Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 177-184    https://doi.org/10.1007/s11783-014-0710-9
RESEARCH ARTICLE
Combined reticular blind drainage and vertical hierarchical drainage system for landfills located in areas with high rainfall and high groundwater level
Wenjing LU1,Zhonge FU2,Yan ZHAO3,*()
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Loudi Civil and Architecture Society, Loudi 417000, China
3. School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel water control technology that combines the features of a reticular blind drainage system and a vertical hierarchical drainage system is developed and applied in the Yanziyan Sanitary Landfill, which is located at an area (Loudi City, Hunan Province, China) with high rainfall and high groundwater level. The reticular blind drain system, which was installed on the bottom and side walls of the landfill site, can conveniently guide the flow of groundwater out of the site while preventing a disorganized flow of groundwater. The vertical hierarchical drainage system was installed to separate rainfall water and leachate in the landfill site, thus efficiently reducing the pressure of leachate treatment. The whole drainage system plays a key role in foundation stabilization by seepage control and separation and in the instant drainage of rainfall water. The leachate reduction efficiency of the drainage technology was calculated in terms of leachate production before (336519 m3) and after (29664 m3) technology application. Over 90% of leachate derived from rainfall water and groundwater inflow was avoided upon installation of the vertical hierarchical drainage and reticular blind drainage systems. The technology can thus be popularized and applied for water control in landfills located in areas with high rainfall and high groundwater level. The proposed technology can be used to alleviate the pressure of leachate treatment and to reduce the risk of instability.

Keywords landfill      reticular blind drain      vertical hierarchical drain      guidance and drainage      impermeable layer     
Corresponding Author(s): Yan ZHAO   
Online First Date: 09 May 2014    Issue Date: 03 December 2015
 Cite this article:   
Wenjing LU,Zhonge FU,Yan ZHAO. Combined reticular blind drainage and vertical hierarchical drainage system for landfills located in areas with high rainfall and high groundwater level[J]. Front. Environ. Sci. Eng., 2016, 10(1): 177-184.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0710-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/177
item 2008 (10 months) 2009 2010 2011
municipal solid waste amount/t 71814 99943 118963 123690
sewage sludge amount/t 21600 21600 21600 21600
Tab.1  Waste amount in the Yanziyan Sanitary Landfill
Fig.1  Diagram of water balance and leachate formation of a landfill without water recharge

L – leachate generated; P – precipitation; ET – actual evapotranspiration; SR – surface runoff; CW – change in moisture content of waste; SI – surface water inflow; G – water vapor contained in landfill gas; U – water consumed by chemical or microbial processes; GI – groundwater inflow; GD – groundwater discharge

item 2008 2009 2010 2011
precipitation/mm 1197.0 1231.0 1570.5 1071.1
sunshine duration/h 1613.2 1598.2 1425.1 1355.1
wind speed/(m·s−1) 1.4 1.4 1.3 1.4
average temperature/°C 18.3 18.4 17.9 17.7
evaporation/mm 980.5 987.3 855.6 947.1
Tab.2  Meteorological data record in the Yanziyan Sanitary Landfill
type water permeability bearing capacity of foundation soil/kPa
clay poor 120–220
quartz sandstone relative aquiclude 600–1000
mudstone relative aquiclude 350–500
shale relative aquiclude 350–500
pelitic sandstone relative aquiclude 350–1000
Tab.3  Characteristics of the foundation soil in the landfill site
item 2008 (10 months) 2009 2010 2011
water content of mixed waste/% 21.4 22.1 25.6 20.3
leachate amount/m3 24296 27787 29480 30398
Tab.4  Leachate amount in the Yanziyan Sanitary Landfill
driling well No. depth/m water content/% appearance density/(g·cm−3) total solid/% field water capacity/%
a 1.5 38.09 1.28 61.91 34.25
4.5 40.92 1.40 59.08 33.73
7.5 39.98 1.30 60.02 37.46
b 1.5 26.31 1.24 73.69 25.71
4.5 33.52 1.23 66.48 28.79
7.5 39.04 1.33 60.96 32.07
average value 36.31 1.30 63.69 32.00
Tab.5  Water content and water loss ratio of landfilled waste
Fig.2  Reticular blind drains for groundwater drainage [20]: (a) reticular blind drain system; (b) cross profile of blind drains; (c) water filtration area and profile of guide pipe; (d) main guide pipe for groundwater

1– reticular blind drains; 2– ring blind drains at the bottom; 3– main guide pipe for groundwater; 4– fishbone-shaped blind drains; 5– fan-shaped guide pipes; 6– anchoring ditches; 7– loop flood intercepting trenches; 8 – gravels; 9 – geotextiles; 10– spring; 11– guide pipes; 12– water filtration area; 13– cover layer of clay; 14– seepage areas of gravels; 15– semicylinder culverts; 16– clay layer; 17– impermeable layer

Fig.3  Vertical hierarchical drains for rainfall water separation and faveolate guide pipe for rainfall water discharge

1 – anchoring ditches; 2 – loop flood intercepting trenches; 3 – guide pipes; 4 – guide pipe for leachate; 5 – vertical drain for rainfall water; 6 – impermeable layer set; 7 – waste dam; 8 – anchor ditch; 9 –vertical drain for leachate; 10 – faveolate guide pipes for rainfall water

1 Del Borghi  A, Gallo  M, Del Borghi  M. A survey of life cycle approaches in waste management. International Journal of Life Cycle Assessment, 2009, 14(7): 597–610
https://doi.org/10.1007/s11367-009-0111-7
2 Damgaard  A, Riber  C, Fruergaard  T, Hulgaard  T, Christensen  T H. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Management (New York, N.Y.), 2010, 30(7): 1244–1250
https://doi.org/10.1016/j.wasman.2010.03.025 pmid: 20378326
3 Morris  J W F, Barlaz  M A. A performance-based system for the long-term management of municipal waste landfills. Waste Management (New York, N.Y.), 2011, 31(4): 649–662
https://doi.org/10.1016/j.wasman.2010.11.018 pmid: 21186115
4 Münnich  K, Bauer  J, Fricke  K. Long term monitoring of leachate flux into drainage pipes of MSW landfills. Waste Management & Research, 2012, 30(1): 49–55
https://doi.org/10.1177/0734242X10386639 pmid: 21030425
5 Blight  G E. Consequences of raising the height of a landfill in a water-deficient climate. Waste Management (New York, N.Y.), 2005, 25(10): 1021–1036
https://doi.org/10.1016/j.wasman.2005.01.014 pmid: 15961303
6 Karim  S, Chaudhry  M N, Ahmed  K, Batool  A. Impacts of solid waste leachate on groundwater and surface water quality. Journal of the Chemical Society of Pakistan, 2010, 32(5): 606–612
7 Samadi  M T, Kashitarash Esfahani  Z, Naddafi  K. Comparison the efficacy of fenton and “nZVI + H2O2” processes in municipal solid waste landfill leachate treatment (Case study: hamadan landfill leachate). International Journal of Environmental of Research, 2013, 7(1): 187–194
8 Brown  K, Ghoshdastidar  A J, Hanmore  J, Frazee  J, Tong  A Z. Membrane bioreactor technology: a novel approach to the treatment of compost leachate. Waste Management (New York, N.Y.), 2013, 33(11): 2188–2194
https://doi.org/10.1016/j.wasman.2013.04.006 pmid: 23791422
9 Insel  G, Dagdar  M, Dogruel  S, Dizge  N, Ubay Cokgor  E, Keskinler  B. Biodegradation characteristics and size fractionation of landfill leachate for integrated membrane treatment. Journal of Hazardous Materials, 2013, 260: 825–832
https://doi.org/10.1016/j.jhazmat.2013.06.037 pmid: 23856313
10 Xiong  X B. Research on anti-seepage characteristics of composite liner and its application in sanitary landfill engineering. In: 2010 International Conference on Information, Electronic and Computer Science. Zibo, China: Scientific Research Publishing Inc., 2010, (1–3): 1918–1922
11 Al Sabahi  E, Rahim  S A, Zuhairi  W Y W, Al Nozaily  F, Alshaebi  F. Leachate composition and groundwater pollution at municipal solid waste landfill of Ibb City, Yemen. Sains Malaysiana, 2009, 38(3): 295–304
12 São Mateus  M S, Machado  S L, Barbosa  M C. An attempt to perform water balance in a Brazilian municipal solid waste landfill. Waste Management (New York, N.Y.), 2012, 32(3): 471–481
https://doi.org/10.1016/j.wasman.2011.11.009 pmid: 22192421
13 Christensen  T H. Solid Waste Technology and Management. Hoboken, New Jersey: Blackwell Publishing Ltd., 2011
14 Kjeldsen  P, Barlaz  M A, Rooker  A P, Baun  A, Ledin  A, Christensen  T H. Present and long-term composition of msw landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297–336
https://doi.org/10.1080/10643380290813462
15 Shim  W G, Abdul  J M, Mohammad  T, Vigneswaran  S, Ngo  H H, Kandasamy  J. Biofilter in leachate treatment processes. Desalination and Water Treatment, 2012, 41(1–3): 249–257
https://doi.org/10.1080/19443994.2012.664722
16 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for Dynamic Observation of Groundwater in Urban Area. Beijing: China Architecture and Building Press, 1999 (in Chinese)
17 Ministry of Agriculture of the People’s Republic of China. Soil Testing-Part 22: Cutting Ring Method for Determination of Field Water Holding Capacity in Soil (NY/T 1121.22–2010). Beijing: China Agriculture Press, 2010 (in Chinese)
18 Wu  H, Chen  T, Wang  H, Lu  W. Field air permeability and hydraulic conductivity of landfilled municipal solid waste in China. Journal of Environmental Management, 2012, 98: 15–22
https://doi.org/10.1016/j.jenvman.2011.12.008 pmid: 22325639
19 Wu  H, Wang  H, Zhao  Y, Chen  T, Lu  W. Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age. Waste Management (New York, N.Y.), 2012, 32(3): 463–470
https://doi.org/10.1016/j.wasman.2011.10.029 pmid: 22289482
20 Fu  Z. Drainage and anti-seepage technology of reticular blind drain in landfill. Construction Technology, 2007, 36(6): 84–85 (in Chinese)
[1] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[2] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[3] Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling[J]. Front. Environ. Sci. Eng., 2018, 12(3): 5-.
[4] Rasool Bux MAHAR,Abdul Razaque SAHITO,Dongbei YUE,Kamranullah KHAN. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator[J]. Front. Environ. Sci. Eng., 2016, 10(1): 159-167.
[5] LOU Ziyang,CHAI Xiaoli,ZHAO Youcai,SONG Yu,ZHU Nanwen,JIA Jinping. Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill[J]. Front.Environ.Sci.Eng., 2014, 8(3): 405-410.
[6] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[7] Xiaoli CHAI, Yongxia HAO, Xin ZHAO, Guixiang LIU, Ying ZHU, Rong JI, Jun WU, Huanhuan TONG, Youcai ZHAO. Abiotic association of phthalic acid esters with humic acid of a sludge landfill[J]. Front Envir Sci Eng, 2012, 6(6): 778-783.
[8] Guangxia QI, Dongbei YUE, Yongfeng NIE. Characterization of humic substances in bio-treated municipal solid waste landfill leachate[J]. Front Envir Sci Eng, 2012, 6(5): 711-716.
[9] Daoroong SUNGTHONG, Debra R. REINHART. Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering applications[J]. Front Envir Sci Eng Chin, 2011, 5(2): 149-158.
[10] Jiajun CHEN , Hao WANG , Na ZHANG , . Modified landfill gas generation rate model of first-order kinetics and two-stage reaction[J]. Front.Environ.Sci.Eng., 2009, 3(3): 313-319.
[11] Wei WANG, Yuxiang LUO, Zhou DENG. Bioenergy recovery from landfill gas: A case study in China[J]. Front Envir Sci Eng Chin, 2009, 3(1): 20-31.
[12] WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin. Performance of landfill leachate treatment system with disc-tube reverse osmosis units[J]. Front.Environ.Sci.Eng., 2008, 2(1): 24-31.
[13] XU Zhengyong, YANG Zhaohui, ZENG Guangming, XIAO Yong, DENG Jiuhua. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed