrodialysis and dialysis and charge transfer efficiencies of (a) Na+ and (b) Mg2+ in mixed salt solutions of 0.17 mol·L-1 NaCl+ 0.17 mol·L-1 MgCl2, 0.17 mol·L-1 NaCl+ 0.03 mol·L-1 MgCl2, and 0.03 mol·L-1 NaCl+ 0.17 mol·L-1 MgCl2 in the MDC with different external resistances after 2 h of operation
Fig.3  Final phosphate concentrations and potassium concentrations in the desalination chamber using mixed salt solution of 0.17 mol·L-1 NaCl+ 0.17 mol·L-1 MgCl2 changing with different external resistances
1 Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 2009, 43(18): 7148–7152
https://doi.org/10.1021/es901950j pmid: 19806756
2 Logan B E, Regan J M. Microbial fuel cells–challenges and applications. Environmental Science & Technology, 2006, 40(17): 5172–5180
https://doi.org/10.1021/es0627592 pmid: 16999086
3 Hou Y, Li K, Luo H, Liu G, Zhang R, Qin B, Chen S. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell. Frontiers of Environmental Science and Engineering, 2014, 8(1): 137–143
https://doi.org/10.1007/s11783-013-0534-z
4 Chen X, Xia X, Liang P, Cao X, Sun H, Huang X. Stacked microbial desalination cells to enhance water desalination efficiency. Environmental Science & Technology, 2011, 45(6): 2465–2470
https://doi.org/10.1021/es103406m pmid: 21322552
5 Jacobson K S, Drew D M, He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 2011, 102(1): 376–380
https://doi.org/10.1016/j.biortech.2010.06.030 pmid: 20584603
6 Kim Y, Logan B E. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 2011, 45(13): 5840–5845
https://doi.org/10.1021/es200584q pmid: 21671676
7 Luo H, Jenkins P E, Ren Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environmental Science & Technology, 2011, 45(1): 340–344
https://doi.org/10.1021/es1022202 pmid: 21121677
8 Mehanna M, Kiely P D, Call D F, Logan B E. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science & Technology, 2010, 44(24): 9578–9583
https://doi.org/10.1021/es1025646 pmid: 21077623
9 Chen S, Liu G, Zhang R, Qin B, Luo Y. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 2012, 46(4): 2467–2472
pmid: 22242642
10 Chen S, Liu G, Zhang R, Qin B, Luo Y, Hou Y. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.Bioresource Technology, 2012, 116: 507–511
https://doi.org/10.1016/j.biortech.2012.03.073 pmid: 22608915
11 Jacobson K S, Drew D M, He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environmental Science & Technology, 2011, 45(10): 4652–4657
https://doi.org/10.1021/es200127p pmid: 21526816
12 Mehanna M, Saito T, Yan J L, Hickner M, Cao X, Huang X, Logan B E. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy & Environmental Science, 2010, 3(8): 1114–1120
13 Cheng S, Xing D, Call D F, Logan B E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 2009, 43(10): 3953–3958
https://doi.org/10.1021/es803531g pmid: 19544913
14 Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658–662
https://doi.org/10.1021/es048927c pmid: 15707069
15 Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192
https://doi.org/10.1021/es0605016 pmid: 16999087
16 Firdaous L, Quéméneur F, Schlumpf J P, Malériat J P. Modification of the ionic composition of salt solutions by electrodialysis. Desalination, 2004, 167: 397–402
https://doi.org/10.1016/j.desal.2004.06.153
17 Walha K, Amar R B, Firdaous L, Quéméneur F, Jaouen P. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination, 2007, 207(1–3): 95–106
https://doi.org/10.1016/j.desal.2006.03.583
18 Luo H, Xu P, Jenkins P E, Ren Z. Ionic composition and transport mechanisms in microbial desalination cells. Journal of Membrane Science, 2012, 409–410: 16–23
https://doi.org/10.1016/j.memsci.2012.02.059
19 Kim J R, Cheng S, Oh S E, Logan B E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 2007, 41(3): 1004–1009
https://doi.org/10.1021/es062202m pmid: 17328216
20 Choi J H, Lee H J, Moon S H. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. Journal of Colloid and Interface Science, 2001, 238(1): 188–195
https://doi.org/10.1006/jcis.2001.7510 pmid: 11350153
21 Rozendal R A, Sleutels T H J A, Hamelers H V M, Buisman C J N. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Science and Technology, 2008, 57(11): 1757–1762
https://doi.org/10.2166/wst.2008.043 pmid: 18547927
22 Elattar A, Elmindaoui A, Pismenskaia N, Gavach C, Pourcelly G. Comparison of transport properties of monovalent anions through anion-exchange membranes. Journal of Membrane Science, 1998, 143(1–2): 249–261
https://doi.org/10.1016/S0376-7388(98)00013-1
23 Sleutelsa T H J A, Hamelersa H V M, Rozendal R A, Buisman C J N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. International Journal of Hydrogen Energy, 2009, 34(9): 3612–3620
https://doi.org/10.1016/j.ijhydene.2009.03.004
24 Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research, 2007, 41(9): 1984–1994
https://doi.org/10.1016/j.watres.2007.01.019 pmid: 17343894
25 Fan Y, Hu H, Liu H, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 2007, 41(23): 8154–8158
https://doi.org/10.1021/es071739c pmid: 18186352
[1] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[2] Xiaomeng Wang, Ning Li, Jianye Li, Junjun Feng, Zhun Ma, Yuting Xu, Yongchao Sun, Dongmei Xu, Jian Wang, Xueli Gao, Jun Gao. Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(4): 51-.
[3] Yifei Song, Lei Sun, Xinfeng Wang, Yating Zhang, Hui Wang, Rui Li, Likun Xue, Jianmin Chen, Wenxing Wang. Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China[J]. Front. Environ. Sci. Eng., 2018, 12(2): 14-.
[4] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[5] Dong Xu, Yang Li, Lifeng Yin, Yangyuan Ji, Junfeng Niu, Yanxin Yu. Electrochemical removal of nitrate in industrial wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(1): 9-.
[6] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[7] Yiying JIN,Yangyang LI,Fuqiang LIU. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Front. Environ. Sci. Eng., 2016, 10(1): 201-210.
[8] Hongguang CHENG,Xiao PU,Yiting CHEN,Fanghua HAO,Liming DONG. Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 905-921.
[9] Mingxia ZHENG,Zhong YAN,Jiane ZUO,Kaijun WANG. Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment[J]. Front.Environ.Sci.Eng., 2014, 8(5): 797-804.
[10] Jinliang HUANG, Zhenshun TU, Pengfei DU, Qingsheng LI, Jie LIN. Analysis of rainfall runoff characteristics from a subtropical urban lawn catchment in South-east China[J]. Front Envir Sci Eng, 2012, 6(4): 531-539.
[11] Xiaoliang LI, Xiaomin CHEN, Xia LIU, Lianchuan ZHOU, Xinqiang YANG. Characterization of soil low-molecular-weight organic acids in the Karst rocky desertification region of Guizhou Province, China[J]. Front Envir Sci Eng, 2012, 6(2): 195-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed